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Abstract. We characterize sea-ice drift by applying a La-
grangian diffusion analysis to buoy trajectories from the
International Arctic Buoy Programme (IABP) dataset and
from two different models: the standalone Lagrangian sea-ice
model neXtSIM and the Eulerian coupled ice–ocean model
used for the TOPAZ reanalysis. By applying the diffusion
analysis to the IABP buoy trajectories over the period 1979–
2011, we confirm that sea-ice diffusion follows two distinct
regimes (ballistic and Brownian) and we provide accurate
values for the diffusivity and integral timescale that could be
used in Eulerian or Lagrangian passive tracers models to sim-
ulate the transport and diffusion of particles moving with the
ice. We discuss how these values are linked to the evolution
of the fluctuating displacements variance and how this infor-
mation could be used to define the size of the search area
around the position predicted by the mean drift. By com-
paring observed and simulated sea-ice trajectories for three
consecutive winter seasons (2007–2011), we show how the
characteristics of the simulated motion may differ from or
agree well with observations. This comparison illustrates the
usefulness of first applying a diffusion analysis to evaluate
the output of modeling systems that include a sea-ice model
before using these in, e.g., oil spill trajectory models or, more
generally, to simulate the transport of passive tracers in sea
ice.

1 Introduction

Sea-ice motion can be viewed as a superposition of a mean
circulation and turbulent-like fluctuations (Rampal et al.,
2009b). Using such decomposition for studying pollutant

transport by sea ice was already proposed by Colony and
Thorndike (1985), who analyzed sea-ice drift data covering
the period 1893–1984 while using arbitrary averaging scales
(90 years and 1500 km) to define the mean motion. By using
a denser sea-ice drift dataset covering the period 1978–2001
and the theoretical framework introduced by Taylor (1921)
for the analysis of turbulent fluids, Rampal et al. (2009b) pro-
posed a methodology to rigorously decompose sea-ice mo-
tion into mean and turbulent-like fluctuating parts. The ap-
propriate averaging scales (about 400 km and 5.5 months for
winter conditions) were found small enough to clearly sepa-
rate the interannual variability of the mean circulation from
the fluctuating motion due to passing atmospheric perturba-
tions, local oceanic eddies and inertial and tidal motion. This
approach, based on the analysis of single particle trajecto-
ries, has been widely used to study diffusion properties of
Lagrangian drifters in the ocean (see, e.g., Zhang et al., 2001;
Poulain and Niiler, 1989) and is now becoming a standard
analysis tool for sea-ice dynamics (Lukovich et al., 2011,
2015; Gabrielski et al., 2015).

Single particle analysis (here referred to as diffusion anal-
ysis) is particularly useful for characterizing long-term tra-
jectories as it clearly decomposes the motion into mean (pre-
dictable) and fluctuating (unpredictable) parts (Colony and
Thorndike, 1985). It also allowed Rampal et al. (2009b) to
show that sea-ice diffusion exhibits a clear transition from
the so-called ballistic regime to the Brownian regime. This
transition is also typical of turbulent fluids and is due to the
fast decay of the velocity autocorrelation function. The infor-
mation coming from the diffusion analysis (mean flow and
diffusivity) statistically describe the ensemble of all the po-
tential trajectories that a particle, released at a given location
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at an unknown time during a season, could follow and may
then be sufficient to produce a probabilistic forecast of tracer
transport.

To simulate tracer transport, one can use continuous or dis-
crete passive tracer models. Continuous models are usually
based on the following advection–diffusion equation:

@C

@t

+ ū · rC = r · (KrC), (1)

where ū is the mean velocity field, K is the corresponding
diffusivity and C may describe either the tracer concentra-
tion or the probability to find the tracer in a given position
after a given time (positional probability) as explained by La-
Casce (2008). One can also use discrete passive tracer mod-
els for which the displacement dx

i

in the i direction is de-
fined for independent objects. The simplest approach, known
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is the fluctuating velocity in the i direction and dw
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is a Wiener process. The first-order approach is also often
used as it can represent the transition between the ballistic
and the Brownian diffusion regimes by applying the stochas-
tic term on the evolution of the velocity, leading to the fol-
lowing set of equations:
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where 0

i

is the integral timescale in the i direction. First-
order approaches can also successfully reproduce the loops
often seen in surface drifter trajectories by adding a rotation
term similar to the Coriolis term.

These approaches have been widely used to study the
spread of pollutant and other tracers by eddy turbulence in
the ocean and atmosphere (see LaCasce, 2008, for an exten-
sive review). Using such approaches to simulate the spread of
sea ice would be inappropriate because sea-ice motion fields
are intermittent in time and discontinuous in space, but are
valid for reproducing the statistics of individual sea-ice tra-
jectories. The “random walk” model was, for example, used
in Colony and Thorndike (1985) with a mean field and statis-
tics on the fluctuations derived by Colony and Thorndike
(1984).

Another way to use passive tracer models is to replace the
mean field ū in Eqs. (1), (2) or (3) by simulated or observed
Eulerian velocity fields. This approach is widely used with
passive tracer models directly forced by motion fields simu-
lated by an hydrodynamical model (e.g., Nudds et al., 2013),
given by a reanalysis (e.g., Gearon et al., 2014) or derived

from satellite observations (e.g., Fowler et al., 2004). The
diffusion term (or in the discrete models, the Wiener process
term) is either neglected or defined such that it accounts for
the unresolved part of the fluctuating motion. The unresolved
part of the motion could be analyzed with the methodology
proposed by Dominicis et al. (2012) for ocean surface tracer
modeling, which consists of comparing the characteristics of
the fluctuating part of observed trajectories to the ones of tra-
jectories given by a tracer model forced by model output.

Before using one of these approaches one needs to answer
a few questions: What are the right averaging scales to de-
fine the mean motion field? What are the statistical proper-
ties of the fluctuating part of the motion? Is there a transi-
tion between different regimes of diffusion? Are the mean
and fluctuating parts of the motion correctly reproduced by
the forcing field? When not, could this indicate that some
processes are missing in the forcing velocity fields? If the
fluctuating part is not well reproduced, could it be compen-
sated by adding extra terms in the tracer equation? These
important questions are not always answered before running
tracer models forced by sea-ice velocity fields and this could
strongly impact the validity of the studies based on such re-
sults.

This is of particular importance in the context of the in-
creasing activities in the Arctic seas (e.g., shipping, fishing,
and oil and gas exploration and exploitation), which enhance
the risk of pollution in a region where ecosystems are already
under threat from the amplified effects of climate change.
The extreme conditions (e.g., presence of ice, extreme cold,
high winds and the polar night) and the long distance from
well-equipped facilities may hamper access to the polluted
area for several months (Drozdowski et al., 2011). These
conditions also make the detection of the pollution challeng-
ing and slow or even stop the natural and artificial degrada-
tion processes. In addition, the pollutants are often trapped
in or under the sea ice and, therefore, may be transported by
the ice over large distances before being released (Rigor and
Colony, 1997). To improve the understanding of sea-ice tra-
jectories is therefore crucial for risk assessment and response
planning related to pollutant release in Arctic seas. Passive
tracer modeling in sea ice also has other applications, for
example studying biology and its link with pollutants (e.g.,
Borgå et al., 2002; Pfirman et al., 1995) or estimating the age
of the Arctic sea-ice cover (e.g., Fowler et al., 2004; Hunke,
2014).

In this paper, we demonstrate the utility of applying La-
grangian diffusion analysis to sea-ice trajectories in the con-
text of passive tracer modeling. The analyses presented in
this paper are restricted to winter conditions, as this season
has been identified as more critical for oil spill recovery op-
erations (Drozdowski et al., 2011). In Sect. 2, we apply the
same method as in Rampal et al. (2009b) to the International
Arctic Buoy Programme (IABP) dataset for the period 1979–
2011 (Rigor, 2015). This reference dataset is analyzed to
get an overall picture of the characteristic of the mean and
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Figure 1. Example of a 35-day long trajectory from a buoy of
the IABP dataset (thin red line) partitioned into a mean (thick
black line) and fluctuating (thin black line) parts using the method
described in Sect. 2.2 and the averaging scales L = 400 km and
T = 150 days. The starting point of the three trajectories is the same
and arbitrarily set to be the origin of the axes.

fluctuating parts of the motion for the central Arctic domain
and to derive the quantities (diffusivity, Lagrangian integral
timescale, etc.) needed for tracer models. This section also
includes a discussion on how to predict the evolution of the
fluctuating displacements variance, which could be used to
define the size of the search area around the trajectory pre-
dicted by the mean drift. In Sect. 3, we follow the methodol-
ogy proposed by Dominicis et al. (2012), which consists of
applying the diffusion analysis to observed and simulated tra-
jectories to evaluate the merits of using these simulated fields
for tracer modeling. This evaluation exercise is done for sim-
ulations obtained from two different models. Section 4 sums
up the main conclusions.

2 Diffusion analysis on a reference dataset

In this section we present the theoretical framework of the
diffusion analysis by showing its application to the IABP
dataset from 1979 to 2011 as a reference. Results and theory
are then compared and discussed in the context of passive
tracer modeling. This is the same analysis as that already
done by Rampal et al. (2009b), except that we use the 12-
hourly buoy positions data instead of the hourly data and ex-
tend the analysis period up to 2011. The results we obtained
are similar to those reported in Rampal et al. (2009b), but ad-
ditional evaluation and discussion are presented in Sects. 2.4
and 2.5.

Figure 2. Buoy tracks from the IABP dataset for the winter peri-
ods 1979–2011 (left panel) and the corresponding number of buoys
(middle panel) and records (right panel). The central Arctic domain
is delineated by a blue line.

2.1 Reference dataset

Figure 2 shows all the trajectories analyzed in this section.
We restrict the analysis to the winter period defined as start-
ing on 1 November and ending 15 May. Results for summer
can be found in Rampal et al. (2009b). To investigate sea-
ice motion properties in the pack ice, we restrict the IABP
dataset to a region located in the center of the Arctic basin
(hereafter denoted the central Arctic domain, blue line on
Fig. 2).

This includes all buoy data north of 70� N, except between
20� W and 100� E where the southern limit is set to 80� N. In
addition only buoy data from more than 100 km off the coast
are used. The selected data cover the whole central Arctic
basin, but the data coverage in the East Siberian and Laptev
seas is sparse (see the maps showing the number of buoys and
records in Fig. 2). Sea-ice dynamics in coastal regions are
specific with, for example, the presence of land-fast ice and
would require a dedicated study. The IABP buoys are mainly
deployed over multi-year ice and thus the conclusions from
the analyses presented in this study may not be extrapolated
for weaker seasonal ice.

The raw IABP buoy positions are sampled irregularly in
time with a mean time interval of 1 h, and with errors ranging
from 100 to 300 m, depending on the positioning system they
used (Thomas, 1999). Before being published, however, the
buoy positions are interpolated in time (using a cubic func-
tion) to form an homogeneous trajectory dataset, giving for
each buoy its position every 12 h.

We manually checked each individual buoy track from
the IABP dataset to clean them from unrealistic “jumps” or
“spikes” in the trajectories and from obvious errors of the
dating system. The unrealistic “jumps” present in buoy tra-
jectories are due either to errors in the positioning system
installed in the buoy or to wrong recordings during the de-
ployment or recovery phase of the instruments. A polar stere-
ographic projection is used to change the IABP and virtual
buoy positions from geographic to Cartesian (x,y) coordi-
nates.
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2.2 Decomposition of the sea-ice motion

The IABP buoy trajectories are geometrically complex, with
abrupt changes in direction (Fig. 2).

Therefore, it is helpful to decompose the total sea-ice mo-
tion into a mean part, which should be considered homoge-
neous and stationary, and a fluctuating part, which should
contain the unpredictable, local or non-stationary motion.
This is done here by following the classical approach used
to study Lagrangian particle trajectories (see for example
Zhang et al., 2001). This consists of splitting each trajectory
into mean and fluctuating parts by using appropriate averag-
ing scales L and T to compute the Lagrangian mean motion
at any given location and time. An example for one particular
IABP buoy trajectory is shown on Fig. 1.

From the list of positions xi

q

of a buoy q, one can eval-

uate its position and velocity at time e
t

i

q

=
⇣
t

i+1
q

+ t

i

q

⌘
/2 by

computing

exi

q
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q
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q

⌘
/2, (5)

ui
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� xi

q

⌘
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By repeating this for all the available buoys, we build a
dataset of 12-hourly velocities and positions, from which we
compute the mean and fluctuating part of the motion.

The mean velocity field ū
L,T

(x, t) is defined for any target
position x and time t as

ū
L,T

(x, t) = 1P
q,i

w

i

q

X

q,i

w

i

q
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q

, (7)

where L and T are the spatial and temporal averaging scales
and w

i

q

are weight coefficients.
In this study we use constant weights, meaning that the

mean velocity is simply defined as an average of all the 12-
hourly velocities available in the dataset that are within a
circle of diameter L centered on the target position x and a
time window of duration T centered on the target time t . The
fluctuating velocities u0 are then computed at each position
exi

q

and timee
t

i

q

by subtracting the mean velocity ū
L,T

(

exi

q

,

e
t

i

q

)

from the total velocity ui

q

. Both the mean and fluctuating ve-
locities are then defined for a specific pair of averaging scales
L and T . The mean and fluctuating displacements for each
buoy (e.g., the one of Fig. 1) are then be defined by integrat-
ing in time the mean and fluctuating velocities, respectively.

To verify that the averaging scales L and T are well cho-
sen, one can check that the ensemble average autocorrela-
tion function of the fluctuating velocities rapidly decreases
and remains close to 0 for long time intervals ⌧ , as shown
in Fig. 3 for L = 1000 km and T = 250 days and the IABP
dataset from 1979 to 2011. The ensemble average autocorre-
lation function � is defined as

�(⌧ ) = 1
P

q

T

q

max

X

q

T

q

maxCq

(⌧ ), (8)
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Figure 3. Ensemble average autocorrelation function of the fluctu-
ating velocities computed from the IABP dataset for winter seasons
1979 to 2011 with three different averaging scales. The first zero-
crossing time t0 is given for indication.

where T

q

max is the duration of each trajectory and C

q

is the
Lagrangian normalized autocorrelation function for each in-
dividual trajectory, which is defined as

C

q

(⌧ ) = 1
hu02

q

iT q

max

T

q

maxZ

0

u0
q

(t)u0
q

(t + ⌧ )dt. (9)

Here u0
q

(t) is the fluctuating velocity of the buoys q at time
t and hu02i is the variance of the fluctuating velocities for the
whole trajectory, which is defined as

hu02i = hu02
x

(t) + u

02
y

(t)i. (10)

2.3 Application of Taylor’s diffusion theory

Once the motion is decomposed into mean and fluctuat-
ing parts, it is possible to analyze the diffusion properties
in the medium by following the theory developed by Tay-
lor (1921) for turbulent fluids. Taylor’s diffusion theory is
valid for statistically steady and homogeneous turbulent flow
without mean flow and whose fluctuating velocity follows
a Gaussian distribution. When following a single particle in
such conditions, the variance of its fluctuating displacement
hr 02

(t)i = hr 0
(t1)r

0
(t1 + t)i after a time interval t should be

equal to

hr 02
(t)i = 2hu02i

tZ

0

t1Z

0

C(⌧ )d⌧dt1, (11)
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where t1 is any instant of time in the life time of the particle
and the variance of the fluctuating velocity hu02i is constant
in time. Note that the subscript q is dropped when dealing
with only one particle.

For very long time intervals ⌧ , the autocorrelation vanishes
(as shown in Fig. 3) and the integral of C(⌧ ),

0 =
1Z

0

C(⌧ )d⌧, (12)

is then a constant referred to as the Lagrangian integral
timescale. Since we cannot integrate this equation to infin-
ity, the average integral timescale is often computed as

0 =
t0Z

0

�(⌧ )d⌧, (13)

where t0 is the first time �(⌧ ) crosses zero (see for instance
Poulain and Niiler, 1989; Rampal et al., 2009b). In the ex-
ample of Fig. 3, t0 = 11 days, meaning that fluctuating ve-
locities are uncorrelated for larger time intervals, and the in-
tegral timescale 0 is equal to 1.71 days.

0 determines the transition between two diffusion
regimes. For times much shorter than 0, the particle is in
the ballistic regime and Eq. (11) becomes

hr 02
(t)i = hu02it2

, t ⌧ 0. (14)

This simply results from the fact that C(⌧ ) tends to the lim-
iting value unity for small time intervals. For times much
longer than 0, the particle is in the Brownian regime (also
called “random walk” regime) and Eq. (11) becomes

hr 02
(t)i = 2hu02i0t + ↵, t � 0, (15)

where ↵ is a constant defined as ↵ = �2
R 1

0 ⌧C(⌧ )d⌧ (La-
Casce, 2008). We checked that this constant term is very
small and can be neglected. This second regime is similar to
the one driven by molecular diffusion, i.e., where fluctuating
velocities are uncorrelated.

These two regimes are clearly detected in Fig. 4 where
is plotted the displacement variance hr 02

(t)i computed with
L = 1000 km and T = 250 days and the IABP dataset from
1979 to 2011, as well as the corresponding solution for the
ballistic and Brownian regimes (Eqs. 14 and 15). The fluc-
tuating displacements have been computed as the integral in
time of the fluctuating velocities for segment periods of 35
days.

Following Lagrangian turbulent theory, diffusivity is de-
fined as

K = 1
2

dhr 02
(t)i

dt

. (16)

In the ballistic regime (with Eq. 14), diffusivity increases
with time and may be calculated as

K = hu02it. (17)
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Figure 4. Ensemble mean of the variance of the fluctuating dis-
placements < r

02
> for the winter seasons 1979–2011 for IABP.

The green lines correspond to Eqs. (14) and (15) and are shown for
reference.

In the Brownian regime (with Eq. 15), diffusivity (also
called eddy diffusivity in that case) is constant and may be
calculated as

K = hu02i0. (18)

Note that the values of diffusivity for turbulent fluids are
generally much larger than diffusion coefficients linked to
molecular diffusion.

2.4 Results

To define the optimal averaging scales, we perform the de-
composition of the sea-ice motion and the diffusion analy-
sis for scales ranging from L = 100 to 2000 km by step of
100 km and from T = 50 to 250 days by step of 50 days, and
we analyze the deviation (i.e., the root mean square differ-
ence) of the obtained displacements variance (black line in
Fig. 4) to the theoretical solution for the Brownian regime
(from t = 20 to 35 days) given by Eq. (15) (upper green line
in Fig. 4). The root mean square difference as a function of
L and T shows several local minima (not shown). The scales
L = 1000 km and T = 250 days are defined as optimal as
they correspond to the local minima with the smallest av-
eraging spatial scale.

With these optimal averaging scales, the computed fluctu-
ating displacements variance hr 02

(t)i fits well with Taylor’s
theory. As in Rampal et al. (2009b), we find a clear transition
between the two diffusion regimes (indicated by the green
lines in Fig. 4). In the ballistic regime the displacement vari-
ance grows with t

2, whereas in the Brownian regime the dis-
placement variance grows with t . The timescale at which the

www.the-cryosphere.net/10/1513/2016/ The Cryosphere, 10, 1513–1527, 2016



1518 P. Rampal et al.: Diffusion in the ice pack: comparison between models and observation

Table 1. This table shows the total number of floats (Nrf), the calculated integral timescale (0), the variance hu02i and the calculated
diffusivity K for the different dataset (IABP, TOPAZ and neXtSIM) and time periods used in this study. All these Lagrangian statistics were
computed following the diffusion theory of Taylor (1921) and using L = 1000 km and T = 250 days as averaging scales to calculate the
Lagrangian mean velocities.

Source Period Nrf 0 (day) hu02i (km2 day�2) K 103 (m2s�1)

IABP 1979–2011 1406 1.71 59 1.17
IABP 2007–2010 280 1.57 66 1.20
neXtSIM 2007–2010 280 1.96 51 1.16
TOPAZ 2007–2010 280 1.81 86 1.80

regime transition occurs corresponds to the integral timescale
0 = 1.71 days. Also the magnitude of the fluctuating dis-
placements variance compares well with the asymptotic val-
ues (indicated by the green lines in Fig. 4) predicted by the
theory for t ⌧ 0 (from Eq. 14) and for t � 0 (from Eq. 15).

We also checked the stationarity of the variance of the fluc-
tuating velocities by comparing hu02

(t)i to the mean values
hu02i. Having an almost stationary variance was found crucial
to having a good match between the computed displacement
variance and the asymptotic values predicted by the theory
(not shown here). To increase the robustness and statistical
significance of the diffusion analysis, we then artificially in-
crease the number of buoy trajectories by splitting each tra-
jectory into 35-day segments starting every 12 h, i.e., every
time a new buoy position along-track is available. By doing
so, we make sure that the variance of the fluctuating veloci-
ties hu02

(t)i, where t here goes from 0 to 35 days, is almost
constant, with a relative deviation to the mean values hu02i
not larger than 10 %.

These evaluation steps ensure that the values given for
hu02i, 0 and K (see Table 1) are consistent with the theory
and the analyzed data and can then been used with confi-
dence.

2.5 Discussion

The first outcome of the diffusion analysis is to provide a
simple and rigorous method to separate the mean circulation
from the fluctuating motion, which can then be analyzed sep-
arately.

A second outcome is to quantify the diffusion properties
of sea ice that can then be compared to the diffusion prop-
erties of passive tracers in the ocean. We note that the in-
tegral timescale 0 (about 1.71 days) and the diffusivity K

(1.17 ⇥ 103 m2 s�1) are of the same order of magnitude as
those found for ocean drifters (e.g., Poulain and Niiler, 1989;
Zhang et al., 2001).

A third outcome of this analysis is to give a way to es-
timate the evolution of the fluctuating displacement r

0. The
magnitudes of diffusivity and integral timescale can be used
to evaluate the fluctuating displacements variance (and its
standard deviation) for any time t with Eqs. (14) and (15).

The standard deviation of the fluctuating displacement is a
crucial piece of information for the planning of a recovery
operation in the case of drifting oil or some other pollutant
that is trapped in or attached to the ice, as it gives an estimate
of how the size of the search area around the predicted mean
drift should increase with time, in a statistical sense. This is
illustrated in Fig. 5, which shows the evolution of the norm
of the fluctuating displacement for every thousandth segment
retrieved from the IABP trajectories for the winter periods
from 1979 to 2011. This norm indicates the distance between
a given buoy and the trajectory predicted by the mean drift.
About 67, 96 and 99.6 % of the fluctuating displacements are
smaller than 1, 2 and 3 standard deviations, which means that
the fluctuating displacement distribution is in the Gaussian
attraction basin.

For forecasts longer than a few days, typically only the
mean ice drift can be trusted. Then, the long-term average
standard deviation provided here could be used to define the
size of the search area around the position predicted by the
mean drift. For example, the search area could be defined as
a circular region with a radius equal to 3 standard deviations
of the fluctuating displacement. The search radius would then
be about 84 km after 5 days (corresponding to a surface area
of 22 200 km2) and about 222 km after 30 days (correspond-
ing to a surface area of 154 900 km2). More examples are
given in Table 2.

The diffusion analysis may also be used to predict long-
term (typically seasonal) sea-ice trajectories based on con-
tinuous or discrete tracer models. The average mean velocity
needed by the tracer model may be defined from observa-
tions taken over the last few months, whereas the term re-
flecting the effects of the unpredictable fluctuations may be
defined by the values of diffusivity and integral timescale de-
rived from the diffusion analysis.

Compared to the analysis of the same data performed by
Rampal et al. (2009b), several improvements should be high-
lighted. First of all, the mean velocity field is defined with a
simpler weighted average which does not depend on the rank
or the distance of the observations to the target point. Sec-
ond, the criterion to define the optimal averaging scales does
not depend on an arbitrary criterion of convergence but rather
on the minimization of the deviation from Taylor’s diffusion
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Table 2. This table gives an estimate of the search radii and areas corresponding to 1, 2 and 3 standard deviations, respectively, and for
time horizons ranging from 1 to 30 days. These numbers are averaged over the whole domain and period analyzed in Sect. 2 and should be
reevaluated for specific applications, periods and domains of interest, for example by using model outputs having passed the evaluation test
proposed in Sect. 3. Note that we checked that about 67, 96 and 99.6 % of the fluctuating displacements are smaller than 1, 2 and 3 standard
deviations.

Time horizon Radius for 1� Area for 1� Radius for 2� Area for 2� Radius for 3� Area for 3�

(days) (km) (km2
) (km) (km2

) (km) (km2
)

1 10 300 21 1400 31 3100
5 28 2500 56 9900 84 22 200

10 42 5600 84 22 200 126 50 000
20 61 11 600 122 46 400 182 104 500
30 74 17 200 148 68 900 222 154 900

Time [days]
0 10 20 30

r
′
[k
m
]

0

100

200

300

1 σ

2 σ

3 σ

r
′
x(35 days) [km]

-300 -200 100 0 100 200 300

|r
′ y
(3
5
d
ay
s)
|
[k
m
]

0

100

200

300

Figure 5. Time evolution of the norm of the fluctuating displacement r

0 for every thousandth 35-day segments extracted from the IABP
buoys tracks for the winters 1979–2011 (left). The solid lines in color indicate 1, 2 and 3 standard deviations of the fluctuating displacement,
respectively. Illustration of search area after 35 days (right) estimated statistically from the IABP buoys dataset for the period 1979–2011.

theory. Finally, we checked that the results presented here
fit with Taylor’s diffusion theory. In Rampal et al. (2009b),
the fluctuating displacement are underestimated by a factor
100. This mistake, which the authors (Rampal et al., 2009b)
are aware of, simply comes from a wrong conversion factor
and has no impact on the rest of their study, but it is worth
mentioning here, especially with regard to the present dis-
cussion. Note that the value of diffusivity given in Rampal
et al. (2009b) is twice as low as the one found here and is not
consistent with the other results presented in their study. We
do not know the reason for this inconsistency.

There are, however, some limitations when using the mean
motion and mean diffusivity to force passive tracer models:

– the averaging smooths out local mean circulation fea-
tures such as coastal currents;

– the method is not well suited for studying dispersion as
it assumes no spatial correlation;

– the diffusivity could differ spatially and be not well rep-
resented by the basin-wide mean value;

– the diffusivity could be affected by the long-term trend
in the mean speed identified in Rampal et al. (2009a)
and may therefore not be well represented by a single
mean value derived from these decades.

These issues do not occur when the tracer models are directly
forced with sea-ice velocity fields representing correctly both
the mean and fluctuating parts of the motion field, as well as

their gradient at all scales. The diffusion analysis presented
here can also help to assess the representation of the mean
and fluctuating parts. In the following section such an assess-
ment is carried out on the results of the two sea-ice(–ocean)
modeling platforms, neXtSIM and TOPAZ.

3 Diffusion analysis on observed and simulated sea-ice
trajectories

Model output or reanalyses are often used to directly force
passive tracer models (e.g., Nudds et al., 2013; Gearon et al.,
2014). In that case, it is important to check whether the sim-
ulated trajectories adequately represent the mean and fluc-
tuating parts of the sea-ice motion before pursuing an anal-
ysis of these trajectories. In some cases, a specific term is
added to the tracer model (either via a diffusive term or a
random perturbation) to represent the effect of the unresolved
physics on the tracer evolution. When applied in the ocean,
the stochastic part represents molecular and turbulent diffu-
sive processes that are not included in the velocity fields sim-
ulated by the ocean model. However, as sea ice, especially
compact pack ice, does not behave as a turbulent fluid, the
stochastic term to be used for sea ice should not be taken
to represent the same underlying physical processes as in the
ocean, and it therefore may have a different form or be scaled
with a different coefficient. In this section, we follow an ap-
proach that is frequently used for oceanic drifters (e.g., Do-
minicis et al., 2012). This approach consists of applying the
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diffusion analysis to observed and simulated trajectories to
determine how the mean and fluctuating motion are repre-
sented and how unresolved physics could be taken into ac-
count.

3.1 Observed and simulated trajectories datasets

In this section we compare observed trajectories from the
IABP dataset to trajectories of virtual buoys (here called
“floats”) whose motion is forced by sea-ice fields coming
from two different model setups. Due to limited available
computational time, this analysis is restricted to three con-
secutive winters. The period 2007–2010 has been selected
for its relatively good data coverage, with more than 40 IABP
buoys recording their positions simultaneously every day.

The float simulations are initialized at the same time and
position as the IABP buoys (280 individual floats). The po-
sitions of each float are sampled every 12 h at the same time
as the IABP buoys and stop when the IABP buoy track stops
or when the float enters into an area of simulated open wa-
ter (sea-ice concentrations less than 15 %). By doing so, three
comparable datasets with the exact same number of positions
are obtained: (i) the observed sea-ice trajectories, already dis-
cussed in Sect. 2.1; (ii) the trajectories of virtual sea-ice floats
forced by a free run of the TOPAZ sea-ice–ocean data assimi-
lation system; and (iii) the trajectories of virtual sea-ice floats
simulated by the neXtSIM sea-ice model.

3.1.1 TOPAZ trajectories dataset

TOPAZ is a coupled sea-ice–ocean data assimilation system
(Sakov et al., 2012) used in the operational Arctic Ocean
forecast platform of the European Copernicus Marine En-
vironment Monitoring service (http://marine.copernicus.eu).
It has also been used to build a 23-year reanalysis (1991–
2013), also distributed by the Copernicus marine service. The
ocean part of TOPAZ uses the HYCOM model version 2.2,
with 28 vertical layers, whereas the sea-ice part uses a single-
thickness-category sea-ice model whose thermodynamics are
described in Drange and Simonsen (1996) and dynamics are
built around a standard EVP rheology (Hunke and Dukowicz,
1997) as it was implemented in the CICE sea-ice model (the
Los Alamos sea-ice model) version 4 (Hunke and Lipscomb,
2010).

The sea-ice–ocean model of TOPAZ (hereafter called the
TOPAZ model) is used here in free-run mode (i.e., no data as-
similation is applied) in the same configuration as in Sakov
et al. (2012). The model grid covers the Arctic and North
Atlantic oceans with a mean resolution of approximately
12 km over the Arctic. The three TOPAZ simulations ana-
lyzed in the following start on 15 September and finish on 15
May for three consecutive winters from 2007 to 2010 with
initial conditions extracted from the free-run simulation de-
scribed in Sakov et al. (2012). The applied atmospheric forc-
ing fields are the 10 m wind velocity, the 2 m temperature

and mixing ratio, mean sea level pressure, total precipita-
tion and the fraction of that which is snow, and the incom-
ing short-wave and long-wave radiation from the ERA in-
terim reanalysis (ERAi) distributed at 80 km spatial resolu-
tion and 6 h temporal resolution (http://www.ecmwf.int/en/
research/climate-reanalysis/era-interim, ECMWF, 2011).

The TOPAZ model in free-run mode has been evaluated
in Sakov et al. (2012) and was found to overestimate sea-
ice drift by about 3 km day�1 compared to buoy data. To
try to solve this issue, the frictional drag parameters for the
atmosphere–ice stress has been reduced to ca = 0.0016 in
the TOPAZ operational platform (not yet documented). The
same value is also used here. The mean sea-ice thickness
in the free run is generally underestimated and has reduced
horizontal gradients. The sea-ice thickness is slightly bet-
ter in the TOPAZ reanalysis, which applies assimilation of
sea surface temperature, in situ profiles, sea-ice concentra-
tion and sea-ice drift, but the total volume is still too low
(Sakov et al., 2015, http://marine.copernicus.eu/documents/
QUID/CMEMS-ARC-QUID-002-003.pdf).

The float tracking with the TOPAZ model is performed
offline by using the hourly mean sea-ice velocity fields sim-
ulated by the model. The float-tracking system moves the
floats with a simple Eulerian method. The virtual floats move
in the quasi-homogeneous TOPAZ Arctic grid in order to
avoid singularity errors at and around the North Pole that
would arise with a regular longitude / latitude grid. The sea-
ice velocities given by the TOPAZ model are interpolated
with a bilinear method to the position of the virtual La-
grangian floats every hour. We checked that, for the timescale
and spatial resolution considered here, this tracking method
gives similar results to computing the float position during
runtime with the advantage of remaining computationally ef-
ficient.

3.1.2 neXtSIM trajectories dataset

neXtSIM is a fully Lagrangian thermodynamic–dynamic
sea-ice model, using an adaptive finite element mesh and a
mechanical framework based on the elasto-brittle rheology
(Rampal et al., 2016). Thermodynamic growth and melt of
the ice are based on the zero-layer model of Semtner (1976)
and the ice model is coupled to a slab ocean model, whose
variables are the slab ocean temperature and salinity. While
still being under development, the model is already used in
an experimental sea-ice forecast platform covering the Kara
Sea (https://www.nersc.no/data/nextsim-f).

The configuration used here is the same as the one pre-
sented and evaluated in Rampal et al. (2016). The model
domain shares the exact same coastlines and open bound-
aries as the TOPAZ model described above; i.e., it covers
the Arctic and North Atlantic oceans extending from an open
boundary at 43� N in the North Atlantic to an open bound-
ary in the Bering Strait. The mean resolution of the finite
element mesh used by neXtSIM is about 10 km. The three
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Figure 6. IABP buoys tracks (left) and their corresponding virtual tracks simulated by TOPAZ (center) and neXtSIM (right) for the winters
2007/2008 (top), 2008/2009 (middle) and 2009/2010 (bottom).
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Figure 7. Mean sea-ice velocity field computed from the IABP buoys dataset (left), the corresponding float dataset generated with TOPAZ
(center) and neXtSIM (right) for the winters 2007/2008 (top), 2008/2009 (middle) and 2009/2010 (bottom). The mean velocity vectors are
computed with the averaging scales L = 1000 km and T = 250 days and are shown on a 400 ⇥ 400 km regular grid.
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Figure 8. Probability density function of the mean speed of the IABP buoys (left) and of the corresponding virtual floats in TOPAZ (middle)
and neXtSIM (right) for the period 2007–2010. The Gaussian (dotted lines) and exponential (dashed lines) fits of the data are also indicated.
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Figure 9. Probability density function of the fluctuating speed of the IABP buoys (left) and of the corresponding virtual floats in TOPAZ
(middle) and neXtSIM (right) for the winter periods 2007–2010. The Gaussian (dotted lines) and exponential (dashed lines) fits of the data
are also indicated.

neXtSIM simulations used here start on 15 September and
finish on 15 May, for three consecutive winters from 2007
to 2010. The model is initialized with the ice concentra-
tion derived from the AMSR-E passive microwave sensor
(Kaleschke et al., 2001; Spreen et al., 2008, data obtained
from the Integrated Climate Date Center, University of Ham-
burg, Germany, http://icdc.zmaw.de) and the TOPAZ reanal-
ysis ice thickness, within the area covered with ice. As the
modeled ice volume of the TOPAZ reanalysis is known to be
too low (Sakov et al., 2015), we increased the initial thick-
ness uniformly so that the total volume is the same as that
given by the PIOMAS model (Zhang and Rothrock, 2003)
on 15 September 2007, 2008 and 2009, respectively. The
good performance of PIOMAS in simulating Arctic sea-ice
volume as compared to available observations is reported in
Schweiger et al. (2011). The temperature and salinity of the
slab ocean model are initialized with temperature and salin-
ity from the TOPAZ reanalysis. The model is forced with the
ocean state (i.e., sea surface height, velocity at 30 m depth,
and sea surface temperature and salinity) of the TOPAZ
reanalysis. The atmospheric state comes from the Arctic
System Reanalysis, Interim version (ASR-Interim hereafter)
(http://rda.ucar.edu/datasets/ds631.4/, Byrd Polar Research
Centre/The Ohio State University, 2012). The ASR-Interim
is a high-resolution atmospheric reanalysis (30 km with out-
put every 4 h) known to reproduce particularly well the near-
surface wind fields in the Arctic region (Bromwich et al.,
2016).

The neXtSIM model is able to simulate correctly the ob-
served evolution of the sea-ice volume, extent and area for
the freezing season (from September to May) but simulates
a too-rapid melt from May onwards (Rampal et al., 2016).
This limitation does not impact the results of this study as
we only analyze simulated drift in winter with simulations
restarted every September.

For the winter season 2007–2008, the simulated drift fields
have been extensively evaluated in Rampal et al. (2016)
against satellite derived products, showing a high correlation
(higher than 0.85), only a negligible bias in the 3-day drift
and a good representation of the mean circulation.

The float tracking with neXtSIM is performed at runtime.
The main reason for doing this is that the Lagrangian advec-
tion used in the neXtSIM model offers some additional chal-
lenges to a post-processing approach using Eulerian fields
due to the remeshing technique applied (see Rampal et al.
(2016) for more details on the remeshing procedure).

3.2 Results

Figure 6 shows maps with all the buoy / float trajectories for
each winter season from the IABP, TOPAZ and neXtSIM ice
trajectories datasets. The three winter subsets from 2007 to
2010 are much sparser and cover a smaller portion of the Arc-
tic Ocean than the reference dataset of 1979–2011 analyzed
in Sect. 2.1. As it is not practical to directly compare the sim-
ulated and observed trajectories, we analyze separately the
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mean drift and the fluctuating part of the motion by applying
the decomposition method presented in Sect. 2.2.

The mean velocity fields for each winter season and for
the three datasets are shown in Fig. 7. The two main fea-
tures of the Arctic-wide mean circulation are the Beaufort
Gyre and the Transpolar Drift. The lowest drift speeds are
observed along the Canadian Arctic Archipelago, where the
ice is significantly thicker and more ridged. The strength and
the extent of the Beaufort Gyre, as well as the strength of
the Transpolar Drift, vary from one year to the next. This in-
terannual variability is well represented by both TOPAZ and
neXtSIM. The quality of the mean drift simulated by the two
models is constant in neither time nor space. In 2007/2008,
the simulation with TOPAZ largely misses the low drift speed
along the Canadian Arctic Archipelago, when the simulation
with neXtSIM correctly reproduces it. For the other winters,
it is less obvious to distinguish clear differences in the quality
of the simulated mean drift fields.

The statistical distribution of the mean velocity gives valu-
able information and can be used to evaluate the simulated
mean drift more objectively. Figure 8 shows the probability
density function of the mean speed Ū =

p
ū

2 + v̄

2 as com-
puted from the IABP buoy data and from the TOPAZ and
neXtSIM virtual buoy data for the period 2007–2010, as well
as the Gaussian and exponential fits. None of the three distri-
butions fit well with the Gaussian or exponential distributions
on the whole range of values. The mean speed distribution
obtained with the TOPAZ dataset seems to have not enough
values within the range of 0 to 1.5 cm s�1 and too many val-
ues within the range of 1.5 to 4 cm s�1. The mean speed
distribution obtained from the neXtSIM dataset is close to
the observed distribution within the range of 0 to 4 cm s�1

but differs for the larger values. The mean value of the ob-
served mean speed is equal to 1.95 cm s�1, when the one of
the TOPAZ dataset is 2.89 cm s�1, which is about 48 % larger
than the observations, and the one from the neXtSIM dataset
is 1.65 cm s�1, which is about 15 % lower than the observa-
tions.

When removing the mean part of the velocity field we are
left with the fluctuating velocity field u

0
(x). If the mean part

is removed correctly (according to the Taylor’s theory), each
component of the fluctuating velocity should be symmetri-
cally distributed around zero. This is the case in our results
(not shown), meaning that one can directly use the norm of
the fluctuating velocity instead of the components separately,
without losing information. The probability density functions
(PDFs) of the fluctuating speeds are plotted in Fig. 9 with the
Gaussian and exponential fits indicated for reference.

The fluctuating speeds of the IABP buoys clearly follow
an exponential distribution with a mean equal to 6.98 cm s�1.
The fact that the data follow an exponential distribution in-
stead of a Gaussian distribution means that the sea-ice fluc-
tuating speed can be much larger than a standard deviation
away from the (zero) mean. Such non-Gaussian distributions
for fluctuating speeds are not expected for fully developed
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turbulence (Batchelor, 1960; Frisch, 1995) but have been ob-
served for oceanic surface currents during energetic events
associated with large organized structures such as jets and
vortices. Such a signature for multi-year sea ice may indicate
that sea-ice dynamics are dominated by the passage of large
perturbations over the Arctic, whereas less energetic features
have less impact on sea-ice motion. This selective sensitiv-
ity to energetic events may be related to the intrinsic proper-
ties of solids associated with threshold mechanics (Rampal
et al., 2009b). This seems to be supported by the fact that for
weaker seasonal sea ice, the observed fluctuating velocities
rather follow Gaussian statistics (Lukovich et al., 2011).

The mean value of the fluctuating speeds from the TOPAZ
setup is too high by about 30 % (8.97 cm s�1 instead of
6.98 cm s�1). Also their statistics do not follow an exponen-
tial distribution as in the observations but are closer to the
Gaussian fit centered on the value 10 cm s�1, resulting in an
underrepresentation of both the very high speed (larger than
30 cm s�1) and very low speed (smaller than 5 cm s�1). The
mean value of the fluctuating speeds from neXtSIM is too
low by about 10 % (6.2 cm s�1). The fluctuating speeds fol-
low an exponential distribution but only in the velocity range
0 to 30 cm s�1. The high speed values are missed by the two
models.

Figure 10 shows the evolution of the fluctuating displace-
ments variance for the observed and simulated trajectories.
The fluctuating displacement are computed for segments of
35 days, the same as in the analysis of the reference dataset.
The magnitude of the fluctuating displacements variance is
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Figure 11. Diffusivity fields obtained from the analysis of the IABP buoys trajectories (left), TOPAZ float trajectories (middle) and neXtSIM
float trajectories (right) for the winters 2007–2010. The diffusivity is averaged over boxes of 400 by 400 km.

Figure 12. Mean ice thickness in the central Arctic obtained from ICESat satellite observations (Kwok et al., 2009) and the two models.
ICESat results are only available in February and March of 2008, while the model results have been averaged over the winters of 2008, 2009
and 2010.

constantly overestimated with TOPAZ, by about 40 % in the
ballistic regime and almost 50 % in the Brownian regime.
This is consistent with the fact that the integral timescale
and fluctuating velocity variance are overestimated by 15 and
30 %, respectively (see Table 1). In the Brownian regime,
these overestimation are combined resulting in the overes-
timation of the diffusivity by about 50 %. With neXtSIM the
fluctuating displacements are underestimated in the ballistic
regime but correctly reproduced for the Brownian regime.
This is consistent with the underestimation of the fluctuat-
ing velocities variance by about 23 %, which is balanced in
the Brownian regime by the overestimation of the integral
timescale by about 25 %, leading to a diffusivity almost equal
to the one coming from the observations for the same period.

Figure 11 shows the regional distribution of the diffusivity
fields. The results obtained with the TOPAZ setup have a cor-
relation coefficient against the diffusivity map obtained from
observations of about 0.71 but generally overestimate the dif-
fusivity. The results obtained with the neXtSIM setup have a
correlation coefficient against diffusivity map obtained from

observations of about 0.85 and adequately represent the mag-
nitude of the diffusivity.

The diffusivity field computed from the IABP buoys is not
uniform and seems to be related to the spatial distribution of
sea-ice thickness shown in Fig. 12, with rather low diffusivity
values along the Canadian Arctic Archipelago (i.e., as small
as about 0.5 ⇥ 103 m2 s�1) and larger values in the Beaufort
and East Siberian seas (1.5–2.5 ⇥ 103 m2 s�1). The spatial
distribution of the diffusivity obtained with the TOPAZ and
neXtSIM setups also correlate well with the simulated sea-
ice thickness pattern (shown in Fig. 12).

3.3 Discussion

The goal of the present analysis is not to compare the model
systems themselves but to illustrate how the simulated mo-
tion fields differ from observations and what would be the
impact of using such model outputs to force passive tracers
models to study, for example, trajectories of pollutant trajec-
tories in sea ice. The differences between the simulated and
observed motion may be due to many factors, ranging from
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the internal characteristics of the sea-ice models (their rhe-
ology, drag parameterization, etc.) to external causes, such
as the initial conditions, atmospheric forcing and impact of
the ocean. To distinguish the effects of each factor would re-
quire one to run the same model with different initial con-
ditions, forcings and set of parameters or to run different
models in the same configuration (initial conditions, forc-
ings, parameters, etc.). Other diagnostics than the diffusion
analysis would also be necessary. For example, the effect of
the rheology would be better analyzed by a dispersion anal-
ysis (double particle diffusion) as in Rampal et al. (2008)
as it is directly related to sea-ice deformation. Nevertheless,
even when the present analysis cannot clearly distinguish the
sources of the differences between the simulated and ob-
served trajectories, it provides pertinent information on the
quality of the simulated trajectories.

The TOPAZ model reproduces the very basic characteris-
tics of the Arctic sea-ice mean circulation, with interannu-
ally varying Beaufort Gyre and Transpolar Drift. However,
the averaged mean drift is overestimated by about 48 %. This
overestimation partly comes from missing the mean drift
speed smaller than 5 cm s�1 that are, in the observations, lo-
calized north of the Canadian Arctic Archipelago (CAA) in
a region covered by thick multi-year ice.

In the simulations analyzed here, TOPAZ misses both the
low (larger than 10 cm s�1) and high (larger than 30 cm s�1)
values of fluctuating speed. As the low values largely domi-
nate the observed distribution, missing those values leads to
an overestimation of the fluctuating velocities mean and vari-
ance. When combined to the overestimation of the integral
timescale, it leads to a large overestimation (by about 50 %)
of the long-term fluctuating displacement and absolute diffu-
sivity.

The neXtSIM model also reproduces the interannually
varying Beaufort Gyre and Transpolar Drift. The statistical
distribution of the mean circulation is close to the one ob-
tained from the observations for the range of 0 to 4 cm s�1,
but the largest values of the mean circulation (mean drift
larger than 4 cm s�1) are underestimated, resulting in an un-
derestimation of about 15 % of the averaged mean drift.

In the simulations analyzed here, neXtSIM represents
well the statistical distribution of the fluctuating speed un-
til 30 cm s�1 but misses the higher values, leading to an un-
derestimation of the fluctuating velocities mean and vari-
ance. When combined to the overestimation of the integral
timescale, this leads to long-term fluctuating variance and
diffusivity having the same magnitude as in the observations.

The two model setups used here have a common de-
ficiency at representing the fluctuating speed higher than
30 cm s�1. This likely comes from the missing local and
rapidly varying winds in the atmospheric reanalyses (ASR-
interim and ERA-interim) used here to force the models.
This lack of variability in the forcings may also explain the
overestimation of the integral timescale seen in the two se-
tups. These too long integral timescales may also partly come

from missing physics or too weak coupling (e.g., too low fre-
quency in the coupling and forcing) in the model setups that
may lead to a misrepresentation of the inertial oscillations
and impact 12-hourly drift statistics.

It is common practice to add an extra diffusive term to the
tracer evolution equation, as discussed earlier. In the case of
the TOPAZ setup, adding such an extra term to the tracer evo-
lution equation would not help, as the model already over-
estimates the fluctuation both in the ballistic and Brownian
regimes. Adding such a term when using the neXtSIM setup
presented here may improve the evolution of the fluctuat-
ing displacement in the ballistic regime. Adding a random
term would increase the fluctuating velocity variance but de-
crease the integral timescale. This may allow us to maintain
the good performance in reproducing the long-term displace-
ments and diffusivity fields, without impacting the long-term
mean drift.

4 Summary and conclusions

In the first part of the paper (Sect. 2), we analyze IABP
buoys trajectories for the winter periods between 1979 and
2011 and we estimate the values of the integral timescale
(about 1.7 days), the 12-hourly fluctuating velocities variance
(59 km2 day�2) and the diffusivity (1.17 ⇥ 103 m2 s�1). We
additionally verify that the computed displacement variance
is consistent with Taylor’s diffusion theory.

This information can be used in the context of pollutant
tracking to evaluate the proper size for the search area around
the long-term trajectory predicted by the mean drift. If one
defines the search area as a circular region with a radius
equal to 3 standard deviations of the fluctuating displace-
ment, which would include the polluted area with 99.6 %
confidence, we find that on average the search radius should
be about 84 km after 5 days (corresponding to a surface area
of about 22 000 km2) and about 222 km after 30 days (cor-
responding to a surface area of 155 000 km2). Before using
these estimates, one should be reminded that they are given
for the whole Arctic basin and for the whole period 1979–
2011 and may then differ from estimates computed for spe-
cific regions and time periods. Also as the IABP buoys are
mainly deployed on multi-year ice, these estimates may not
be valid for seasonal ice and for future applications.

The estimates of the mean drift field, diffusivity and in-
tegral timescale computed here could also be used within
a passive tracer model (either with an advection–diffusion
equation or a Lagrangian stochastic approach) to estimate
the probability for a particle to be in a given position after
a given time. The limitations of that approach would be the
excessive smoothing of local mean circulation patterns (e.g.,
coastal currents), the inability to represent dispersion and the
potential misrepresentation of the spatial and temporal distri-
bution of the diffusivity values.
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In the second part of the paper (Sect. 3), we analyze trajec-
tories of virtual buoys whose motion is forced by simulated
sea-ice velocity fields. This approach eliminates the limita-
tions of using tracer models forced by mean fields but relies
on the good representation of the sea-ice drift by the models.
To illustrate how one could evaluate sea-ice model output
before using it for trajectory modeling, we applied the dif-
fusion analysis to three similar datasets, one from the IABP
data, one from the TOPAZ model and one from the neXtSIM
model, and we compared the numbers obtained from simu-
lated and observed trajectories.

The mean velocities in the simulations using TOPAZ are
on average 50 % too high and generally miss the very low
mean drift located near the Canadian Arctic Archipelago.
The long-term displacement variance and absolute diffusiv-
ity are also overestimated by about 50 %. Using the output of
this TOPAZ setup for tracer studies would produce too long
trajectories and too large displacement variance, potentially
affecting the conclusions of such studies.

The mean velocities in the simulations using neXtSIM are
on average 15 % too low; they reproduce well the very low
mean drift located near the Canadian Arctic Archipelago but
miss the highest values of the mean motion. The long-term
displacement variance and absolute diffusivity fit well the
observations. Tracer studies based on such results could be
trusted except for the ballistic regime (first few days), where
the simulated displacement variance is too weak.

Using the outputs of the simulations made with neXtSIM
would give better sea-ice trajectories than using the outputs
of the TOPAZ simulations analyzed here. However, whether
this difference mainly originates from (a) the different initial
conditions, forcing and ocean or (b) the sea-ice model itself
(different rheologies and thermodynamics) cannot be clearly
answered. As a follow up of this study, it would be inter-
esting to investigate the causes of the missing high values
of fluctuating velocities and the overestimation of the inte-
gral timescale, first by examining the impact of the atmo-
spheric forcing resolution and second by checking how the
inertial/tidal oscillations are represented by the two model-
ing platforms used here. To better asses the quality of the
simulated sea-ice dynamics, it would be interesting to also
perform a dispersion analysis as in Rampal et al. (2008) or
to specifically study sea-ice deformation as in Bouillon and
Rampal (2015) with data from models and observations. Fi-
nally, it is worth noting that the representation of the mean
sea-ice circulation depends on many processes (mean cir-
culation of the atmosphere and ocean, spatial and temporal
variation of the ocean–ice and air–ice drag coefficients as a
function of the ice age/type, representation of the ocean–ice
and atmosphere–ice boundary layers (McPhee, 2012), etc.),
the respective roles of which would also need to be further
explored.
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