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Emotional Processes for Cyber-Physical Systems Resilience*

Eskandar Kouicem1, Clément Raı̈evsky1 and Michel Occello1

Abstract— The cyber-physical systems deployment takes up
an ever-increasing number of fields of application. The variety
of platforms used for implementing cyber-physical systems and
the dynamic interconnection of their components make the re-
silience issue of these systems very important. Our work aims to
use the knowledge from human and social sciences, particularly
to inspire from the emotional processes for creating an agent
architecture that increases the cyber-physical systems resilience.
Emotional inspiration occurs in the individual decision-making
processes as well as in the social coordination mechanisms. In
addition, one of the principal hypotheses in our research is that
the multi-agent paradigm is suitable for integrating emotional
processes into cyber-physical systems.

I. INTRODUCTION

Cyber-physical systems (CPS) - composed by inter-
connected sub-systems which are partly interacting with the
physical world - are increasingly used in many fields (smart
building, smart grids...). The evolution of interoperability
protocols, the decrease in hardware costs, and the simplicity
of the interconnection between a variety of hardware compo-
nents, provide the designers with a considerable number of
configurations and combinations of components, which they
don’t always have the total operating control. In addition,
these systems are often designed to be “open”. As a conse-
quence, it becomes impossible for the designers to predict
all the situations that the system will encounter. This then
raises the issue of the resilience of these systems, i.e. their
ability to detect, manage and adapt to particular or abnormal
situations that designers may not have anticipated [1]. To
address this issue, we chose to draw inspiration from human
emotions which are an integral part of our ability to adapt
ourselves to particular, abnormal or unknown situations,
both as individuals and as a group [2]. In order to exploit
the knowledge of emotions in psychology and sociology to
improve the resilience of CPSs, we have decided to adopt
the multi-agent paradigm [3].

After a brief definition of resilience, we present our
approach and show the relationships between resilience prop-
erties, emotional processes, and multi-agent systems (MAS).
We then relate our approach to existing agent architectures.
Finally, we illustrate our approach in some experiments.

II. RESILIENCE

Resilience has many different definitions: in ecology,
resilience is the capacity of an ecosystem or species to
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return to their normal behaviour after being subjected to a
trauma; in psychology, resilience is defined as the ability
of a person or a group to develop and continue to project
themselves into the future despite the disruptive life events,
difficult living conditions and sometimes severe trauma; in
systems engineering, resilience depends on how fast the
system can be restored after an incident; the computer
networking community defines it as the combination of
reliability and tolerance; the computer science community
has defined resilience as the persistence of service delivery
and the availability of functionalities [4].

For our work, we have adopted the definition of Woods
[1], from the resilience engineering field:

“Resilience is the ability to recognise and adapt
to handle unanticipated perturbations that call into
question the model of competence, and demand a
shift of processes, strategies and coordination.”

This definition better matches with CPSs. According to the
author, resilience requires process change and coordination,
which can be found in the “cyber” and in the “configuration”
levels of the 5C architecture for the implementation of
CPS [5]. Also, this definition has to be distinguished from
robustness, which is often confused with resilience in the
field of artificial systems. For us, robustness does not include
the adaptation of the system’s behaviour following an adverse
event but resilience include it according to the author. A
robust system is able to “resist” to this kind of situation
because of its design, by keeping its performance without
modifying its functionality. Conversely, a resilient system
will be able to detect abnormal situations and change its
operations to maintain its critical functions.

A. Resilience profile

To further clarify our definition of resilience, we extended
the work of Linkov and Kott [6] who decompose resilience
in temporal phases. We obtained a resilience profile which
includes four phases: detection, absorption, recovery, and
adaptation. While all four phases are important in resilience,
we will focus our study on the first two phases in this paper.
To define these phases, we will relate them to the main
features of resilience identified by Wei and Ji [7], Francis
and Bekera [8] and Connelly et .al [9].

The detection phase includes three resilience features:

1) critical functions preservation: the ability of the CPS
to ensure that the functions identified as essential by
the designers will be the last to be lost in the case of
a disruptive event;



2) anticipation, which consists of using a model to predict
the occurrence of some particular situations requiring
a change in the operation of the CPS;

3) planning, which is ensured by establishing the founda-
tions to maintain the services’ availability and the cor-
rect equipment functioning during a disruptive event.

The absorption phase also includes three resilience fea-
tures:

1) reactivity, which allows the system to react quickly to
the solicitations of its environment;

2) anomaly sensitivity, which indicate if the system is
capable of absorbing a disturbance and if the recovery
time is appropriate;

3) flexibility: to increase resilience, it is essential to
identify the main architectural elements which are
preserved during some particular situations and which
provide the flexibility required to be able to adapt over
long periods.

We evaluated the ability of the multi-agent system ap-
proach and emotional processes to enhance CPSs with
resilience-related properties. Based on this study, we esti-
mated the correspondence between resilience phases features
with MAS properties and resilience phases with emotional
processes as in [9], [10]. The decision-making architecture
presented in Section IV is based on this evaluation.

III. PROPOSED APPROACH

The main objective of this work is to provide cyber-
physical systems with functionalities and processes that make
them more resilient. To do this, we have adopted the multi-
agent paradigm and aim at transposing knowledge from the
psychology of emotions to artificial systems [10].

The multi-agent approach has been chosen because it
intrinsically takes into consideration the distributed nature
of CPSs. This approach is particularly well suited to resolve
some problems related to traditional approaches of resilience,
such as “single point of failure”. The autonomy of the agents,
their capacity for self-organisation, and their capacity to
dynamically change their role in the system provide solutions
to communication loss and scaling-up problems.

This choice distinguish our approach from classical re-
silience solutions, which are often based on redundancy or
centralised solutions, properties which are expensive and
impractical in the CPS context [11], [12]. Agent-based
design is also interesting because of its ability to integrate
knowledge from social sciences such as emotions. It seems
more practical to integrate this type of knowledge, which
concerns the cognitive processes of individuals and groups,
into the decision-making mechanisms of agents than into a
centralised system.

Emotions are an essential part of our ability, as humans,
to adapt to some particular, abnormal or unknown situations,
both as an individual and as a group [2]. Hence our interest
in transposing the emotion-related cognitive processes iden-
tified by researchers in psychology into the decision-making
architecture of autonomous agents. The particularity of our

use of artificial emotions in agents compared to existing
work consists in its generation process, and especially in
the method of its initiation. The triggering of an emotion
in existing approaches is based on a specific analysis of the
situation, highly depending on the task of the system and
the knowledge that the designer has about the situations the
system will encounter. These assumptions in existing work
intrinsically limits their resilience. Furthermore, most exist-
ing approaches trigger emotional episodes using symbolic
information about the situation. However, this type of infor-
mation is seldom available in the simple systems encountered
in CPSs. To provide the cyber-physical systems with the
adaptive capabilities of emotions without undermining their
resilience, we aim at identifying generic, non-task-specific
mechanisms to initiate artificial equivalent of an emotional
episode. Among all the emotion-related cognitive functions,
their signal function and social structuring role, which make
consensus in cognitive science and psychology, underpin two
major objectives of our work. We thus aim at providing
artificial systems with a decision-making process that allows
them to detect situations requiring an adaptive response
at the individual level. We also work towards reproducing
the social structuring role of emotions within a group to
improve its adaptability and resilience. These processes are
integrated into an agent architecture, which has been used
for experimentation and validation of our hypotheses.

IV. DECISION-MAKING ARCHITECTURE

To organise the different decision-making processes of our
agents, we chose to integrate them in a layered architecture
[13], [14]. This type of decision-making architecture com-
bines the simplicity, low algorithmic complexity, and fault
tolerance of reactive architectures [15] with the ability to
use non-local information, learning capabilities, and social
interactions offered by more cognitive architectures. This
kind of architecture poses however the challenge to manage
the interactions between the different layers to obtain the
desired behaviour [13].

The decomposition of cognitive processes into layers
allows us to implement simple, perception-related, emotion
eliciting mechanisms in a reactive layer while allowing
higher level cognitive processes, potentially based on sym-
bolic information and reasoning, to unfold without interrupt-
ing processes supporting critical functions.

The figure 1 illustrates the proposed layered architecture
that integrates emotional processes to improve the resilience
of CPSs. This architecture is composed of two main parts, a
part constituted by the processes and behaviours of the agent,
on the left, and a second part that manages the knowledge
of the agent, on the right. Each side of the architecture is
separated in three: the reactive, proactive-deliberative, and
social layers.

The reactive layer (RL) is the only layer in direct interac-
tion with the environment, for each perceived data or event,
the reactive layer uses the knowledge of the perception grid
(PG), this grid is inspired from the human mechanisms [16].



Fig. 1. The proposed architecture.

A situation in itself does not have any significance; each indi-
vidual has his or her own perception grid which determines
whether the situation is good or bad. In this context, the
perception grid is an essential element in the first stage of the
evaluation of the situation “the appraisal” - in psychology,
the appraisal is the process that extracts emotions from our
evaluations of events that cause specific reactions in different
people [17]-.

In our architecture, the agent, especially its reactive layer,
uses the perception grid to analyse the perceived data and to
detect significant events and potentially abnormal situations.
The events are initially neutral, but may raise doubts in the
agent’s decision-making process. The knowledge in this grid
is represented as a set of matrices. Each cell of a matrix
corresponds to a data or a perceived event combined with a
situation, which contains a Boolean value (false = no doubt
and true = doubt). So, this knowledge affects the agent’s
perception of its environment. At least, a part of it will be
learned, which means that this knowledge is specific for each
agent depending on its previous experience and its objectives.
This grid is used as a first anomaly detector, and it will be
used also for triggering the anomaly detection process in the
upper layer.

In the proactive-deliberative layer (PDL), the agent takes
decisions according to its data, its knowledge, and its action
plans (M), if the reactive layer has doubts about the perceived
data, an anomaly detection process will be launched at this
layer, which is iterative and incremental and can even go
up to the social layer (SL) that uses knowledge about social
relations (SR) to interact with the other system agents as well
as the diffusion and the negotiation of the detected situations.

The social relations layer contains the organisational struc-
tures of the system’s agents, and it is also used by the social
layer for the diffusion of the individual adaptations to the
detected situations in order to adapt collectively the agents’
behaviours and to auto-organise the agents groups. These
processes will be illustrated by an example in the next sec-
tion. We note that the layer (M) of our architecture integrates

an episodic memory [18], [19]. In cognitive psychology, the
episodic memory refers to the process by which the human
remembers previous events accompanied by their context
(date, place, emotional state) [20]. We use this memory as
a storage support of the abnormal situations encountered by
the agent and the necessary adaptations of the reactive, the
proactive and the deliberative behaviours to these situations.
The episodic memory will also serve to update the perception
grid and the action plans.

In our architecture, the actions are not necessarily initiated
by a perception. The proactive and deliberative layer can
trigger an action based on an internal decision, and the social
layer can also trigger an action based on a message from
another agent.

A. Resilience processes

The resilience processes in our architecture corresponding
to tow phases presented in Section II-A:

a) Detection: this phase is considered as a monitoring
of statistical anomalies in the perceived data time-series. It
consists of several sub-phases, which belong to an incremen-
tal process:

Anomaly monitoring (out-of-domain values, unusual se-
quences or long repetition of similar data) in the sensor
data. Each sensor evokes this sub-phase individually at the
beginning, and then correlates it with other sensors. For
a temperature sensor agent, its perception grid contains
matrices that link temperature intervals with days of the year.
For example, this agent perceives 30◦ in the morning of April
30, it takes the April matrix to see if the perceived value is
normal or raises a doubt.

If an anomaly is detected, the time-series generated by
the sensor agents will be analysed with more accurate
mathematical tools. These two sub-phases correspond to the
occurrence of a situation which triggers the emotional
episode.

If the analysis confirms the anomaly, the sensor agent
will consider the external (perceived data) and the internal
(the perception grid, the episodic memory, the result of the
analysis and the current goals) data to confirm or reject the
abnormality of the situation. This sub-phase corresponds to
the process of evaluating the situation “appraisal” of an
emotional episode.

b) Absorption: the aim of this phase is to maintain the
availability of the CPS’s most critical functionalities while
isolating the perturbation. Increasing sampling frequency and
power consumption will be required for system control and
decision making. The sensor and actuator agents involved in
the detected situation will communicate it to the other system
agents. Following these actions, some goals will be priori-
tised in order to maintain the most critical functionalities.

There has been a modification of some of the system’s
operating parameters in this phase, which leads to a modifica-
tion of the readiness to action, which refers to the activation
of a behavioural script in the emotional processes (but not
its realisation) which aims to change the relationship between



Fig. 2. Overview of detection and absorption phases.

the individual and his environment and focuses his attention
on more important things.

The figure 2 illustrates how these processes are carried out
using the proposed architecture.

V. EXPERIMENTS

A. System description

We chose a building’s thermal regulation system (CPSbtr)
to demonstrate the functioning of our agent architecture.
This CPS is used to maintain a required temperatures in a
building. To do this, it logs the physical data collected using
temperature and luminosity sensors, and acts on its envi-
ronment (the rooms) via actuators: heaters, air conditioners,
rolling shutters and fans (see figure 3).

In CPSbtr, all components (sensors or actuators) are
considered as agents, which are able to communicate, have
a certain autonomy and have their own information. We will
have several groups of agents in our multi-agent system, each
group is composed by the agents of one room. Another type
of agents organisation is taken into account in our system,
which is the organisation of similar neighbouring agents.
The agents interact via the message exchange protocol. The
message format between two agents is: msg = (messageID,
senderID, receiverID, type, content, processed).

Examples of message types: accept, command, demand,
inform, modify, propose, refine, reject, request, anomaly,
check, confirm. The interactions between the layers of our

Fig. 3. Components in a room.

architecture are processed similarly to the communication
between the agents.

In this case, the propagation of perceived data will be
done automatically by the sensor agents. The user interacts
with the system through the thermostat. The agents in the
same room belong to the same organisation and have a
direct communication between each other, so the actuators
provide the other agents with their operating status and the
sensors provide the environment’s information (temperature,
presence of the sun).

For the out-of-room communication, the same type com-
ponents of adjacent rooms belong to the same organisation,
and they are able to communicate directly with each other.

Each sensor agent records the recent perceived data as a
time-series into its own memory (M), and the older time-
series are shared into the actuators’ memories of its own
organisation. Initially, the agents have a pre-defined tolerance
thresholds in terms of the stored data (M + PG).

Resilience is defined here as the ability of the CPSbtr to
adapt in case of failure and to recover its nominal behaviour.
Furthermore, the resilience in this system is that it continues
to ensure the temperatures chosen by the users in case of
problems.

B. Implementation

After conceiving CPSbtr using the multi-agent method
“DIAMOND” [21], we have implemented it using Java. Both
the agents and the environment are implemented as Threads
which run permanently.

The reactive layer consists mainly of the following meth-
ods: “perceive(), checkPerceptions() and act()”, which are
responsible for perceiving information from the environment
or messages from the proactive layer, checking the perceived
data and forwarding it to the proactive layer or to change a
part of the environment (e.g. change the state of an actuator).

The proactive layer records and transfers data between the
two other layers. In case of a doubt raised by the reactive



layer, or a request to check a doubt from another agent, this
layer uses the appraisal() method to evaluate the situation
through a more rigorous anomaly detection process than the
reactive layer’s checkPerceptions() did.

The social layer checks permanently if there is any mes-
sage to send or a new message from another agent. So
“checkMessages()” checks both the local messages (received
from the proactive layer) and the external messages (see
figure 4).

To synchronise the layers, the agents and the environment
we used a scheduler (ScheduledThreadPoolExecutor) to con-
trol their refresh rates. We used a logger to monitor the
simulations. A JSON file containing the initial parameters of
the environment is used to set up the simulations: the external
temperature, the number of rooms and their temperatures.

As we said in Section II-A, we will focus our experiments
on the first two phases of resilience which are: detection and
absorption.

In our simulations, we used three adjacent rooms which
means the temperature sensors can directly communicate
between each others.

Once a temperature sensor agent’s reactive layer perceives
data from its environment, it stores it with the recently
perceived data and checks whether it is an anomaly or not,
using the perception grid. If the perceived data doesn’t raise
a doubt in the reactive layer, then a message with the type
request and the perceived data as content will be sent to the
proactive layer.

The proactive layer stores the received data as time-series
in its memory, if the data doesn’t contain any anomalies,
it will build its episodic memory using this data sets. The
agents tolerance thresholds are based on the collected data.
Then, if the message type is request, this layer transfers the
message to the upper layer, the social layer. The social layer
is responsible for sending the messages which contain the
perceived data by the sensor agent’s reactive layer to the
actuators of its organisation.

The following scenario illustrates the reactions of the
agents in the case of anomalies. During the simulation, the
environment randomly sends -10° to the temperature sensor
in room 1 for several times to simulate the occurrence of
abnormal situations. We logged the temperatures taken into

Fig. 4. Agent functioning.

consideration by the agent after the appraisal and the total
number of exchanged messages.

a) Detection: the detection is always active before
every critical event until the absorption phase begins. Once a
sensor agent’s reactive layer has a suspicion on the perceived
data, it will triggers a doubt based on the perception grid
(checkPerceptions()). The sensor agent increases its sam-
pling frequency (decreaseStepsToSendData()) and the reac-
tive layer requests an intervention from the proactive layer
via an anomaly message in order to access to the memory
(M) and compare the perceived data with a larger time-series
(appraisal()). The appraisal uses also the episodic memory
in order to check if the agent has already experienced the
current situation, it can directly confirm or affirm the doubt
without negotiating it with other agents. If the doubt is
confirmed, the anomaly message goes up to the social layer
which communicates it as a check message to the same type
agents in its organisation in order to confirm or affirm the
doubt.

b) Absorption: for the other agents, if the situa-
tion is confirmed as abnormal by their proactive layers
(appraisal()), they reduce their tolerance thresholds de-
creaseThreshold(), and communicate the result of the ap-
praisal to the agent which initially detected the anomaly as
a confirm message, or reject in the opposite case. This agent
updates its episodic memory by creating an episode that
reflects the negotiation result and then updates its tolerance
thresholds and perception grid. Through this update, the
agent will better maintain the system’s functionalities by
detecting and isolating the disturbance faster in the next
occurrence of a similar situation.

C. Results and evaluation

We collected the logs of several simulations using our
processes and without using them. We obtained the results
in the figures 5 and 6. For evaluating our approach we chose
some qualitative assessments. The qualitative assessments
provide us a guidance for the development of cyber resilience
measures [22]. Our assessment measures are mainly based on
the features of resilience mentioned in the section II-A. As
we can see in the figure 5, without the processes, the system
can’t preserve its critical functions which is the maintain
of the desired temperature. Every time that the environment
sends an abnormal value, the system tries to recover the
desired temperature but and it seems not possible. Using
our approach, the abnormal situations haven’t impacted the
system’s functionalities. In this case, the system has detected
the abnormal values and it was able to anticipate them.

Our processes allowed the system to get an advantage
in terms of reactivity and flexibility. The reason for this is
that once the desired temperature is reached, its value is not
perturbed by the environmental factors as well as by the
anomalies injected in the simulation.

In term of performance, our approach allowed the agents
more autonomy, as we can see in the figure 6, the total
number of exchanged messages between the agents and their
layers has slightly decreased by using our approach. So we



Fig. 5. Temperature history for a single day simulation.

got a dual benefit, in terms of resilience on the one hand and
in terms of autonomy and performance on the other.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we presented our work on the use of the
multi-agent paradigm for integrating knowledge from the
psychology of emotions to improve the resilience of cyber-
physical systems. We presented some resilience definitions
and also our proposal and choices concerning the inspiration
of human emotions as well as the choice of the multi-agent
paradigm.

Our objective is to design and implement an agent ar-
chitecture based on emotional processes, which integrates
individual and decentralised processes for detecting abnormal
situations. In addition, the architecture contains processes
for adapting the individual behaviour according to detected
situations in order to increase the resilience of the cyber-
physical system. The individual detection and adaptation
trigger a collective processes that use the information elab-
orated by the individual mechanisms in the system. The
individual behavioural adaptation impacts on the group of
agents controlling the cyber-physical system, which will
trigger a self-organisation to adapt the collective behaviour
for dealing with this abnormal situation.

The resilience detection and absorption phases were im-
plemented and tested by simulation using the proposed agent
architecture. The first results were interesting and we hope to
get more relevant results in our future work. So, we plan to
improve these two phases and to continue the implementation
of the recovery and adaptation phases. We also plan to use
our architecture in real cyber-physical systems to measure
its resilience enhancements.
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