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Abstract. The neXtSIM-F (neXtSIM forecast) forecasting
system consists of a stand-alone sea ice model, neXtSIM
(neXt-generation Sea Ice Model), forced by the TOPAZ
ocean forecast and the ECMWF atmospheric forecast, com-
bined with daily data assimilation of sea ice concentration.
It uses the novel brittle Bingham–Maxwell (BBM) sea ice
rheology, making it the first forecast based on a continuum
model not to use the viscous–plastic (VP) rheology. It was
tested in the Arctic for the time period November 2018–June
2020 and was found to perform well, although there are some
shortcomings. Despite drift not being assimilated in our sys-
tem, the sea ice drift is good throughout the year, being rel-
atively unbiased, even for longer lead times like 5 d. The
RMSE in speed and the total RMSE are also good for the first
3 or so days, although they both increase steadily with lead
time. The thickness distribution is relatively good, although
there are some regions that experience excessive thickening
with negative implications for the summertime sea ice extent,
particularly in the Greenland Sea.

The neXtSIM-F forecasting system assimilates OSI SAF
sea ice concentration products (both SSMIS and AMSR2)
by modifying the initial conditions daily and adding a com-
pensating heat flux to prevent removed ice growing back too
quickly. The assimilation greatly improves the sea ice extent
for the forecast duration.

1 Introduction

Arctic sea ice has been in great decline in the last number
of years (Meier, 2017). Perovich et al. (2018) report that in
2018, the summer extent was the sixth lowest and the winter
extent was the second lowest in the satellite record (1979–
2018). Moreover, surface air temperatures in the Arctic con-
tinued to warm at twice the rate relative to the rest of the
globe, and Arctic air temperatures for the past 5 years (2014–
2018) have exceeded all previous records since 1900 (Over-
land et al., 2018), which will also contribute to future sea ice
decline if it continues.

With less sea ice comes an increase in summertime acces-
sibility for shipping. Azzara et al. (2015) considered a range
of different scenarios and projected an increase in the number
of vessels operating in the Bering Strait and the US Arctic of
between 100 and 500 %. The International Maritime Organi-
zation has also recognised that shipping would increase and
adopted an International Code for Ships Operating in Polar
Waters (Polar Code)1 on 1 January 2017. This polar code ad-
dresses the increased safety and pollution risks of operating
in the Arctic. A recent example of the risks and concomitant
costs of accidents in the Arctic is the rescue of the fishing
vessel Northguider, which ran aground between Spitzbergen
and Nordaustlandet (Svalbard) after getting into trouble with
sea ice. The crew had to be rescued by the Norwegian Coast

1https://www.imo.org/en/MediaCentre/HotTopics/Pages/
Polar-default.aspx (last access: 2 July 2021)
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Guard icebreaker KV Svalbard, who then had to drain 300 kL
of diesel from the damaged vessel.2

Thus sea ice forecasting is becoming increasingly impor-
tant. As well as search and rescue/accident prevention, other
applications are optimised ship (icebreaker) routing based on
forecasts (Kaleschke et al., 2016) and support of research ac-
tivities – e.g. Schweiger and Zhang (2015) give an exam-
ple of scheduling of high-resolution synthetic-aperture radar
(SAR) images in order to follow the drift of some ice-mass
balance (IMB) buoys by using the PIOMAS/MIZMAS fore-
cast from the University of Washington. The year-long drift
of the Polarstern from September 2019 (part of the MOSAiC
project) also relied heavily on sea ice and weather forecasts.

Tonani et al. (2015) give a good overview of the 2015
status of operational forecasting (here we take “operational
forecasts” to refer to those with forecast horizons of about
a week), while Hunke et al. (2020, Table 1) give many ex-
amples of modelling systems that include sea ice, most of
which are used operationally in national forecasting capaci-
ties. They vary in resolution, in complexity (with regards to
the modelled processes and the coupling between these pro-
cesses) and in the data assimilation schemes that are used.
We note however that their sea-ice dynamics schemes are
all based on Eulerian advection schemes and on variants of
the viscous–plastic (VP) rheology (although some solve the
rheological equations directly while others solve modified
equations as is done with the elastic–viscous–plastic method
(EVP)). In this review, Hunke et al. (2020) note that the trend
is towards fully coupled systems and high resolution. For ex-
ample, the ECMWF forecast coupled ice and ocean mod-
els to their atmospheric model in between the two papers
(this system went operational in June 2018) at a resolution of
0.1◦. neXtSIM-F uses this latest ECMWF product (IFS, inte-
grated forecast system: Owens and Hewson, 2018) to provide
forecast atmospheric forcing, along with ocean forcing from
TOPAZ (Sakov et al., 2012).

Another relevant example is the replacement of RIPS3

(Lemieux et al., 2016a) by RIOPS4 in 2016, having NEMO
coupled to the system (Smith et al., 2021). The move was
partly motivated by wishing to have detailed currents fore-
cast around the Canadian coast for search-and-rescue pur-
poses, including tidal forecasts. RIPS used a stand-alone sea
ice model based on the CICE sea ice model which used
3DVAR assimilation of concentration retrievals from passive
microwave (Special Sensor Microwave Imager (SSM/I) and
Special Sensor Microwave Imager/Sounder (SSMIS)), ad-

2https://www.highnorthnews.com/en/
svalbard-preparing-extreme-pumping-operation-using-small-boats
(last access: 2 July 2021)

3Regional Ice Prediction System: operated by ECCC (Environ-
ment and Climate Change Canada) from 2013 to 2016.

4Regional Ice Ocean Prediction System: operated by ECCC. See
https://eccc-msc.github.io/open-data/msc-data/nwp_riops/readme_
riops_en/#technical-documentation (last access: 2 July 2021).

vanced scatterometer data and ice charts from the Canadian
Ice Service.

In this paper, we introduce a new sea ice forecasting sys-
tem, neXtSIM-F, which is based on a stand-alone version of
the sea ice model neXtSIM (Rampal et al., 2016, 2019). Not
being part of a coupled system it is quite dependent on the
atmospheric and oceanic forcings, which are quite influential
on things like the ice edge location and how long corrections
to the ice edge persist if the ice edge in the forcings are in-
correct. On the other hand, not having an ocean model, the
computational cost of the system is quite low, and it is rela-
tively stable to perturbations during assimilation – something
which gives a certain amount of flexibility to the possible ap-
proaches to assimilation.

neXtSIM is a Lagrangian finite element model, and we are
running it with a nominal triangle side length of 10 km, with
a distance from one point of a triangle to the opposite edge
being about 7.5 km. The name neXtSIM-F refers to the en-
tire platform, including data input/output and assimilation,
model initialisation and simulation, export, visualisation, and
evaluation of results (see Sect. 3). Due to the relatively recent
arrival of the sea ice model, neXtSIM-F is simpler than most
other platforms, both in terms of assimilation scheme (data
insertion with nudging) and model components (uncoupled
to ocean or atmosphere). (See Sect. 5 for planned improve-
ments.) However, it is the first forecasting system based on a
model with brittle sea ice rheology instead of the traditional
viscous–plastic (VP) family of rheologies. It is also the first
system being based on a Lagrangian (adaptive) deforming
grid, as opposed to the other ones being based on the stan-
dard Eulerian (fixed) grids.

neXtSIM-F entered into operations as part of the Coper-
nicus Marine Environment Monitoring Services (CMEMS)
on 7 July 2020. It was equipped with neXtSIM v1.0 based
on the Maxwell elasto-brittle (MEB) rheology (Dansereau
et al., 2016), which had been shown to reproduce Arctic sea
ice drift and deformation particularly well (Rampal et al.,
2016, 2019). MEB consisted of an elastic spring in series
with a dashpot, together with two main modifications to im-
prove localisation and to prevent excessive convergence: the
damage value was only used to modify the stress when it ex-
ceeded a threshold of 0.95, and a kind of viscoplastic stress
term was added which only played a role when the ice was
very damaged. This improved the thickness field somewhat
over longer simulations of around 1–2 years (Rampal et al.,
2019) but not quite enough for longer than that.

In September 2020 the core of the forecasting platform
was replaced with a new model: neXtSIM v2.0 based on a
preliminary version of the novel brittle Bingham–Maxwell
(BBM) sea ice rheology (Ólason et al., 2021). This newer
version of neXtSIM-F entered into operations in December
2020.

BBM consists of an elastic spring in series with a com-
posite element that contains a dashpot and a frictional slid-
ing element in parallel (Ólason et al., 2021). (For a sum-
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mary of the BBM equations, see Appendix A.) The BBM’s
main physical achievement has been to stabilise the thick-
ness for decadal-scale simulations; computationally it is also
5–6 times faster, since it is able to be solved explicitly, unlike
our version of the MEB. It also kept the improvements in the
model’s representation of the main spatial and temporal char-
acteristics of observed deformation that were gained by MEB
– strain localisation and scaling (Marsan et al., 2004; Ram-
pal et al., 2008; Stern and Lindsay, 2009), as well as mul-
tifractality and intermittency in time (Rampal et al., 2019) –
meaning that higher deformations are more localised in space
and more intermittent in time than smaller ones. These prop-
erties have strong implications for things like distribution
and size of lead openings and how long they will stay open,
which controls the heat and salt fluxes across the ocean–ice–
atmosphere coupled system. While the precise forecast of
individual leads is very challenging, and probably requires
assimilation of quite specific data like SAR-derived defor-
mation (Korosov and Rampal, 2017), reliable information of
this sort would be very useful for icebreakers that wish to
reduce fuel consumption or submarines wishing to surface.

The paper is organised as follows: we begin by introduc-
ing the data and methods that we use throughout, and then we
evaluate the neXtSIM model’s general performance for a free
run from November 2018 to June 2020 in terms of concen-
tration/extent, thickness and drift. This free run uses hindcast
forcing fields. We then evaluate the neXtSIM-F forecast plat-
form for the same period, when we assimilate concentration
but use forecast forcing fields.

2 Data sources

2.1 Forecast ocean forcing from TOPAZ4

The official European forecast for the Arctic is developed
and run by the CMEMS Arc-MFC (Arctic Monitoring and
Forecasting Centre)5. This uses the TOPAZ system (Simon-
sen et al., 2018; Sakov et al., 2012), which uses version
2.2.37 of the Hybrid Coordinate Ocean Model (HYCOM)
(Bleck, 2002). In the current version (4) of TOPAZ, HY-
COM is coupled to a sea ice model derived from version
4.1 of the Community Ice CodE (CICE: Hunke and Lip-
scomb, 2010); ice thermodynamics are described in Drange
and Simonsen (1996), while the dynamics are based on the
viscous–plastic (VP) sea ice rheology (implemented with the
elastic–viscous–plastic (EVP) solver of Hunke and Dukow-
icz, 1997). The model’s native grid covers the Arctic and
North Atlantic oceans and has a horizontal resolution of be-
tween 11 and 16 km. TOPAZ4 uses the ensemble Kalman
filter method (EnKF; Sakov and Oke, 2008) to assimilate
remotely sensed sea level anomalies, sea surface tempera-

5Three institutes contribute to the Arc-MFC: the Nansen Envi-
ronmental and Remote Sensing Center, the Norwegian Meteorolog-
ical Institute and the Norwegian Institute for Marine Research.

ture, sea ice concentration, sea ice thickness and Lagrangian
sea ice velocities (the latter two in winter only), as well as
temperature and salinity profiles from Argo floats and ice-
tethered profilers. Data assimilation is performed weekly.

To force neXtSIM, we use the following daily-averaged
variables from TOPAZ: the sea surface (0–3 m) ocean veloc-
ity, temperature and salinity (SST and SSS, respectively), and
the mixed layer depth (MLD). We give more details of how
they are used in Sect. 3.1 below.

2.2 Forecast atmospheric forcing from ECMWF

For our forecast demonstration, we use the latest version (Cy-
cle 45r1) of the Integrated Forecast System from ECMWF
(IFS: Owens and Hewson, 2018) to provide atmospheric
forcing fields to neXtSIM. It consists of an atmospheric
model coupled to the NEMO 3.4 ocean model (Nucleus for
European Modelling of the Ocean), the LIM2 (Louvain-la-
Neuve Sea Ice Model) sea ice model, the ECWAM (ECMWF
Wave Model) wave model and a land surface model (HTES-
SEL). Its spatial resolution is 0.1◦, and while its temporal
resolution is 1 h we update our forcing fields less frequently
(every 6 h).

The variables we use are the 10 m wind velocity, the 2 m
air and dew point temperatures (the latter is used to deter-
mine the specific humidity of air for the latent heat flux cal-
culation), the mean sea level pressure, the long- and short-
wave downwelling radiation, and the total precipitation (this
becomes snow if the 2 m air temperature is below 0 ◦C).

2.3 Sea ice concentration products from OSI SAF

OSI SAF provides estimates of sea ice concentration derived
from the Special Sensor Microwave Imager Sounder (SS-
MIS) radiometer (Tonboe et al., 2016; Tonboe and Lavelle,
2016; Lavelle et al., 2017) and from the Advanced Mi-
crowave Scanning Radiometer 2 (AMSR2: Lavelle et al.,
2016a, b; Tonboe and Lavelle, 2015). The SSMIS algorithm
uses the 19 GHz frequency (vertically polarised, footprint
size about 56 km) and the 37 GHz frequency (both vertically
and horizontally polarised, footprint size about 33 km). The
AMSR2 algorithm uses three frequencies: 18.7, 36.5 and
89 GHz (also in vertical and horizontal polarisations with
footprints from 22 to 5 km). The AMSR2 data are presented
on a 10 km grid, and we chose this product over the higher-
resolution (3.25 km) ASI product as we found it less noisy
near the ice edge. These products are available daily within
12 h after acquisition and processing, so it is possible to as-
similate these data in operational forecasts. However, the file
for the day before the bulletin date (the day the model is run)
does not arrive early enough to be assimilated in our daily
run, which is launched at 03:00 (central European time).
Therefore, we use the file from 2 d before the bulletin date.

As specified in the validation reports cited above the SS-
MIS has lower-resolution ice concentration but has the ad-

https://doi.org/10.5194/tc-15-3207-2021 The Cryosphere, 15, 3207–3227, 2021
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vantage of higher accuracy, while the AMSR2 algorithm has
higher resolution but also higher uncertainties. In order to
combine the advantages of these products we generated a
blended product that was used for assimilation during the
forecasts. Blending was performed with a weighted average
of the two products (using the errors in the products to calcu-
late the weights):

cosisaf =
cssmisσ

−2
ssmis+ c amsr2σ

−2
amsr2

σ−2
ssmis+ σ

−2
amsr2

, (1)

where c denotes sea ice concentration and σ denotes the con-
centration uncertainty.

Sea ice extent, used as an evaluation metric of the model,
was calculated from the concentration product as a sum of
areas of all pixels within the model domain with concentra-
tion above 15 %. Sea ice extent uncertainty was calculated as
a difference between the extents calculated from the sum of
concentration and uncertainty and concentration alone.

We use both SSMIS and AMSR2 products for assimi-
lation by the forecasts but only SSMIS for evaluation of
the free run and our forecasts. This was because we found
the AMSR2 product somewhat inconvenient due to missing
sections of data, which made our evaluation statistics quite
noisy. (OSI SAF SSMIS is therefore not an independent val-
idation dataset for the forecasts.)

2.4 Sea ice drift from OSI SAF

We use this product for evaluation of both our free run
and our forecasts. It is not assimilated. To produce it, low-
resolution ice drift datasets are computed on a daily ba-
sis from aggregated maps of passive microwave (e.g. SS-
MIS, AMSR-E) or scatterometer (e.g. ASCAT) signals (all
channels are used) using the continuous maximum cross-
correlation method (CMCC: Lavergne et al., 2010; Lavergne
and Eastwood, 2010; Lavergne, 2010). Daily 48 h ice drift
vectors can be obtained at a spatial resolution of 62.5 km.
As part of our evaluation we apply a filter on the uncertainty
given in the product to remove less accurate observations.
We usually take the maximum allowed 2 d drift uncertainty
to be 20 km, which allows a reasonable sample size of vec-
tors to compare the model to, and right throughout the year.
However, it is useful to sometimes focus on the more pre-
cise observations when considering winter drift. Therefore
in those cases we apply a stricter filter, where the 2 d drift
uncertainty is less than 2.5 km. This completely excludes
the summer period of May to September (rms uncertainty is
about 12 km), since surface melting and a denser atmosphere
preclude the retrieval of precise information. From October
to April, we can still retain about 75 % of the observation
vectors after using this threshold, with the removed vectors
generally being close to the ice edge, the coast or the north
pole. The error is higher in these regions as the sub-images
on which the CMCC method is applied must be reduced to

limit them to being inside regions where there actually is ice
(Lavergne and Eastwood, 2010). In the case of the north pole,
there are fewer observations there, while the vectors in the
marginal ice zone (MIZ) have especially high uncertainties
(sometimes up to 12 km) due to the high velocities in those
regions, combined with the relatively long time interval over
which the drift is calculated.

In order to compare neXtSIM drift to this product more
accurately, every day at 12:00 we seed synthetic Lagrangian
drifters at the grid points of the OSI SAF drift product and ad-
vect them for 48 h according to the ice velocity in the model.
That is, their drift from the original position is updated every
model time step (1t)

dmod(x, t
n
+ 1)= dmod(x, t

n)+u(x, tn)1t,

where u is the ice velocity in the model. (Note that the drift
dmod is a global field.) At output time, and when the model
mesh needs regridding due to it becoming too deformed, the
drifter positions are updated with

xmod,i

(
tn+1

)
= xmod,i(t

n)+ dmod

(
xmod,i(t

n), tn+1
)
,

and dmod is reset to zero. This step, which requires dmod to be
interpolated, is done as little as possible for the sake of model
performance and to avoid the accumulation of interpolation
error. The total drift after 48 h is then compared to the OSI
SAF drift product.

2.5 Sea ice thickness from CS2–SMOS

We use the CS2–SMOS sea ice thickness product (ver-
sion 2.3: Ricker et al., 2017) to initialise our free run and
forecast (this is done once only and is not to be confused
with our daily assimilation, which corrects the initial condi-
tions of individual forecast bulletins) and for long-term eval-
uation of our free run. This product is a daily hybrid prod-
uct which combines thickness estimates from the CryoSat-2
(CS2) altimeter (more reliable for thicker ice, & 0.5 m) and
from SMOS (Soil Moisture and Ocean Salinity: better for
thin ice). The CS2 altimeter tracks are somewhat sparse, so
optimal interpolation (OI) is used to fill the gaps between
them and the areas of thin ice. For this reason each file cov-
ers a 7 d period. The OI method requires a background field
to be created with full coverage, and it requires that the back-
ground field is independent of the target week so it is created
from the CS2 values for the 2 weeks ahead and behind the
target week, as well as from the SMOS values for the day
before the target week.

The errors from this approach can be particularly high in
coastal areas of thick ice (for example north of Greenland
and Canada), which are too thick to be measured by SMOS,
but may be only covered by altimeter tracks every 2–3 weeks.
For these gaps in coverage, the product uses the background
field.
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Figure 1. Overall scheme of the neXtSIM-F forecasting platform.
Blue block: data assimilation step (pre-processing); red block: run-
ning of the model core; light-brown blocks: post-processing steps;
green blocks: input data. Note that we only assimilate OSI SAF SS-
MIS and AMSR2 concentrations.

3 Description of the forecast platform

Figure 1 gives an overview of the neXtSIM-F platform,
showing the steps that are run daily automatically. First, ini-
tial conditions for the forecast are set by taking the restart file
created by the previous day’s run and updating them accord-
ing to the most recent OSI SAF concentrations (SSMIS and
AMSR2). The model is then run for 8 d using forecast ocean
and atmospheric forcings – the first day of simulation is an
analysis, while the last 7 d are forecasts. Finally, some post-
processing steps are run: exporting of data (e.g. preparing
the CMEMS files and uploading them to the CMEMS Dif-
fusion Unit), creating some visualisations and doing evalua-
tions (where possible). Not shown in the figure are steps that
were done only once: initial generation of the model mesh
and initialisation of the model fields from the CS2-SMOS
thickness product. These steps are explained in more detail
in the sections below.

3.1 The neXtSIM model

neXtSIM is a stand-alone sea-ice model which can use winds
and currents from a variety of atmospheric and oceanic
models (hindcasts or forecasts). This makes it quite flexible
and light to run and therefore ideal for a forecasting con-
text. Its dynamical core is the new brittle Bingham–Maxwell
(BBM) rheology (Ólason et al., 2021). (The version of the
BBM rheology corresponding to the results in this paper is
also summarised in Appendix A.) Rampal et al. (2016) pre-
sented results using a previous version of neXtSIM includ-
ing an elasto-brittle (EB) rheology as described in Bouillon
and Rampal (2015), showing good agreement with observed
drift and concentration in particular. More recently, Rampal
et al. (2019) showed the ability to reproduce the character-
istic multi-fractal scalings of deformation when using the
previous version of neXtSIM, which included the Maxwell
elasto-brittle (MEB) rheology (Dansereau et al., 2016). The
key contribution of the MEB rheology was the addition of a
viscous dissipation of stress in areas where the ice is dam-
aged, allowing it to move more freely. However, in longer-

term simulations the MEB showed unrealistic pile-up of ice
particularly along the northeast coast of Greenland and the
northwest coast of Svalbard. This led to the further addi-
tion of a frictional element to the rheology (Ólason et al.,
2021), which provides some resistance to compression (up
to a threshold). This framework, of a spring in series with a
composite element made up a dashpot and fraction element
in parallel, is called BBM.

The dynamical equations are solved with a finite element
method on a Lagrangian (moving) triangular mesh. The code
is currently a parallelised C++ code, used by Rampal et al.
(2019), and presented by Samaké et al. (2017). Momen-
tum input comes from the wind and ocean stresses (a turn-
ing angle of 25◦ is applied to the ocean velocity from the
ocean forcing), the Coriolis force, and sea surface slope, and
there is also a basal stress applied at the bottom of the ice
when it becomes grounded. For this basal stress we follow
the scheme of Lemieux et al. (2016b), using the parameters
k1 = 10, k2 = 15 Pa m−1, αb = 20, and u0 = 5×10−5 m s−1.

There is also a thermodynamic component of the code, and
beneath the ice is a slab ocean with three variables: tempera-
ture, salinity and thickness. The temperature and salinity are
modified by the heat and salinity fluxes determined by the
thermodynamical model as ice melts and freezes and as the
model interacts with the atmosphere. They are relaxed to-
wards the SST and SSS from TOPAZ over a timescale of
about 1 month, while the thickness of the slab ocean is taken
directly to be the MLD of TOPAZ. This varies spatially and
evolves with time according to the forecast from TOPAZ.
The thermodynamical model is a three-category model (de-
tailed in Rampal et al., 2019, Appendix A): open water,
newly formed ice (treated as one ice layer and one snow
layer; Semtner, 1976) and older ice (treated as two ice layers
and a snow layer; Winton, 2000).

The older ice is characterised in the model by concen-
tration, c, and thickness averaged over the entire cell (ef-
fective thickness or, in other words, volume per unit area),
h. The absolute thickness of ice can be computed as the
ratio: H = h/c; there is also an effective snow thickness,
s. The young ice has concentration cy , effective thickness
hy , and snow thickness sy . The absolute thickness of young
ice Hy = hy/cy is constrained so that Hmin ≤Hy ≤Hmax.
If Hy <Hmin, cy is reduced to c′y = (Hycy)/Hmin; if Hy >
Hmax, some ice is moved to the older ice category. During
this process Hy is reduced to H ′y =Hmax, while cy is also
reduced to c′y = cy(Hmax−Hmin)/(Hy −Hmin). This con-
centration reduction is intended to give some lateral decrease
in young ice volume and not just vertical. The corrected val-
ues for hy and sy are h′y = c′yHmax and s′y = c′y(sy/cy); the
corresponding properties for the older ice h, c and s are then
increased in a ice-and-snow-volume-conserving manner. The
values that we used for the thresholds on the absolute thin ice
thickness are Hmin = 0.05 m and Hmax = 0.275 m.

https://doi.org/10.5194/tc-15-3207-2021 The Cryosphere, 15, 3207–3227, 2021
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The domain we present simulations for is a pan-Arctic one,
with a resolution of about 7.5 km. A 7 d forecast for this do-
main runs in about 30 min using 16 processors.

3.2 Initialisation of the model fields

Before the model can be run it has to be initialised. (Note
this is only done once and is not to be confused with the
daily assimilation, which modifies the initial conditions for
each new forecast). First, the triangular mesh for the desti-
nation domain is generated with Unref (a component of the
open-source mesh-generation library GMSH: Geuzaine and
Remacle, 2009) and using the Global Self-consistent, Hierar-
chical, High-resolution Shoreline Database (GSHHS) (Wes-
sel and Smith, 1996). Then model variables like the ice con-
centration, the ice and snow thicknesses, and the tempera-
ture and salinity of the slab ocean are initialised. We use the
CS2SMOS product (Sect. 2.5) to set the ice concentration
and thickness, and we use the simulated sea surface temper-
ature and salinity from TOPAZ4 (Sect. 2.1). The ice con-
centration in the CS2SMOS product comes from the low-
resolution OSI SAF product (SSMIS), which is known to be
too low in areas with low thickness (Ivanova et al., 2015).
Therefore total sea ice concentration (ctot) is calculated by
increasing the observed SIC according to the empirical for-
mula:

ctot =
1
a0

csch
(
hcs2smos− a1a2

2a1

)
× ccs2smos, (2)

where ccs2smos and hcs2smos are respectively the concentration
and effective thickness in the CS2SMOS product, and a0 =

0.9569, a1 = 0.06787 and a2 = 0.4255 are parameters fitted
from the observations (Thomas Lavergne, personal commu-
nication, 2019).

As mentioned above the model has two ice categories –
young ice and older ice with different rheological behaviour.
At the initialisation step young ice cy is set to comprise 20 %
and the older ice c 80 % of the total SIC. If the observed
absolute thickness hcs2smos/ctot is below the young ice upper
thickness limit Hmax, then thickness is distributed between
young and older ice in the same proportion; otherwise young
ice thickness is calculated as hy = cyHmax and for the older
ice: h= hcs2smos−hy . It was identified that the model has
little sensitivity to the fraction of young ice, and it may vary
within 5 %–30 %.

The temperature and salinity of the slab ocean is taken to
be equal to the TOPAZ4 surface forecast, while the ice ve-
locity and damage are set to zero.

3.3 Assimilation of concentration

The assimilation is performed before each forecast run using
the data insertion method – an updated (analysis) concentra-
tion (ca

tot) is calculated as a function of the forecast variable
(cf

tot) and observations (cosisaf), the blended SSMIS/AMSR2

concentration from Eq. (1). Other variables (particularly ice
and snow thicknesses and the SST of the slab ocean) are ad-
justed for consistency, the simulation is then restarted using
the updated variables, and the model is run for 8 d to pro-
vide 1 d of hindcast and a 7 d forecast. The assimilation is
performed on the model mesh – the satellite observations,
originally provided on a regular grid, are linearly interpo-
lated onto the centres of the mesh elements so that they can
be directly compared with the neXtSIM prognostic variables.

The concentration update is done as follows. A target con-
centration is calculated using a weighted average approach:

ctarget =
cf

totσ
−2
model+ cosisafσ

−2
osisaf

σ−2
model+ σ

−2
osisaf

. (3)

The uncertainties of the observed concentration (σosisaf) are
obtained from the input products (the root mean square of
the SSMIS and AMSR2 errors), while the value for the un-
certainty in the forecast concentration is set to 0.3 and can
also be thought of as introducing a timescale (in days) of
1+σ 2

osisaf/σ
2
model for relaxation towards the observations that

depends on the relative uncertainties. Assimilation of con-
centration is performed in all elements that have valid obser-
vations.

In the pack, the total (young and old ice) model concen-
tration ctot is generally close to 100 % (except inside leads
and cracks), while the OSI SAF concentration can be around
90 %–95 %. We found that using ctarget as the actual update
ca

tot produced too much of a drop in the pack concentra-
tion, lowering the internal stress to near zero and allowing
too much drift. This quickly led to rapid build-up of very
thick ice in unusual places. Therefore we had to take a quite
conservative approach to our correction and only change the
model to make sure the ice mask (the part of the domain
where the concentration is higher than 15 %) was correct
(this is a kind of assimilation of extent):

ca
tot =


0 ctarget < 0.15,

ctarget c
f
tot < 0.15 and ctarget ≥ 0.15,

cf
tot otherwise.

(4)

After calculating the updated variables as specified in
Eq. (4) the fractions and thicknesses of young and older ice
are calculated in the same way as in the initialisation proce-
dure (see Sect. 3.2).

Once all the assimilation steps have been performed the
model fields are checked for consistency with each other and
corrected if necessary. First, the concentration of young ice
is reduced in the elements where the total concentration ex-
ceeds 100 %. Second, the volume of ridged ice, damage, and
the ice and snow thicknesses are set to zero in the added ice.
Lastly, we need to correct the SST of the slab ocean. Where
new ice is added during assimilation it is set to the freezing
point, but if ice is removed then the situation is more compli-
cated. Then we proceed as in the following section.

The Cryosphere, 15, 3207–3227, 2021 https://doi.org/10.5194/tc-15-3207-2021



T. Williams et al.: neXtSIM-F evaluation 3213

Table 1. Accuracy of the free run. Concentration and extent are evaluated against OSI SAF SSMIS; thickness is evaluated against CS2-
SMOS; drift is evaluated against OSI SAF drift, where observations with reported error up to 10 km d−1 are considered. Results are 2-
monthly-averaged.

Concentration (%) Extent (106 km2) Drift (km d−1)

Bias RMSE Bias RMSE Bias RMSE VRMSE

Nov–Dec 2018 4.91 9.97 0.09 0.24 0.00 3.63 5.16
Jan–Feb 2019 2.73 6.94 0.09 0.17 −0.31 2.96 4.00
Mar–Apr 2019 1.41 5.38 −0.03 0.18 −0.40 2.77 3.65
May–Jun 2019 −1.65 17.84 −0.15 0.81 −0.91 3.19 4.19
Jul–Aug 2019 −2.47 18.79 −0.06 1.05 0.23 3.25 4.75
Sep–Oct 2019 1.90 14.43 −0.06 0.47 0.81 2.80 4.50
Nov–Dec 2019 3.47 10.86 −0.11 0.41 0.32 2.96 4.53
Jan–Feb 2020 2.76 6.06 0.05 0.17 0.09 3.15 4.48
Mar-Apr 2020 1.36 4.90 −0.03 0.14 −0.15 3.06 4.34
May–Jun 2020 −0.99 16.14 −0.08 0.71 −0.74 3.30 4.41

3.4 Compensating heat flux

One of the side effects of assimilation is that the heat balance
in the model is disturbed: reducing the concentration opens
more water, and depending on the temperatures, atmospheric
humidity and ocean salinity provided by the forcing, the heat
flux out of the ocean can increase dramatically, causing the
ice to freeze up again very fast. This effect is strongest when
the atmosphere is very cold. Therefore a compensating heat
flux is added to the total ocean heat flux in order to keep
the heat balance and prevent refreezing of ice where it was
removed by assimilation, thus prolonging the effect of as-
similation. If cf

tot and ca
tot are respectively the total concentra-

tions before and after assimilation, a compensating heat flux
(Qcomp) is calculated if ice was removed – i.e. if ca

tot < c
f
tot –

according to the following formula:

Qcomp =Qocean

((
ca

tot/c
f
tot

)n
− 1

)
, (5)

where Qocean is the total heat flux from the ocean (sum of
flux from the ocean to sea ice and to the atmosphere), and
n is a parameter controlling the strength of correction. The
function was chosen so that Qcomp is zero when the concen-
tration update is zero, and Qcomp =−Qocean when ca

tot = 0;
i.e. all the ice was removed by assimilation. With n= 1 the
reduction of Qcomp from 0 to −Qocean is linear, and with
n > 1 it becomes steeper for values of ca

tot closer to cftot. We
use n= 4 for the runs presented here, as this gives a suitably
strong heat flux for a modest reduction in concentration.

4 Results

We begin with an evaluation of a free run over the 20-month
period from 1 November 2018 to 30 June 2020. This shows
the general strengths and weaknesses of the model. We then
evaluate the performance of the forecast system over this pe-

riod to show the improvements gained by the assimilation of
OSI SAF concentration.

4.1 Evaluation of free model run

In this section we demonstrate that the model is generally
able to reproduce the overall drift, concentration and thick-
ness patterns in observations. For all comparisons we average
the model fields in time over an appropriate time window (in
practice 1, 2 or 7 d), apply some spatial smoothing (being
guided by the size of the satellite footprint) and interpolate
onto the observation grid. For scalar variables, we define bias
as 〈Vmod−Vobs〉 (with 〈·〉 defining the spatial mean over pix-
els where both model and observation are defined, and where
either model or observations have ice). We also define RMSE
as 〈(Vmod−Vobs)

2
〉
1/2. For the ice extent, we define bias in

extent as A10−A01, where A10 is the total area of pixels
where neXtSIM predicts the presence of ice (total concentra-
tion greater than 15 %) but the observation has no ice, while
A01 is the total area of pixels where neXtSIM predicts no
ice but the observation does have ice. Instead of an RMSE,
for the ice extent we define IIEE (integrated ice edge error,
Goessling et al., 2016) as A10+A01. Thus the IIEE is always
positive, and the bias is positive if neXtSIM is overestimating
the total extent and negative if it is underestimating it. For
the ice velocity we define the bias and RMSE as the mean
and rms values of the difference in speed respectively – i.e.
〈|umod| − |uobs|〉 and 〈(|umod| − |uobs|)

2
〉
1/2. We also define

the vector RMSE (VRMSE) as the rms of the vector differ-
ence, 〈|umod−uobs|

2
〉
1/2. Note that these drift errors can only

be calculated where both model and observation have ice.
Table 1 shows 2-monthly summary statistics for observa-

tions that are available year-round (although they are much
less reliable between May and September). Errors which are
particularly high are the RMSE in ice concentration and the
IIEE for extent between May and August – we will dis-
cuss reasons behind this below. The bias in these quantities
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Table 2. Accuracy of the free run for the 2018–2019 and 2019–2020
winters. Thickness is evaluated against CS2-SMOS and drift against
OSI SAF drift, where only observations with reported error less than
1.25 km d−1 are considered. Results are 2-monthly-averaged.

Thickness (m) Drift (km d−1)

Bias RMSE Bias RMSE VRMSE

Nov–Dec 2018 −0.09 0.26 −0.13 2.62 4.06
Jan–Feb 2019 0.09 0.36 −0.26 2.22 3.27
Mar–Apr 2019 0.07 0.51 −0.24 2.21 3.03

Nov–Dec 2019 0.04 0.40 0.19 2.59 4.11
Jan–Feb 2020 0.23 0.46 0.27 2.41 3.69
Mar–Apr 2020 0.19 0.56 0.01 2.39 3.64

is quite low, being highest between November and Decem-
ber, reflecting an ice advance which is too fast. The drift on
the other hand compares quite well throughout the period,
with the VRMSE being generally less than 4.5 km d−1 and
the RMSE in speed less than 3.3 km d−1 (with the exception
of the first 2 months). The bias is quite low, staying between
±0.8 km d−1. The first 2 months have a bias of zero, despite
their high VRMSE and RMSE, with a Beaufort Gyre that is
too slow cancelling a drift that is too fast in the triangle be-
tween the north pole, Svalbard and Franz Josef Land.

Table 2 shows the effect of restricting the drift evalua-
tion to regions where the observational error is less than
1.25 km d−1. As discussed in Sect. 2.4 this removes the en-
tire period from May to September, as well as the MIZ, the
area around the north pole and areas close to the coast. With-
out the less accurate observations, the drop in VRMSE is be-
tween 0.3 and 1 km d−1, with their values now between 3 and
4.1 km d−1. However, the less accurate regions are also re-
gions where the model has difficulties with other variables
like thickness and extent, so this could also contribute to
the reduction in error. Notwithstanding this, the November–
December 2018 period is now much less of an outlier, now
being quite close to November–December 2019. The RMSE
in speed is now less than 2.6 km d−1, while the bias is be-
tween±0.3 km d−1. There is a clear deterioration going from
the first to the second winter.

Table 2 also summarises the comparison of model thick-
ness with the CS2-SMOS product. RMSE is lower (0.26 m)
in November–December 2018 since thickness was initialised
using CS2-SMOS and grows to 0.51 m over the first winter.
The RMSE grows from 0.4 to 0.56 m over the second winter.
The bias is quite low in the first winter but about 0.2 m from
January–April 2020.

Figures 2 and 3 compare the mean concentration and ex-
tent from neXtSIM and the OSI SAF concentration product
(see Sect. 2.3). Since we do not have enough information
to create an error model for the concentration observations
(for example it cannot be Gaussian due to its restriction to
being between 0 % and 100 %) we could not generate con-

fidence intervals for the mean concentration but instead plot
a shaded area corresponding to ±〈σOSISAF〉

1/2 for reference
when considering the bias and RMSE in concentration. The
seasonal cycle for mean concentration and extent is captured
reasonably well, but the bias is clearly positive in winter and
clearly negative in summer. As noted from Table 1 the RMSE
in concentration and the IIEE are very high between mid-
April and August. The RMSE in concentration is generally
comparable to the rms error level outside these periods.

In January–February there is a general overestimation in
the pack as the model is approximately 100 % with some
leads, while the SSMIS field has large regions of lower con-
centration that contribute to the errors (85 %–90 %). There
is also a general overestimation in ice extent, which is also
the case in November–December, primarily located in the
Greenland Sea and the Barents seas. The areas north of No-
vaya Zemlya (around the Santa Anna Trough), around Franz
Josef Land, and northwest of Svalbard stood out as places
where the ice edge was not being located correctly. This con-
tinues into March–April and can be seen in Fig. 4, which
shows selected maps of the concentration bias from March–
October 2019. The region of underestimation to the north-
west of Svalbard is related to the development of an arch be-
tween there and the northeast tip of Greenland. (This is also
related to relatively large thicknesses in these areas, which
increases the capacity of undamaged ice to stay undamaged.)
This arching also reduces the ice export through the Fram
Strait, the effect of which is seen in the maps for May–June
and July–August. In May–June we also see that the ice that
is in the Greenland Sea and is displaced too far to the east,
producing a double penalty effect in the RMSE score. This is
also a result of the arching in this area – the ice at the corner
of Greenland is too thick to be exported, and so the ice that
is exported has detached from the arch away from the coast
and has then travelled roughly parallel to the coast without
being pushed back towards it. In July–August the thicker ice
has mostly melted and there is less of a dipole situation and
more of a clear-cut underestimation.

Another problem area is around the Novosibirsk Islands
(also known as New Siberian Islands) and the Laptev Sea.
April sees the model opening slightly too far to the north; in
May and June there is a strong underestimation to the north
of the islands and too much fast ice. The underestimation is
partly from melting that is too fast and from the fact that the
fast ice has not detached and flowed into this area.

There is a similar problem to the west of Wrangel Island
in the Chukchi Sea – an opening that is too large compared
to the observations and with too much land-fast ice close to
the coast which should be flowing into this region. There is
also a large region of overestimation to the east of Wrangel
Island, which is actually an artefact of the boundary condi-
tions that we are using at the open Bering Strait boundary. If
there is inflow at any open boundaries the value of any trac-
ers is taken to be its value in the nearest mesh element, and
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Figure 2. Temporal comparison of model and OSI SAF SSMIS concentrations. The shaded area in the lower plot shows the rms uncertainty
of the concentration for reference when considering the errors. The mean concentration is the mean over the ocean points in the domain,
while the bias is defined as the mean error (model minus observation) over the region where either the model or observations have ice.

Figure 3. Temporal comparison of extents (region where the concentration exceeds 15 %) from model and OSI SAF SSMIS concentrations.
The bias is defined as modelled extent–observed extent.

in this case we have too much ice being imported through the
Bering Strait, which leads to a build-up at this location.

The last things to mention about the July–August map are
the strong overestimation around Franz Josef Land and the
dipole situation in the Beaufort sea, which is the result of a
Beaufort Gyre that is too slow.

However, by September–October, the situation has im-
proved substantially. The main disagreement is in the ice
edge from Severnaya Zemlya round to the just past Svalbard.
This is due to an ice advance that is slightly too fast.

Figure 5 shows time series of mean thicknesses and of
thickness errors when compared to CS2-SMOS, which have
already been discussed to some extent in the context of Ta-

ble 2. The mean observed and modelled thicknesses show a
steady increase after November, but the modelled value is in-
creasing faster than the observed one. The timing of when
the modelled increase starts is close to when the observed in-
crease starts. The lower plots have the rms uncertainties plot-
ted for reference, and the model bias is generally at a similar
level to this uncertainty. The RMSE is about twice this un-
certainty in the second winter. We note here that the error
levels in the CS2-SMOS product are only the interpolation
error and are thus a lower bound as they do not include un-
certainties in the individual CS2 and SMOS products. CS2
in particular is sensitive to the ice and snow densities used
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Figure 4. Selected maps of the 2-monthly-averaged concentration biases between the free model run and from OSI SAF SSMIS. The bias is
defined as model minus observation.

Figure 5. Temporal comparison of model and CS2-SMOS thickness for two winters, 2018–2019 (a, c) and 2019–2020 (b, d). The shaded
regions show the rms uncertainty in the CS2-SMOS product for reference. The mean thickness is the mean over the ocean points in the
domain, while the bias is defined as the mean error (model minus observation) over the region where either the model or observations have
ice.
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Figure 6. Comparisons of time-averaged model and CS2-SMOS thickness for early (a–c) and late (d–f) in the 2019–2020 winter. (a, d) Bias
maps; (b, e) neXtSIM thickness; (c, f) CS2-SMOS thickness. The bias is defined as model minus observation.

or the snow thickness which affect the conversion from free-
board to thickness (Zygmuntowska et al., 2014).

Figure 6 also shows the spatial distribution of the errors.
Throughout the winter there is overestimation off the north
coast of Greenland round to Axel Heiberg Island. Further to
the west there is a thinning (but not an opening) from Axel
Heiberg Island to Ellef Ringnes Island, which also seems
to be related to the westward drift along this coast being
too high. This persists throughout the winter, but the af-
fected area reduces with time. In October–December there is
a dipole pattern where the ice is too thin in the Beaufort Sea
and too thick in the triangle between the north pole, Svalbard
and Franz Josef Land. However, in January–April, this dipole
reverses.

The modelled thickness is also quite high around the north
of Svalbard, in contrast with the CS2-SMOS product, which
has quite thin ice. This build-up contributes to the arching
discussed in relation to the concentration errors, reducing the

ice export through the Fram Strait. This stems from damaged
ice not having enough resistance to compression. In the BBM
rheology there is a balance between resisting compression
enough to stop the build-up of ice at the coasts and resisting
it so much that drift becomes too slow.

Figure 7 shows the drift bias and RMSE of neXtSIM when
compared to the OSI SAF drift product. The shaded area cor-
responds to 〈2σ 2

OSI SAF〉
1/2, where the factor of 2 comes from

the fact that drift has two components. We also note that if
one cell has components (xi,yi) with (not-necessarily Gaus-
sian) noise (εi,δi) added to it (each with zero mean and vari-
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Figure 7. Temporal comparison of model and OSI SAF drift. The shaded region shows the rms uncertainty in the OSI SAF drift product.
The bias is defined as the mean modelled speed minus observed speed. The mean drift and errors are averages over the regions where both
model and observations have valid drift vectors. Valid observations here are those that have reported errors less than 10 km d−1.

ance σ 2
i ), the mean-squared drift in the presence of noise,

〈d̃2
〉 =

1
N

N∑
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2
〉
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)
= 〈d2

〉+ 2〈σ 2
OSI SAF〉, (6)

is higher than the noise-free (“true”) value 〈d2
〉 by

2〈σ 2
OSI SAF〉. It is tempting to then just subtract this amount

from the speed when comparing with the model, but we de-
cided that the uncertainty in the quoted uncertainty could be
too influential and also that the model drift has some un-
known uncertainty associated with it, so we persisted with
directly comparing the drift in the OSI SAF product with the
model drift in order to judge when the model is too fast or too
slow and plotted the error level 〈2σ 2

OSI SAF〉
1/2 for reference.

The difference in speed (model speed minus observed speed)
fluctuates somewhat but stays largely within the error limits.
The rms error for this product is approximately 1.8 km d−1

from October to May but increases to about 4 km d−1 from
May to September. However, the model is starting to show
signs of being too slow in April and May 2020. The RMSE
in speed ranges between about 3–4.5 km d−1, which is out-
side the estimated error for the more accurate colder months.

The VRMSE (vector RMSE) is higher than the RMSE by
about 1.5 km d−1.

Figure 8 shows the general spatial pattern in the drift er-
rors. The maps for October–December 2019 show that the
general circulation of the model and the observations are
agreeing well, with the main feature being the gyre in the
central Arctic Ocean. However, this gyre is slightly too fast
and there is also too much westward drift along the Canadian
Arctic Archipelago. The observations also show a small gyre
in the East Siberian Sea which is not apparent in the model
drift. The strongest positive bias is in the Kara Sea although
the errors in the observations are high there, being close to
the coast and the MIZ. The model is also showing strong
positive biases in the Laptev and East Siberian seas where
the ice is thinner. On the other hand, the drift in the Beaufort
and Chukchi seas is too slow.

In January–March 2020, the general pattern in the obser-
vations is a strong flow from the Laptev over to the Green-
land Sea, with a weaker transpolar drift from the Chukchi Sea
joining this outflow. The model also produces the flow from
the Laptev Sea, but the flow from the Chukchi Sea is more
directed towards the Beaufort Sea than across to the Green-
land Sea. This may be contributing to the biases seen in the
thicknesses – too thick in the Beaufort Sea while too thin in
the region between the Laptev and Greenland seas. The drift
is also starting to become too slow north of Greenland and
Svalbard, and this is most likely due to the ice build-up in
those areas.
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Figure 8. Comparisons of 2-monthly-averaged model and OSI SAF drift from the 2019–2020 winter. The drift bias colour maps (left column)
show the bias in speed, while the directions show the difference between the model and observation directions (arrows pointing up indicate
the directions are the same). The central column shows ice velocity vectors from neXtSIM, while the right-hand column shows OSI SAF
vectors. The concentration colour maps show the average neXtSIM concentration over the analysis period. The bias is defined as modelled
speed minus observed speed.

In April–June 2020 there is a stronger Beaufort Gyre and a
similarly strong cyclonic gyre in the Laptev Sea. These con-
nect to form quite a wide stream from the central Arctic to
the Greenland Sea. While the model captures the gyre in the
Laptev Sea, the Beaufort Gyre is less well defined in this pe-
riod, possibly due to the ice being too thick in the Beaufort
Sea at this time. As in January–March, drift is also too slow
to the north of Greenland.

4.2 Evaluation of forecasts with assimilation

The performance of the forecasting system with assimilation
of concentration was evaluated over the same period as the
free run was in Sect. 4.1 (that is the 20 months from Novem-
ber 2018 to the end of June 2020). In order to reduce com-

putation time, the 7 d forecasts were launched approximately
only every 7 d, with 1 d analyses being launched in between
so that the assimilation was still performed daily.

The model performance was evaluated against satellite ob-
servations of the sea ice SSMIS concentration and drift from
OSI SAF (see Sect. 2.3 and 2.4). The metrics we used in our
assessment were bias and RMSE in concentration; bias and
IIEE in extent; and bias, RMSE and VRMSE in drift. A per-
sistence forecast of concentration (the initial concentration,
defined for technical convenience as the average of the first
hour) was used as a benchmark for concentration and extent,
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Figure 9. Two-monthly-averaged forecast errors grouped by lead time (lead times are indicated in the figure legends). The free run errors
for the corresponding periods are plotted as dotted lines for reference on the bias and RMSE/IIEE plots. (a–c) Two-monthly-averaged bias,
RMSE and forecast skill for concentration grouped by lead time. (d–f) Two-monthly-averaged bias, IIEE and forecast skill for extent grouped
by lead time.

and forecast skill was defined as

Concentration skill= 1−
(

RMSE
RMSEpersistence

)2

, (7a)

Extent skill= 1−
IIEE

IIEEpersistence
. (7b)

Thus, a model that is agreeing perfectly with the observa-
tions has skill equal to 1, while it is negative (with no lower
bound) if the persistence error is lower than the forecast er-
ror. We decided that given the strong dependence of drift on
wind, its rapid variability in time would render a persistence
forecast for drift quite easy to beat, so for this variable we
just present the forecast errors. However, we can make some
rough comparisons to the drift errors of other products, even
though they use different observations for their evaluation so
we cannot make a direct comparison. We note that the drift
from the TOPAZ forecast generally has a bias in speed of
about 2 km d−1 and a VRMSE of about 5–8 km d−1 Melsom
et al. (2018), while Metzger et al. (2017) report an rms drift
speed error of about 5–8 km d−1 in the Arctic for the GOFS
3.1 system.

Figure 9 shows the 2-monthly averages for the different
metrics applied to the concentration and extent. We only plot
results for the first year and 2 months, since the error statistics
from the 2020 results were nearly identical to the previous
years. As with the free run, the concentration from the fore-
cast is generally higher than OSI SAF in the winter months.

As mentioned earlier, we do not try to correct this as reducing
the concentration in the pack causes serious problem with the
drift and thickness. The extent, which is adjusted during as-
similation, is also lower than the observed one for the whole
period, by differing amounts. Figure 10 shows some exam-
ple forecasts from winter and autumn – one from January,
March and September 2019 respectively. The first and third
examples are forecasts with positive skill in extent (model
does better than persistence), while the second has negative
skill. However, they all have relatively low IIEE and RMSE
in concentration. The January example shows that the rapid
advance in the Kara Sea is captured relatively well by the
model, and while the extent in the Greenland and Barents
seas is too high, the ice edge is quite variable, and the model
is doing better than the persistence at this time. The March
example shows an example where there is quite a persistent
negative bias to the northwest of Svalbard and in the Barents
Sea. These errors probably originate in the ocean forcing,
which we are unable to overcome even with our flux com-
pensation. The persistence forecast does well in this example
since the ice conditions are not changing very much. In the
September example, the bias is similar to the free run, but it
has been reduced by the assimilation. There is still an ice ad-
vance that is too fast in the European Arctic, but it is closer
to the observations than the persistence forecast.

In the summer, the forecasts are systematically lower in
concentration, partly due to differences in the pack, which we
do not correct for, and in the extent. We are not too concerned
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Figure 10. Selected maps of daily-averaged biases in concentration compared to OSI SAF SSMIS for three examples of forecasts, starting
on 3 January 2019 (a–c, positive skill) and the other on 7 March 2019 (d–f, negative skill) and 6 September 2019 (g–i, positive). Panels (a),
(d) and (g) show the evaluation for the first day of simulation (lead time −1: analysis or hindcast), while panels (b), (e) and (h) show the
evaluation for the eighth day of simulation (lead time 7). Panels (c), (f) and (i) show the bias in the persistence forecast (defined as the results
for the first day of simulation) for lead time 7. The bias is defined as model minus observation.

by differences in the pack, as the differences are still compa-
rable to observation error. Differences in the extent however
are more concerning. In the summer, the forecasts score par-
ticularly badly with this metric, largely due to the dynamical
problems also seen in the free run: arching above the Fram
Strait, as well as fast ice in the Laptev and East Siberian seas
that is too slow to detach. Figure 11 shows a typical example
from this time period. Despite the correction in extent during
assimilation, the ice that is added in the Fram Strait is quite
thin and it melts quite quickly.

Figure 12 shows the bias, RMSE and VRMSE for the fore-
cast drift. For smaller lead times it has similar quality to the
free run, which is to be expected since the assimilation does
not modify fields in the pack, with minor differences that are
probably just due to differences in extent determining which
observations are included or not. There is a small negative
bias in speed in the winter months and a slight positive bias in
the summer. The bias is not showing a large variability with
forecast lead time, although there are some exceptions. With

the exception of the first 2 months, which is slightly higher
than the others, the RMSE (RMSE in speed) is quite consis-
tent throughout the whole evaluation period, with a steady
increase with lead time. The RMSE for the final day is still
mostly less than 5 km d−1. The VRMSE, which evaluates the
drift direction as well as its speed, shows a larger dependence
on lead time, starting between 4.5–5 km d−1 but getting up
to between 7–8 km d−1 by the final day (occasionally being
under 7 km d−1 or over 8 km d−1). This dependence on lead
time is almost certainly due to increasing inaccuracy in the
forecast winds.

5 Discussion and conclusions

neXtSIM-F became operational in July 2020 as part of
CMEMS, and this paper presents an upgraded version that
will be included in December 2020. Here we have evalu-
ated the neXtSIM model itself in a free run for the period
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Figure 11. Maps of daily-averaged biases (a, d) in concentration compared to OSI SAF SSMIS, and modelled (b, e) and observed (c, f)
concentrations, for an example forecast starting on 6 June 2019. Panels (a)–(c) show the comparison for the first day of simulation, while
panels (d)–(f) show the comparison for the eighth day of simulation. The bias is defined as model minus observation.

Figure 12. Two-monthly-averaged bias, RMSE and VRMSE for drift grouped by lead time (lead times are indicated in the figure legends).
The lead times refer to the start of each 2 d drift evaluation period – e.g. “0” covers the period from day 0 (12:00) to day 2 (12:00). The
free run errors for the corresponding periods are plotted as dotted lines for reference. The bias is defined as modelled speed minus observed
speed.

1 November 2018 to 30 June 2020, as well as the neXtSIM-
F forecast platform which corrects the initial conditions daily
by assimilating sea ice concentration.

The free run, which used hindcast winds, had good drift,
being relatively unbiased and having a low RMSE in speed
of 3–4 km d−1. The RMSE was closer to 2.5 km d−1 when
less accurate observations (uncertainty less than 2.5 km for
the 2 d drift) were filtered out, although the observations so
removed would also be near the coast and in the MIZ where
we do have problems with thickness and extent respectively.

Considering the VRMSE, the RMSE in the final position of
each trajectory added about 1 km d−1.

The model thickness was biased slightly too thick in gen-
eral, and there was also a tendency to have a dipole behaviour
with one or too areas being too thick and one or two being
too thin. The location of these regions that are too thin varied
over the winter (the only time when the CS2-SMOS observa-
tions were available), but the thickness off northeast Green-
land and north Svalbard was invariably too high. This caused
the formation of an arch across the Fram Strait, which limited
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the export of ice through this strait in the summer, especially
close to the coast.

When we evaluated the concentration and extent we found
that the sea ice extent in the summer was greatly affected by
the arching mentioned above, in that the total extent was too
small and that the ice was also displaced from where it should
be – there was no ice close to the east coast of Greenland
(unlike in the observations), and it extended too far to the
east.

There were also less severe differences in the ice edge
which were probably partly due to errors in the ocean and/or
atmospheric forcings, but the other big issue was the extent
of the land-fast ice in May and June in the Laptev and East
Siberian seas – this was too slow to detach and also con-
tributed to there being too little ice further away from the
coast at this time.

Owing to the fairly conservative approach that we had to
take to the assimilation, the forecasts generally had the same
properties as the free run with regards to thickness and drift.
The bias in drift remains close to zero for the whole 8 d simu-
lation, although the RMSE in speed and the VRMSE begin to
deteriorate after about 4–5 d of simulation (up to a lead time
of 4) – this is almost certainly due to less accurate winds
at these lead times. The forecasts also had greatly improved
IIEE scores compared to the free run. However, the more se-
rious problems with the summer extent – in the Greenland
Sea (due to arching) and to a lesser degree the Laptev and
East Siberian seas (land fast ice) – were still present in the
forecasts. The land-fast ice could possibly be improved with
further tuning of the basal grounding scheme, while the arch-
ing problem is more difficult to solve. However, recent exper-
iments indicate that changing the role of concentration in the
rheology could give some improvements here – note that the
viscous relaxation time in Eq. (A3) and thus the entire left-
hand side of Eq. (A2) only depend on damage and not on
concentration, so larger stresses do not drop very quickly if
the ice is undamaged and the concentration drops (low con-
centrations cause the right-hand side of Eq. A2 to drop to
near zero). There may be additional modifications to the rhe-
ology that could be made to help reduce arching in this re-
gion.

Assimilation of different data might also help.

1. Sea ice thickness. We could use either the hybrid CS2-
SMOS product or the CS2 trajectories themselves to
limit the build-up of ice on either side of the Fram Strait.
However, these data stop in mid-April, so build-up that
occurs later may still be enough to cause the arching.

2. Sea ice deformation Korosov and Rampal (2017) were
able to derive sea ice drift from SAR data using a com-
bination of feature tracking and pattern matching. De-
formation can then be calculated to modify the dam-
age variable and thus induce break-up at the right place.
Unfortunately, this option is also time-limited as surface

melt makes the ice smoother and stops the feature track-
ing algorithm from working as effectively.

Another possibility could be to take the approach of Ying
(2019) and to morph the modelled ice mask onto the ob-
served one so that, for example, ice in the Greenland sea
could be moved over towards the coast, instead of removing
thicker ice at the ice edge and adding thinner ice towards the
coast. Possibly a better source of ice extent than OSI SAF
concentration could also be used in conjunction with such
a morphing approach. For example, the United States Naval
Ice Center6 produces daily, pan-Arctic ice charts. Other alter-
natives for assimilating extent are MASIE (Multisensor An-
alyzed Sea Ice Extent: Fetterer et al., 2010) and IMS (Inter-
active Multisensor Snow and Ice Mapping System: Helfrich
et al., 2007), as done by the GOFS 3.1 system for example.
Automatic ice type classification from SAR is also possible
now – for example the algorithm developed by Park et al.
(2020) and upgraded by Boulze et al. (2020) will become
operationally distributed by CMEMS in 2021.

A framework to produce an ensemble forecast with
neXtSIM-F is also being developed (Cheng et al., 2021, as
a follow-up of the work of Rabatel et al., 2018), with the ulti-
mate aim of using the ensemble Kalman filter (EnKF) assim-
ilation method. Work on using EnKF with models running on
adaptive meshes (like neXtSIM) is being developed in paral-
lel at the Nansen Environmental and Remote Sensing Center
(NERSC; Aydoğdu et al., 2019). This may also be effective
at addressing some of the errors in the forecast.

Finally, in order to provide more consistent ocean inputs to
the sea ice model (as well as to provide more realistic stresses
and fluxes to the ocean model), work is ongoing to couple
neXtSIM with the ocean models HYCOM and NEMO and
to add an atmospheric boundary layer model to mediate be-
tween the atmospheric model and the ice and/or ocean mod-
els. Also, neXtSIM is already coupled to the WAVEWATCH
3 wave model (Boutin et al., 2021), so there is scope for
neXtSIM-F to include more components like wave and ocean
models.

6https://usicecenter.gov/ (last access: 6 July 2021)
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Appendix A: Summary of brittle Bingham–Maxwell
(BBM) rheological equations

We refer readers to Rampal et al. (2019) for most of the de-
tails but give some important modifications below. The mo-
mentum balance is

ρi(h+hy)
Du
Dt
=∇ · (hσ + σ P)+ τ

− ρi(h+hy)(f k×u+ g∇η), (A1)

where u= (u,v) is the ice velocity, ρi is the density of ice,
hy is the mean young ice thickness, h is the mean thickness
of older ice, σ is the internal stress, σ P is an additional plas-
tic stress that is most active when damaged ice is under con-
vergence, τ is the sum of stresses applied by the wind and
ocean currents and by keels grounding on the sea floor, f is
the Coriolis parameter, k×u= (v,−u), g is the acceleration
due to gravity, and η is the sea surface height.

There is an evolution equation for the damage (d), which
is unchanged from Rampal et al. (2019, see Eqs. A8–A15).
The rheology consists of a friction element and a dashpot in
parallel, as well as a spring in series with this parallel ele-
ment. Accordingly the stress follows the constitutive relation

σ̇ +
σ

λ

(
P̃ +

λḋ

1− d

)
= EK : ε̇, (A2)

where K is the stiffness tensor (see Eq. A4 of Rampal et al.,
2019), ε̇ is the deformation rate tensor,E is Young’s modulus
and λ is the viscous relaxation time. E and λ vary according
to the damage and the concentration of old ice c

E = e−0.2(100−c)(1− d)E0, (A3a)

λ= λ0(1− d)α−1. (A3b)

Here E0 is Young’s modulus for undamaged ice at 100 %
concentration, λ0 is the (large) value of λ for undamaged ice
and α > 1 is an exponent which can be tuned to control how
fast λ drops due to damaging. Note we do not consider young
ice in the constitutive relations since it is assumed to be weak.
The term P̃ depends on the normal stress σn = 1

2 (σ11+ σ22)

(defined to be positive under convergent conditions) and par-
ticularly on whether the ice is converging or not:

P̃ =


1 for (i) σn ≤ 0,

0 for (ii) 0< σn < Pmax,

1− Pmax
σn

for (iii) σn > Pmax,

(A4)

where the different regimes are (i) diverging, (ii) converg-
ing and elastic, and (iii) converging and ridging. Also,
Pmax = P∗h

2e−0.2(100−c) is the concentration- and thickness-
dependent threshold for when the Bingham element starts
moving (P∗ is a constant tuning parameter of the order of
10 kPa). If σn < 0, the friction element is inactive and the
dashpot is free to move, and the internal stress is quickly

dissipated in damaged areas. If 0< σn < Pmax, the friction
element is active and stationary, which also stops the dash-
pot from moving and dissipating stress. Thus even highly
damaged ice is able to resist compression. However, once
σn > Pmax, the friction element starts to move, the dashpot
becomes active again and the ice starts to ridge.

The MEB rheology as presented by Rampal et al. (2019)
corresponds to the situation where P̃ is always 1 in Eq. (A4).
In addition, the term involving ḋ in Eq. (A2) was not present
(it was required to stabilise the explicit solution of the BBM
equations). In the first version of our CMEMS forecast
(which ran from July–December 2020), two modifications
were made to the version of MEB in Rampal et al. (2019):

i. In Eq. (A3a) for E, d was taken to be zero if it was
less than 0.95, which helped to improve localisation of
deformation.

ii. An extra stress σ P was added to σ in the momentum
equation (Eq. A1), which provided some resistance to
compression. This stress was given by

σ P =
h2e−0.2(100−c)P∗∗

|∇ ·u| + δP

1 0 0
0 1 0
0 0 1

2

ε̇11
ε̇22
ε̇12

 , (A5)

where P∗∗ was a tuning parameter of the order of
10 kPa, and δP was a small parameter needed for nu-
merical stability.
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