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c Department of Mathematics, Leuven Statistics Research Center, KU Leuven, Belgium

Abstract

In functional data the interest is to find a global mean pattern, but also to capture the individual
curve differences in phase and amplitude. This can be done conveniently by building in random effects
on two levels: in the warping functions to account for individual phase variations; and in the linear
structure to deal with individual amplitude variations. Via an appropriate choice of the warping
function and B-spline approximations, estimation in the nonlinear mixed effects functional model is
feasible, and does not require any prior knowledge on landmarks for the functional data. Sufficient
and necessary conditions for identifiability of the flexible model are provided. A theoretical study is
conducted: we establish asymptotic normality and consistency of the estimators of the registration
and amplitude models, convergence of the iterative process, and consistency of the final estimator
provided by the iterative process. The finite-sample performance of the proposed estimation procedure
is investigated in a simulation study, which includes comparisons with existing methods. The added
value of the developed method is further illustrated via the analysis of a real data example.

Keywords: B-spline approximation; Nonlinear functional modeling; Phase and amplitude varia-
tion; Random effects; Warping function.

1 Introduction

Functional data are encountered in many fields, a multitude of examples can be found in the books by
Ferraty and Vieu (2006); Ramsay and Silverman (2002, 2005). When analyzing functional data it is of
particular interest to provide answers to the questions: (i) is there a common main (mean) functional
pattern to be distinguished?; (ii) can we quantify the significant individual fluctuations with respect to
such a mean pattern? While the common functional mean is capturing main features such as peaks and
valleys, differences between individual curves are often exposed via differences in phase and in amplitude
of the main features. In Figure 1 the Pinch Force data are depicted. These data were collected as part
of an experiment to investigate the force (measured in Newton) exerted by thumb and forefinger when
pinching a 6 cm width force meter. See Ramsay et al. (1995). Data on 20 recordings of such force
measurements, recorded every 2 milliseconds during a time period of 0.3 seconds, are presented in Figure
1. There seems to be a clear maximum for each curve, but the position and the size of this maximum
differs considerably from curve to curve. See further Section 5.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

2
4

6
8

10
12

Time

F
or

ce

Figure 1: Pinch Force dataset.

Often there is no prior information available regarding the number of important features, and where,
in which region, they occur. A flexible method should thus not rely on such information, and be able to
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extract a main pattern from the data, as well as information on major individual variations. Aligning
the individual curves via individual shift functions is conveniently done via time warping functions,
see for example Bigot (2013); Claeskens et al. (2010); Dupuy et al. (2011); Gervini and Gasser (2004);
Kneip and Gasser (1992); Wang and Gasser (1997). One approach towards describing the curve-specific
deviations from the mean curve is via random effects. See for example Chen and Wang (2011); Elmi et al.
(2011); Guo (2002). An analysis of variance model for functional data describing the phase variability
through time-warping and allowing for inference in the presence of amplitude variability, was introduced
by Gervini and Carter (2014). This approach was further extended to a functional regression setting
in Gervini (2015b,a). A functional mixed effects regression model was used to analyse spike train data
in Hadjipantelis et al. (2014). In Xie et al. (2017) the emphasis was to construct separate boxplot-type
displays for the three main components of the observed variation in functional data, the amplitude,
phase, and vertical translation. A shift-warping method is used in Carroll et al. (2020) for multivariate
functional data where each of the components may contribute to a shift with its own parameter value. In
Wrobel et al. (2019), warping methods are proposed for data from exponential families. The methodology
consists of working with principal components analysis (PCA) and using an expectation-maximization
(EM) algorithm for parameter estimation. In Happ et al. (2019), PCA is studied to analyse warping
functions. A nonparametric registration method is proposed in Chakraborty and Panaretos (2021), based
on a local variation measure introduced to provide nonparametric conditions that lead to identifiability.
The phase and amplitude are separated in Tucker et al. (2013) by using a representation of functional
data that is based on the Fisher-Rao metric to compute an elastic shape analysis of the curves. Based on
this representation, Yu et al. (2017) analyses the phase variation using a principal nested sphere approach.
In Strait et al. (2017), a constrained elastic shape analysis is used with a landmark representation. While
there are Bayesian methods for registration too, see for example Cheng et al. (2016), these are not
considered here. Other papers focus on curve registration and classification or clustering, see Park and
Ahn (2017); Sangalli et al. (2010); Tang et al. (2020); Zeng et al. (2019).

In this paper we use a mixed effects model in which random effects enter on two levels: (1) a warping
function with random effects describes the individual phase variability in a flexible manner, and (2) a
second random effect is used to model the individual amplitude variability. This follows the approach
of Gervini and Carter (2014), but with two major differences: (i) the definition of the warping function
does not depend on ‘landmarks’ (locations of peaks and valleys); (ii) the estimation procedure. A first
important advantage of our method is that there is no need to know nor estimate landmarks, neither
their number nor their positions, which can be time consuming and/or difficult. Second, our estimation
procedure is computationally less demanding than, for example, an EM-algorithm as used in Gervini
and Carter (2014). Different from Rakêt et al. (2014) is that we use nonparametric estimation by means
of B-splines and avoid a linearization of the mean around the warped values as in their estimation
approach. We focus in this paper on homogeneous signals. We prove the identifiability results of the
proposed data registration model under some mild conditions. In addition, the asymptotic properties of
the proposed estimation procedure are investigated: convergence of the algorithm, asymptotic normality
of the estimator at each step, and consistency of the final estimator. An important contribution of
this theory is the study of the algorithm, seen as an iterative process, and not on the estimator that it
approximates. The added value of the method is illustrated on the Pinch Force data in Section 5, where
our analysis not only provides a mean pattern, but also allows to describe clearly where most individual
differences occur with respect to either phase or amplitude.

The paper is organized as follows. In Section 2 the modeling framework is introduced together
with the necessary notations. The identifiability of the proposed model is obtained. Details about the
estimation procedure are provided in Section 3. An estimator for the warping parameters is constructed,
and its asymptotic normality is proven. Linear mixed model estimators are proposed for the functional
parameters and their asymptotic normality is shown. In Section 3.3 we derive an iterative estimation
procedure for which we show the convergence and the consistency of the resulting estimators. The finite-
sample performance of the proposed estimation method is investigated in Section 4, which also includes
a comparison with four existing methods. The methodology is used to analyse the Pinch Force data in
Section 5. The paper concludes by some discussion in Section 6. This paper is accompanied by the R
package warpMix. All proofs are given in the Appendices.

2 The model and its identifiability

Suppose one observes individual curves Y1(t), Y2(t), . . . , Yn(t) on the interval [0, 1] (without loss of gen-
erality), and a first aim is to find a main pattern µ(t) in these individual curves. First, we introduce the
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various elements of the modeling framework, and provide the identifiability of the model. All the proofs
of the results stated in this section can be found in Appendix A.

2.1 A functional mixed model with warping function

We consider the following functional mixed model. For i = 1, . . . , n, and for t ∈ [0, 1], we define the
process

Yi(t) = µ
{
w−1(t;θi)

}
+ Ui

{
w−1(t;θi)

}
+ εi

{
w−1(t;θi)

}
, (1)

with µ the unknown common mean and where Ui denotes the unknown random effect on the amplitude
for the observation i. The flexible warping function w : [0, 1] → [0, 1] is strictly increasing and depends
on a random variable θi ∼ Nr(θ0,Σ

θ), that describes the individual phase variability. Details about the
warping function are provided in Section 2.3.

We rather use the discretization of model (1) with time points (ti,j) for j = 1, . . . , Ti; i = 1, . . . , n,
where Ti denotes the number of fixed (non-random) time points for the individual i:

Yi(ti,j) = µ
{
w−1(ti,j ;θi)

}
+ Ui

{
w−1(ti,j ;θi)

}
+ εi,j . (2)

We assume that for all i, the error vectors εi = (εi,1, . . . , εi,Ti
)⊤ with εi ∼ NTi

(0Ti
, σ2

εITi
) are i.i.d.,

meaning that the error terms are independent of ti,j and of the warping effects θi.
An analogous model was used in Rakêt et al. (2014), where the warping function stands only in the

common mean and not in the individual effect, and in Gervini and Carter (2014), where a group level
is added. We argue that from this general formulation, many things have to be defined to allow the
estimation of this model. The specificities of our study and its novelty will be described in the next two
subsections, through the decomposition of the signals onto a B-splines basis and the warping function.

2.2 B-spline basis decomposition

The warping function w, the unknown mean function µ and the individual random effect amplitude func-
tions Ui are modeled in a flexible fashion via B-splines. In this paper, we make the following assumption.

Assumption A. We assume that the functions µ, (Ui)i=1,...,n and w belong to the space spanned by the
considered spline basis.

Assumption A ensures to have unbiased estimators for the curves, and avoids having to theoretically
deal with a modeling bias. When using a spline basis in practice, the curves are well approximated when
utilizing a finite (maybe large) number of knots.

For the mean function µ, we define a sequence of Kµ interior knots 0 = κµ
0 < κµ

1 < . . . κµ
Kµ

< κµ
Kµ+1 =

1. In addition, we put pµ + 1 boundary knots at 0 as well as at 1, and denote κµ
−pµ

= . . . = κµ
−1 = κµ

0

and κµ
Kµ+1 = κµ

Kµ+2 = . . . = κµ
Kµ+pµ+1. We denote by κµ = {κµ

−pµ
, . . . , κµ

Kµ+pµ+1} the set of all knots
involved in estimation of µ. The B-spline basis functions of degree pµ are defined by induction as

Bµ
l,1(t;κ

µ) =

{
1 if κµ

l ≤ t ≤ κµ
l+1;

0 otherwise;

Bµ
l,pµ+1(t;κ

µ) =
t− κµ

l

κµ
l+pµ

− κµ
l

Bµ
l,pµ

(t;κµ) +
κµ
l+pµ+1 − t

κµ
l+pµ+1 − κµ

l+1

Bµ
l+1,pµ

(t;κµ);

for l = −pµ, . . . ,Kµ. With the use of the additional (boundary) knots, this gives precisely mµ =
Kµ + pµ + 1 basis functions. The function µ is decomposed in the B-spline basis, with coefficient vector
αµ = (αµ

−pµ
, . . . , αµ

Kµ
)⊤,

µ(t) =

Kµ∑
l=−pµ

αµ
l B

µ
l,pµ+1(t;κ

µ). (3)

Note that if µ(·) does not belong to the space spanned by the basis functions, then the equality in (3)
should be replaced by an approximation. The induced modeling bias can be controlled by taking a large
number of knots.
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Similarly, for i = 1, . . . , n each individual random function Ui is decomposed in a basis of B-splines
of degree pUi

. Denote the B-spline basis for Ui by (BU
i,−pUi

,pUi
+1, . . . , B

U
i,KUi

,pUi
+1) with knots sequence

κUi , resulting in mUi
= KUi

+ pUi
+ 1 basis functions, and consider

Ui(t) =

KUi∑
l=−pUi

αU
i,lB

U
i,l,pUi

+1(t;κ
Ui),

where αU
i = (αU

i,−pUi
, . . . , αU

i,KUi
)⊤. For this random vector αU

i of B-spline coefficients, attaining values

in RmUi
×1, we assume that, for all i = 1, . . . , n,

αU
i =

αU
i,−pUi

...
αU
i,KUi

 ∼ NmUi

(
0mUi

,ΣUi
)
with ΣUi =


σ2
U,1 0 . . . 0

0 σ2
U,2 . . . 0

0 0
. . . 0

0 . . . 0 σ2
U,mUi

 ,

the covariance matrix for which we assume a diagonal structure, and which needs to be estimated. Further

we denote α∼
U =

(
(αU

1 )
⊤, . . . , (αU

n )
⊤)⊤, a random vector taking values in R

∑n
i=1 mUi

×1.

2.3 The warping function

A flexible way to model the warping function is as follows. For every t ∈ [0, 1], we define

w−1(t;θi) =

∫ t

0
exp

{
h−1(u;θi)

}
du∫ 1

0
exp {h−1(u;θi)} du

, (4)

with h−1 as indicated below. Note that w−1 (and hence w) is by construction an increasing function.
The advantage of using the exponential function is that it warrants the positivity of the function. A
non-random version of this warping function was introduced in Ramsay and Silverman (2005) and used
in Hadjipantelis et al. (2014); Wagner and Kneip (2019). There are many other choices of warping
functions that could be made (see for example Marron et al. (2015)). In short, the warping function w−1

(or w) in (4) satisfies the following necessary conditions: increasing, and from [0, 1] to [0, 1]. To ensure
identifiability, the function h−1 will be decomposed using a basis of centralized B-splines, i.e.

h−1(u;θi) =

Kh∑
l=−ph

θi,lB̄
h
l,ph+1(u;κ

h), (5)

where (B̄h
l,ph+1)l=−ph,...,Kh

satisfy ∫ 1

0

B̄h
l,ph+1(u;κ

h)du = 0.

The vector of random effects θi = (θi,−ph
, . . . , θi,Kh

)⊤ describes the individual phase variability, for which
we assume a linear mixed effects model

θi = θ0 +Ei + ε̃i, (6)

with Ei ∼ Nr(0r,Σ
E) and ε̃i ∼ Nr(0r, σ

2
ε̃Ir) independent. Then θi ∼ Nr(θ0,Σ

θ), with Σθ = ΣE + σ2
ε̃Ir.

To ensure identifiability, we assume that σ2
ε̃ is known. In Gervini and Carter (2014) the parameter θ0 is

considered to be a Jupp transform of the landmarks of the mean function µ. In contrast, we avoid the
use of landmarks, and θ0 is a parameter to be estimated.

By construction, the warping function is injective, as proved in Lemma 1.

Lemma 1. The warping function w defined via (4) and (5) is injective with respect to the second pa-
rameter: for every t ∈ [0, 1],

t = w(w−1(t;θ1);θ2) ⇒ θ1 = θ2.

Further, we assume that the αU
i s and θis, the random effects describing the individual phase and

amplitude variability, are independent of each other.
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2.4 The model in matrix form

For further analysis it will be useful to introduce some matrix notation. The matrix Bµ
i of dimension

Ti × mµ contains (j, l)th element Bµ
l,pµ+1(tij ;κ

µ), and BU
i is the matrix of dimension Ti × mUi with

(j, l)th element BU
i,l,pUi

+1(tij ;κ
Ui). Further, (Bµ

i )
θi = ([(Bµ

i )
θi ]j,l)j=1,...,Ti; l=−pµ,...,Kµ

, with

[(Bµ
i )

θi ]j,l = Bµ
l,pµ+1{w

−1(ti,j ;θi);κ
µ}.

Define [(Bµ
i )

θi,θ̃i ]j,l = Bµ
l,pµ+1[w

−1{w(ti,j ;θi); θ̃i};κµ] for j = 1, . . . , Ti and l = −pµ, . . . ,Kµ. Similarly,

we define (BU
i )

θi and [(BU
i )

θi,θ̃i ]j,l.
The model (2) in matrix representation is

Y∼ = B∼
µ αµ +B∼

U α∼
U + ε∼ (7)

with

Y∼ =
(
(Y1(t1,1), . . . , Y1(t1,T1

))⊤, . . . , (Yn(tn,1), . . . , Yn(tn,Tn
))⊤

)⊤ ∈ R
∑n

i=1 Ti ×1,

ε∼ =
(
(ε1)

⊤, . . . , (εn)
⊤)⊤ ∼ N∑n

i=1 Ti
(0∑n

i=1 Ti
, σ2

εI
∑n

i=1 Ti
),

αµ ∈ Rmµ×1,

B∼
µ =

[
(Bµ

1 )
θ1 ; . . . ; (Bµ

n)
θn

]
∈ R

∑n
i=1 Ti×mµ ,

α∼
U ∼ N∑n

i=1 mUi
(0∑n

i=1 mUi
,Σ∼

U ),

Σ∼
U =


ΣU1 0 0 0
0 ΣU2 0 0

0 0
. . . 0

0 0 0 ΣUn

 ,

B∼
U =

[
(BU

1 )
θ1 ; . . . ; (BU

n )
θn

]
∈ R

∑n
i=1 Ti×mµ ,

θ∼ =
(
(θ1)

⊤, . . . , (θn)
⊤)⊤ ∼ Nr×n(θ∼ 0, Ir ⊗ Σθ),

θ∼ 0 ∈ R(r×n)×1,

where A⊗B denotes the Kronecker product of two matrices A and B.
In summary, the unknown parts in the model consist of αµ, σ2

ε,Σ∼
U ,θ0,Σ

θ.

2.5 Identifiability of the model

In this section, we provide sufficient and necessary conditions to ensure the identifiability of model (7).
First, the joint model (7) is identifiable if and only if at least one (approximate) individual model (2) is
identifiable. We thus focus on a fixed i, and on the set of parameters (αµ, σ2

ε,Σ
Ui ,θ0,Σ

θ) which consists
of the subparts (αµ, σ2

ε,Σ
Ui) and (θ0,Σ

θ), where the latter is linked to the warping modeling part, and
the former with the other parts. We start by investigating identifiability in each part.

2.5.1 Identifiability of the warped process

Take any i ∈ {1, . . . , n}. For j = 1, . . . , Ti, let Xi be the warped process:

Xi,j = Yi{w(ti,j ;θi)} = µ(ti,j) + Ui(ti,j) + εi,j

=

Kµ∑
l=−pµ

αµ
l B

µ
l,pµ+1(ti,j ;κ

µ) +

KUi∑
l=−pUi

αU
i,lB

U
i,l,pUi

+1(ti,j ;κ
Ui) + εi,j . (8)

Since εi ∼ NTi(0Ti , σ
2
εITi), we obtain

Xi|αU
i ∼ NTi

(Bµ
i α

µ +BU
i α

U
i , σ

2
εITi

).
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First, remark that if we know (σ2
ε,Σ

Ui), or if we know σ2
ε, or if we know ΣUi , model (8) is identifiable.

In the following theorem, we give sufficient and necessary conditions for model (8) to be identifiable
when both variance parameters are unknown. Since, for given (θ0,Σ

θ), and due to the use of B-spline
approximations, the warped process leads to a linear mixed effects model, we can use general results on
the identifiability of such models, as obtained by Wang (2013). Theorem 1 is an adaptation of Corollary
4.2 in Wang (2013) to the current setting.

Theorem 1. Let i∈{1, . . . , n} be given. Model (8) is not identifiable if and only if the three conditions
are fulfilled:

1. (BU
i )

⊤BU
i ̸= 0mUi

;

2. HU
i = BU

i {(BU
i )

⊤BU
i }−1(BU

i )
⊤ = ITi

;

3. (BU
i )

⊤BU
i is diagonal.

Consequently, model (8) is identifiable if at least one of the three conditions in Theorem 1 is not
satisfied.

2.5.2 Identifiability of the warping function

Here, we assume that we know the parameters of the mixed effects model (αµ, σ2
ε,Σ

Ui), and we want to
prove the identifiability of the warping process

Yi(t) = Xi{w−1(t;θi)}, (9)

involving the parameters (θ0,Σ
θ).

Sufficient and necessary conditions for identifiability of this part are established in Theorem 2.

Theorem 2. Let i ∈ {1, . . . , n} be given. Let θi ∼ Nr(θ0,Σ
θ) and θ̃i ∼ Nr(θ̃0,Σ

θ̃) be used to define two
warping functions w−1(.;θi) and w−1(.; θ̃i), and let Xi and X̃i be the corresponding warped functions,
such that

Yi(t) = Xi{w−1(t;θi)} = X̃i{w−1(t; θ̃i)}.
Then model (9) is identifiable if and only if

Bµ
i = Eθi,θ̃i

{
(Bµ

i )
θi,θ̃i

}
;

(BU
i )

⊤ΣUiBU
i = Varθi,θ̃i

{
(Bµ

i )
θi,θ̃iαµ

}
+ Eθi,θ̃i

[{
(BU

i )
θi,θ̃i

}⊤
ΣUi(BU

i )
θi,θ̃i

]
.

2.5.3 Identifiability of the global model

We proved that, when knowing the warping parameters, the functional linear mixed effects model is
identifiable, and that when knowing the functional linear mixed effects model, the warping parameters
are identifiable. Then, by iterating between these two identifiable steps until convergence, we have a
procedure which is identifiable and leads to the estimation of all the parameters of the model defined
in (2). Note that the identifiability conditions are essentially conditions on the englobing B-spline basis
structure.

3 Estimation procedure and asymptotic properties

Recall that the unknown parameters of model (2) are (αµ, σ2
ε,Σ∼

U ,θ0,Σ
θ). Model (2) is a nonlinear

functional mixed effects model due to the composition by the warping function, which is an essential
ingredient to describe the individual phase variability. First, we analyse each part of the model, that
is, the warping parameters and the linear mixed effect model, by providing an estimator and theoretical
guarantees. Then, we propose an iterative estimation procedure, where in a first step we fix the warping
parameters (θ0,Σ

θ) and estimate the functional parameters (αµ, σ2
ε,Σ∼

U ); and next, we start from these
estimated parameters, and estimate the warping parameters. Further, we obtain the convergence of the
method and the consistency of the global estimator.

We have access to a sample (Yi(ti,j))j=1,...,Ti; i=1,...,n of n curves, the ith curve being evaluated in Ti

points. Given are the knot sequences in the B-splines approximations, the degree of the B-splines, and
the dimension of the warping parameters r = Kh + ph + 1.

Proofs of the results in this section are provided in Appendix B.
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3.1 Parameters of the warping function

3.1.1 Estimators for the parameters of the warping function

Suppose we know the functional parameters (αµ,Σ∼
U , σ2

ε), and the predictors αU
i for all i = 1, . . . , n. The

goal is to estimate (θ0,Σ
θ).

We construct pseudo-observations by minimizing the following empirical L2 criterion:

θ̂
Ti

i = argmin
θ̃i∈Rr

Ti−1∑
j=1

{
Yi{w(ti,j ; θ̃i)} − µ(ti,j)− Ui(ti,j)

}2

(ti,j+1 − ti,j)

 . (10)

Note that the criterion which is minimized tends to the L2 distance between Yi ◦ w(.; θ̃i) and µ + Ui, if
Ti → +∞.

However, as we want to consider the warping parameter as a random effect, we fit a mixed effects

model as defined in Eq. (6) on the pseudo-observations θ̂
T1

1 , . . . , θ̂
Tn

n , that is,

θ̂
Ti

i = θ0 +Ei + ε̃i, (11)

with Ei ∼ Nr(0r,Σ
E), ε̃i ∼ Nr(0r, σ

2
ε̃Ir) for all i = 1, . . . , n. The random variables Ei and ε̃i are

independent. As we assume that σ2
ε̃ is known for identifiability reasons, we use the empirical mean of

{θ̂
T1

1 , . . . , θ̂
Tn

n } to estimate θ0, and the empirical covariance to estimate Σθ = ΣE + σ2
ε̃Ir. The prediction

of Ei is easy to get because σ2
ε̃ is known. We consider the following estimators:

θ̂0 =
1

n

n∑
i=1

θ̂
Ti

i ; Σ̂θ =
1

n− 1

n∑
i=1

(θ̂
Ti

i − θ̂0)(θ̂
Ti

i − θ̂0)
⊤;

Êi =
(
Σ̂θ − σ2

ε̃Ir

)(
Σ̂θ

)−1

θ̂
Ti

i .

3.1.2 Asymptotic normality of θ̂
Ti

i

First, we focus on the distribution of θ̂
Ti

i conditional on θi. To do so, we rely on the theory of nonlinear
least squares estimators developed in Jennrich (1969), which uses the weighted tail product defined as
follows.

Definition 1. Let p be a nonnegative integer and (tj)j=1,...,p be fixed time points. Let x = (xp) and
y = (yp) be two sequences of real numbers and let

(x, y)πp =
1

p

p−1∑
j=1

xjyj(tj+1 − tj).

If (x, y)πp converges to a real number when p → +∞, its limit (x, y)π is called the weighted tail product
of x and y.

Let g and h be two sequence valued functions on Θ. If (g(α), h(β))πp → (g(α), h(β))π when p → +∞
uniformly for all α and β in Θ, we define

[g, h] : (α, β) ∈ Θ×Θ 7→ (g(α), h(β))π.

This function is called the weighted tail cross product of g and h.

Then, we define the r × r -matrix ai(θ̃i) as follows.

Definition 2. For l = 1, . . . , r, we denote by

∂l(µ+ Ui) =
∂[(µ(w−1(ti,j ; θ̃i)) + Ui(w

−1(ti,j ; θ̃i)))j=1,...,Ti
]

∂[θ̃i]l
.

the partial derivative of the aligned signal. We define

ai,Ti
(θ̃i) =

[
(∂l(µ+ Ui), ∂l′(µ+ Ui))

π
Ti

]
l=1,...,r;l′=1,...,r

the matrix with coefficients the weighted tail product between two partial derivatives, and ai(θ̃i) its limit
when Ti → +∞.
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Assumption B. For all i = 1, . . . , n, the r × r-matrix ai(θi) is non-singular.

Theorem 3. Fix i ∈ {1, . . . , n}, and α ∈ (0, 1). Let (θ̂
Ti

i )Ti
be a sequence of weighted least squares

estimators of θi. We assume that the model is identifiable and satisfies Assumption A. With probability

1− α, conditional on θi, θ̂
Ti

i is a strongly consistent estimator of θi (convergence a.s.).
If we assume that the model satisfies Assumption B, conditional on θi,

T
1/2
i (θ̂

Ti

i − θi)
d−−−−−→

Ti→+∞
Nr(0, σ

2
εa

−1
i (θi));

and ai,Ti
(θ̂

Ti

i ) is a strongly consistent estimator of ai(θi).

Let f
θ̂
Ti
i

(.|θi) be the conditional distribution function. Denote by φ the Gaussian density function.

Theorem 3 implies that for all η ∈ R,

f
θ̂
Ti
i

(η|θi) →
Ti→+∞

φ(η;θi, σ
2
εa

−1
i (θi)).

By the dominated convergence theorem, we get the asymptotic marginal distribution, for all η:

m
θ̂
Ti
i

(η) →
Ti→+∞

mθ̂
∞
i
(η) =

∫
φ(η;θi, σ

2
εa

−1
i (θi))φ(θi;θ0,Σ

θ)dθi

=

∫
Rr

φ(θi; c, C)φ(θ0; η, σ
2
εa

−1
i (θi) + Σθ)dθi

where θ̂
∞
i = limTi→∞ θ̂

Ti

i , and

C = (σ−2
ε ai(θi) + (Σθ)−1)−1;

c =
(
σ−2
ε ai(θi) + (Σθ)−1

)−1
(
σ−2
ε ai(θi)θ̂

∞
i + (Σθ)−1θ0

)
.

The last line comes from a computation with Gaussian densities, see Lemma 4 in Appendix C.
We discuss two cases where the limiting distribution mθ̂

∞
i

is computed explicitly:

• the case when the noise ε tends to disappear, which makes the theory easier, but also requires a
strong assumption for the limit to hold;

• the case when the eigenvalues of the matrix ai(θi) are bounded. Under this weak assumption the
limiting distribution will be more complicated (see below).

We next discuss these two cases in more detail.
In the first case we assume that the noise tends to disappear, when the number of points in the time

grid increases.

Assumption C. We assume that σε →
minTi→∞

0.

It is important to remark the following. If, however, there is a non-negligible noise, the method will
warp the observed noise curve on some global mean, and the warping parameter will depend on this
noise, whereas the true warping parameter does not, as it would be based on the denoised data.

Theorem 4. Fix i ∈ {1, . . . , n}. Let (θ̂
Ti

i )Ti
be a sequence of weighted least squares estimators of θi,

and θ̂
∞
i = limTi→∞ θ̂

Ti

i . We assume that the model is identifiable and satisfies Assumptions A, B and C.
Then, for all η ∈ R,

lim
σ2
ε→0

mθ̂
∞
i
(η) = φ(η;θ0,Σ

θ).

We now turn to the second case. With weaker assumptions, the limiting distribution mθ̂
∞
i
(η) is more

complicate to describe. Denote by Eα(θ0,Σ
θ) the following ellipsoid:

Eρ(θ0,Σ
θ) =

{
x ∈ Rr | (θ0 − x)t(Σθ)−1(θ0 − x) ≤ ρ

}
.

Assumption D. For all θi, a
−1
i (θi)− a−1

i (θ0) is positive definite.
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Assumption E. The eigenvalues of ai are bounded: there exist λm, λM such that, for all θi,

λm ≤ min eigen(ai(θi)) ≤ max eigen(ai(θi)) ≤ λM .

The following theorem establishes that in this second setting, the limiting distribution mθ̂
∞
i
(η) is close

to a Gaussian distribution.

Theorem 5. Fix i ∈ {1, . . . , n}. Let (θ̂
Ti

i )Ti
be a sequence of weighted least squares estimators of θi, and

θ̂
∞
i = limTi→∞ θ̂

Ti

i . We assume that the model is identifiable and satisfies Assumptions A, B, D and E.
Let ρ > 0, and A a positive definite matrix. Then,

mθ̂
∞
i
(η) = (1 +O(ρ))φ(η;θ0, σ

2
εa

−1
i (θ0) + Σθ) if η ∈ Eρ(θ0,A).

In summary, we get that under the two settings, the distribution of θ̂
∞
i is close to a Gaussian distri-

bution.

3.1.3 Asymptotic normality for θ̂0 and Σ̂θ

We consider the linear mixed effect model given in Eq. (11). We assume that σ2
ε̃ is known for identifiability

reasons. Remark that Σθ = ΣE + σ2
ε̃ITi . We are now interested in the estimators θ̂0 and Σ̂θ.

Theorem 6. Fix i ∈ {1, . . . , n}. Let (θ̂
Ti

i )Ti
be a sequence of weighted least squares estimators of θi.

We assume that the model is identifiable and satisfies Assumptions A, B and C.
Let bn,T =

∑n
i=1 T

−1
i . Then,

b
−1/2
n,T

(
θ̂0 − θ0

)
d−→

n→+∞,minTi→+∞
Nr(0,Σ

θ);

Σ̂θ d−→
n→+∞,minTi→+∞

W(Σθ, n− 1),

where W(Σ, p) denotes the Wishart distribution with scale matrix Σ and p degrees of freedom.

Note that this implies that Ti has to go to infinity faster than n goes to infinity, i.e. n = o(minTi).
Indeed,

1√∑n
i=1

1
Ti

≥
√

minTi

n
.

3.2 Functional parameters

Suppose we know the warping parameters (θi)i=1,...,n. Then, we warp the observations (Yi(ti,j))j=1,...,Ti; i=1,...,n

onto the estimated warped curves Xi,j = Yi{w(ti,j ;θi}, and we fit a functional linear mixed model
on (Xi)i=1,...,n as defined in Eq. (8) using maximum likelihood estimation, which leads to estimators

(α̂µ, Σ̂U , (σ̂2
ε)) and predictors (α̂U

i )i=1,...,n. Following the ideas described in (Pinheiro, 1994, Chapter 3),
we need the following assumption:

Assumption F. Existence and positive definiteness of I, which is the limit of minus the expected Hessian
matrix of the log-likelihood function based on the model given in Eq. (8).

Then, we get the asymptotic normality of the estimator.

Theorem 7. Let (α̂µ, Σ̂U , (σ̂2
ε)) be a sequence of maximum likelihood estimator of the functional linear

mixed model, computed over the observations (Yi(ti,j))j=1,...,Ti; i=1,...,n. We assume that the model is
identifiable and satisfies Assumption F. Then,

√
n

α̂µ −αµ

σ̂U − σU

σ̂ε − σε

 d−→
n→∞

N (0, I−1).
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3.3 Global model and iterative estimation procedure

We propose to directly estimate the nonlinear model. Working with the L2-distance, we want to fit the
model of which the coefficients minimize∥∥∥∥∥∥Y −

Kµ∑
l=−pµ

αµ
l B

µ
l,pµ+1{w

−1(.;θ);κµ} −
KUi∑

l=−pU

αU
l B

U
l,pUi

+1{w−1(.;θ);κUi}

∥∥∥∥∥∥
2

.

Using the steps described previously, we propose an iterative process that approximates the following
minimizer:

argmin
αµ,αU ,(θi)i=1,...,n

 1

n

n∑
i=1

Ti−1∑
j=1

Yi(ti,j)−
Kµ∑

l=−pµ

αµ
l B

µ
l,pµ+1{w

−1(ti,j ;θi);κ
µ}

−
KUi∑

l=−pUi

αU
i,lB

U
i,l,pUi

+1{w−1(ti,j ;θi);κ
Ui}

2

(ti,j+1 − ti,j)

 .

Algorithm 1 presents the steps in the iterative procedure. Further details are provided regarded the
initialization, the convergence criterion, the theoretical convergence and the consistency of the resulting
estimator.

Algorithm 1 WarpMix

Initialization: Computation of the deepest function µ̂(0) = µdeep.
for i = 1, . . . , n do

Approximation of θ
(0)
i by

θ
(0)
i = argmin

θi∈Rr

Ti−1∑
j=1

{
Yi{w(ti,j ;θi)} − µ̂(0)(ti,j)

}2

(ti,j+1 − ti,j)

 .

Fit a linear mixed model on the pseudo-observations, θ
(0)
i = θ

(0)
0 +E

(0)
i + ε̃i; and deduce θ̂

(0)

0 , (Σ̂θ)(0)

and θ̂
(0)

i = θ̂
(0)

0 + Ê
(0)
i .

for ite = 1, . . . until convergence do
Warp the observed curves according to w−1

θ̂
(ite−1)
i

;

Estimate {(α̂µ)(ite), (α̂U
i )

(ite), (Σ̂Ui)(ite), (σ̂2
ε)

(ite)} with the R package nlme;

Approximate (θ
(ite)
1 , . . . ,θ(ite)

n ) by computing, for every i = 1, . . . , n,

θ
(ite)
i = argmin

θi∈Rr

Ti−1∑
j=1

{Yi{w(ti,j ;θi)} − µ(ti,j)− Ui(ti,j)}2 (ti,j+1 − ti,j)

 .

Fit a linear mixed model on these observations: θ
(ite)
i = θ̂

(ite)

0 + Ê
(ite)
i + ε̃i; and define θ̂

(ite)

i =

θ̂
(ite)

0 + Ê
(ite)
i .

3.3.1 Details about the initialization

First, we initialize the mean function µ. There exist several ways to define a central curve in functional
data analysis. Here we use band depth for functional data as introduced in Sun and Genton (2011),

and compare every observed curve with the deepest function µ̂(0) = µdeep. We then deduce α̂(0)
µ , the

projection of the function µ̂(0) onto Bµ the B-spline basis considered. In the initialization step, we do
not consider individual amplitude effects, i.e. (α̂U

i )
(0) = 0mUi

for all i = 1, . . . , n.
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3.3.2 Convergence of the algorithm

We define

Cn =
1

n

n∑
i=1

Ti−1∑
j=1

(
Yi(ti,j)− µ̂{w−1(ti,j ; θ̂i)} − Ûi{w−1(ti,j ; θ̂i)}

)2

(ti,j+1 − ti,j).

The iterations are stopped when Cn < 10−4 during five successive iteration steps.
Note first of all that the various iterations in Algorithm 1 involve three operations Ψ1, Ψ2 and Ψ3,

and that the update function to go from one iteration to the next is composed of three parts

Ψ = Ψ3 ◦Ψ2 ◦Ψ1 : Rmµ+nmU+1+nr → R
mµ+nmU+1+nr. (12)

Herein Ψ and its components are defined as follows.

Ψ : ((αµ)(ite), (αU
i )

(ite)
i=1,...,n, (σ

2
ε)

(ite), (θi)
(ite)
i=1,...,n)

7→ ((αµ)(ite+1), (αU
i )

(ite+1)
i=1,...,n, (σ

2
ε)

(ite+1), (θi)
(ite+1)
i=1,...,n)

Ψ1 : ((αµ)(ite), (αU
i )

(ite)
i=1,...,n, (σ

2
ε)

(ite), (θi)
(ite)
i=1,...,n)

7→ ((αµ)(ite), (αU
i )

(ite)
i=1,...,n, (σ

2
ε)

(ite), (θi)
(ite+1)
i=1,...,n)

Ψ2 : ((αµ)(ite), (αU
i )

(ite)
i=1,...,n, (σ

2
ε)

(ite), (θi)
(ite+1)
i=1,...,n)

7→ ((αµ)(ite), (αU
i )

(ite)
i=1,...,n, (σ

2
ε)

(ite), (θ
(ite+1)
0 + E

(ite+1)
i )i=1,...,n)

Ψ3 : ((αµ)(ite), (αU
i )

(ite)
i=1,...,n, (σ

2
ε)

(ite), (θ
(ite+1)
0 + E

(ite+1)
i )i=1,...,n)

7→ ((αµ)(ite+1), (αU
i )

(ite+1)
i=1,...,n, (σ

2
ε)

(ite+1), (θi)
(ite+1)
i=1,...,n).

In Ψ1 the vector θi is updated. This is used as input for Ψ2 where observations are denoised, through
the linear model defined in (6). Then, this is used as input for Ψ3, where α

µ, (αU
i )i=1,...,n, σ

2
ε are updated.

In Theorem 8 we prove that the algorithm is converging. A condition under which this holds is that
Ψ1 is a contraction mapping, as stated in the following assumption.

Assumption G. There exists kΨ1
< 1 such that, for (x, y) ∈ (Rmµ+nmU+1+nr)2,

∥Ψ1(x)−Ψ1(y)∥2 ≤ kΨ1
∥x− y∥2.

Under Assumption G we show the convergence of the algorithm, seen as iterations of Ψ. We denote

by ((α̂µ)(∞), (σ̂ε)
(∞), (Σ̂∼

U )(∞), θ̂
(∞)

0 , (Σ̂θ)(∞)) the estimator obtained at the end of the algorithm.

Theorem 8. Fix n and T. Suppose (Y1, . . . ,Yn) is a sequence of iid random variables satisfying the
functional nonlinear mixed model (1) observed on fixed time points: for i = 1, . . . , n, for j = 1, . . . , Ti,
[Yi]j = Yi(ti,j). Moreover, suppose that the model is identifiable and satisfies Assumption G.

Then, ((α̂µ)(∞), (σ̂ε)
(∞), (Σ̂∼

U )(∞), θ̂
(∞)

0 , (Σ̂θ)(∞)) exists and is unique, and the algorithm converges
to this solution with a geometric rate with respect to the Euclidean distance.

This theorem gives the pointwise convergence of the algorithm. The randomness has not been taken
into account. We rather focus on the iterations of steps. Theorem 8 relies on Assumption G, which
appears as rather technical. To get some insights into this assumption, we investigate it in a specific
setting in Example 1.

Example 1. We focus on µ, do not consider Ui, and restrict the family of warping functions to transla-
tions: w−1(t; θi) = θi + t. The global mean is supposed to be a linear function µ(t) = α+ βt. Let ti,1 = 0
and ti,Ti

= 1 Finally, we set θ0 = 0.
Fix i. Recalling (10), in this case we are looking for

θi = argmin
θ̃i

 1

Ti

Ti−1∑
j=1

(α− α̃+ (β − β̃)ti,j − β̃θ̃i)
2(ti,j+1 − ti,j)

 .
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This is a polynomial function of degree 2 in θ̃i with nonnegative coefficient of the quadratic term: there
exists a unique minimizer:

θ̂i =
α− α̃

β̃
+

β − β̃

β̃

Ti−1∑
j=1

ti,j(ti,j+1 − ti,j).

We know that the Lipschitz constant is bounded by the norm of the differential. Here, the function we
consider is (α̃, β̃) 7→ θ̃, so we compute the differential, evaluated in (α, β):

∥Dα̃,β̃Ψ1∥22 =

(
− 1

β̃

)2

+

−α+ α̃

β̃2
+

−β

β̃2

Ti−1∑
j=1

ti,j(ti,j+1 − ti,j)

2

;

∥Dα,βΨ1∥22 =
1

β2

1 + {
Ti−1∑
j=1

ti,j(ti,j+1 − ti,j)}2
 .

These expressions reveal that for β small, the problem is more complicated (as one could expect). Note
that in this special case Assumption G in fact leads to an assumption on β.

Example 1 also shows that, in some particular settings, Assumption G might be translated into a
condition on µ and w.

3.3.3 Consistency of the estimators

To conclude, we provide the statistical consistency of the full procedure. This has the following meaning.
When the sample size and the number of time points are going to infinity, the parameters estimated
by the iterative process are converging almost-surely to the true parameter. Finally, the consistency is
deduced for the common mean, seen as a functional parameter.

Theorem 9. Suppose (Y1, . . . ,Yn) is a sequence of iid random variables satisfying the functional non-
linear mixed model (1) observed on fixed time points: for i = 1, . . . , n, for j = 1, . . . , Ti, [Yi]j = Yi(ti,j).
Suppose that the model is identifiable, and Assumptions A, B,C, F and G hold. Then,

((α̂µ)(∞), (σ̂ε)
(∞), (Σ̂∼

U )(∞), θ̂
(∞)

0 , (Σ̂θ)(∞))
a.s.−→

n→∞
minTi→∞

(αµ, σ2
ε,Σ∼

U ,θ0,Σ
θ).

As a consequence, we get that, from a functional viewpoint, for µ ∈ span(Bµ), if we denote µ̂ =
(α̂µ)(∞)Bµ,

∥µ− µ̂∥L2[0,1]
a.s.−−→
n→∞

minTi→∞

0.

4 Simulation study

We investigate the finite-sample performance of the proposed estimation method, and we compare it
with four state-of-the-art methods, described below. An R package, called warpMix, has been developed
for the proposed method and is available at https://cran.r-project.org/web/packages/warpMix/

index.html.

4.1 Description of the simulation settings

4.1.1 Warping functions

The warping process is the same in most of the settings (with exception of Model M2), and defined via
(4) and (5). Three different interior knots {0.2, 0.5, 0.7} are used for a basis of cubic splines for h−1. So
in this setting κh = 3, ph = 3 and r = κh + ph + 1 = 7.

The random variables (θi)i=1,...,n are distributed according to Nr(0r,Σ
θ), with Σθ = ΣE+σ2

ε̃I, where
σ2
ε̃ = 10−3, and ΣE a diagonal matrix with elements {2, 0.8, 0.4, 0.3, 0.4, 0.8, 2}.
Figure 2 depicts a sample of size 100 of the warping function, and the empirical covariance matrix of

(w−1(.;θi))i=1,...,n computed on this sample. This highlights the differences between the correlation in
(θi)i=1,...,n and that in (w−1(.;θi))i=1,...,n. Note that due to the random warping structure, there is a
variability induced on the whole time period.

https://cran.r-project.org/web/packages/warpMix/index.html
https://cran.r-project.org/web/packages/warpMix/index.html
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Figure 2: A sample of size 100 of warping functions (left), and the empirical covariances of these functions
(right).
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Figure 3: The mean functions µ in the simulation study.

4.1.2 Elements of the functional model

The elements determining the functional model are the function µ and the individual random effects Ui.
For the mean function µ we consider four different functions. For t ∈ [0, 1],

µ1(t) = {sin(3πt) + 3πt}/4, µ2(t) = exp−(t−0.25)2/0.04 +exp−(t−0.75)2/0.02,

µ3(t) = cos(2πt+ π/2), µ4(t) = sin(6πt)/(6πt).

These functions are plotted in Figure 3.
The modeling framework in Section 2 assumes that the functions µ and Ui are well approximated

using a B-spline basis. This is in practice not always the case, for example when a too limited number
of knots is considered in the B-spline bases. In the simulation study we present results on the B-spline
approximations of the µ-functions, denoted by µ̃1, µ̃2, µ̃3 and µ̃4 respectively. To illustrate the impact of
modeling bias, we provide for the fourth function simulation results for its B-spline approximation µ̃4 as
well as for the function µ4 itself. We refer to model (2) with mean function µ̃k (k = 1, 2, 3, 4) as model

M̃k, and with mean function µ4 as model M4.
We consider a low-dimensional setting in which n = 100 and Ti = 70, as well as a high-dimensional

setting in which n = 200 and Ti = 150. We use M̃
HD

1 , M̃
HD

2 , M̃
HD

3 and M̃
HD

4 to refer to the high-
dimensional sample setting.

The estimators of µ and U are computed using quadratic splines (pµ = pUi
= 2), with interior knots

at {0.12, 0.24, 0.36, 0.48, 0.60, 0.72, 0.84}, so that Kµ = KUi
= 7, and mµ = mUi

= 7 + 2 + 1 = 10.
The individual effects Ui in the functional model have a centered multivariate normal distribution with

diagonal isotropic covariance matrix ΣU = 0.1I10, except for models M̃4 and M̃
HD

4 which are harder to
fit, where we use ΣU = 0.05I10. The variance of ε in the functional linear model equals σ2

ε = 0.02.
In the numerical study, we simulate 100 times from each setting, and report the evaluation criteria

based on these 100 simulated samples.
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Figure 4: A sample of the warped process X (left) and the un-warped process Y (right) for M1.

4.1.3 Variability

To generate the data, we first construct a sample of the process (X1, . . . ,Xn), defined in (8) and then
un-warp them via (9) and the warping function described in Section 4.1.1. To understand the variability
induced by each modeling aspect, we plot in Figure 4, a warped sample and the un-warped sample for
model M1.

The signal-to-noise ratio expresses the ratio of the variability caused by the signal [µ{w−1(ti,j ;θi)}+
Ui{w−1(ti,j ;θi)}] and that due to the noise εi,j

SNR(ti,j) =
Var

[
µ{w−1(ti,j ;θi)}+ Ui{w−1(ti,j ;θi)}

]
Var(εi,j)

.

To compute the numerator we use the conditional variance formula, for a random variable V seen as a
function of two random variables U and θ,

Var(θ,U)(V ) = Eθ{VarU (V |θ)}+Varθ{EU (V |θ)}.

For each given time point ti,j we compute this SNR function 50 times to get 50 values for SNR at each
time point. To compute the function once, we proceed as follows. For a fixed θ, we compute the empirical
conditional variance VarU (Z|θ) and the conditional expectation EU (Z|θ) over a sample of size 100. By
varying θ 60 times, we compute the global variance. This whole process is then repeated 50 times. In
Figure 5 the resulting approximations for the SNR functions for models M̃1 and M̃2 are plotted. For
higher values of SNR we expect the estimation problem to be somewhat easier. Some caution regarding
this interpretation is needed though. In our functional mixed effects model there are several sources
of variability in the signal part (the individual effect related to Ui and the warping effect due to θi).
The SNR-criterion does not distinguish between these variabilities, and just considers the global signal
variability against the error variability. Note from the SNR plots in Figure 5 that the estimation task can
be harder in some time-regions. At the endpoints of the interval [0, 1] the SNR-values for the different
models are equal, since the warping is not effecting these parts, and the only effect is coming from the
covariance matrix ΣU , the noise variance σ2

ε, and their relative contribution.

4.2 Comparison with existing methods and performance criteria

To illustrate the numerical performance of the proposed method, we compare with four methods available
in the literature.

Since our nonlinear functional mixed effects model is closely related to that of Gervini and Carter
(2014) with major differences as indicated in Section 1, we include a comparison with this method. Some
procedure parameters have to be chosen in the method of Gervini and Carter (2014): we took p = q = 1
for the number of components in the Karhunen-Loève decompositions; λ = 1 for the regularization
parameter; and τ 0 = {0.3, 0.6} as the set of average landmarks. Their estimation method involves a
Monte Carlo approximation part, for which we considered 100 iterations; and an EM algorithm part in
which we also considered at most 100 iterations. Convergence was said to be reached when the difference
in norm between estimated parameters in two consecutive iteration steps was less than 10−2. We also
would like to mention that in our simulation study we use a rewritten Matlab version of the original
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Figure 5: SNR functions for M̃1 (left) and M̃2 (right).

Table 1: Evaluation criteria for the estimation tasks.

quantity of interest evaluation criterion

µ ∆µ =
∑T−1

j=1 [µ̂(tj)− µ(tj)]
2(tj+1 − tj)

w ∆w =
∑T−1

j=1 [w
−1(tj ; θ̂0)− tj ]

2(tj+1 − tj)

ΣU ∆U = Tr(Σ̂U − ΣU )

Σθ ∆θ = Tr(Σ̂θ − Σθ)
σ2
ε ∆ε = |σ̂2

ε − σ2
ε|

Fortran code used in Gervini and Carter (2014), since the latter was no longer running properly. The
use of the Matlab code can make computations a bit slower.

The elastic square-root slope is a promising framework, so we include a comparison with the method
developed in Tucker et al. (2013). We use the default settings: no elasticity, Karcher mean, do not smooth
the data and at most 20 iterations. We use the code available in the R package fdasrvf.

Bayesian methods are also of interest, and we choose to compare with Cheng et al. (2016), also
available in the R package fdasrvf. Also here we considered the default settings: 150000 iterations and
a uniform prior distribution.

Finally, we compare the performances with that of the algorithm of Sangalli et al. (2010), available
in the R package fdakma, that allows for clustering misaligned data. We assume that there is no cluster,
consider affine alignment and compute the similarity through the cosine of the angle between the two
function.

Since the available inference in those studies does not fully match our modeling inference, we can only
report on the comparison related to estimating µ.

To evaluate the estimation performance for the various components of the target (αµ, σ2
ε,Σ∼

U ,θ0,Σ
θ)

we need some criteria. Note that the modeling framework involves two unknown functions, namely the
overall mean function µ and the warping function w, unknown matrices ΣU , Σθ, as well as the unknown
variance σ2

ε . For each sample we obtain estimates µ̂, ŵ, Σ̂U , Σ̂θ and σ̂2
ε . Since in our simulation setting

we have the same observational time points for each individual curve, i.e. ti,j = tj , and j = 1, . . . , Ti,
with Ti = T , we use the criteria in Table 1 to evaluate the estimation performance in each sample. Herein
Tr(A) denotes the trace of a matrix A.

For each simulated sample we calculate the estimates, and the corresponding evaluation criteria of
Table 1. To report on the bias of an estimator, we compute the empirical mean of a criterion over the
100 simulations. To report on the variance of an estimator, we proceed as follows. For example, when
estimating the function µ, we calculate in each point tj the empirical mean over all 100 estimated values

of µ(tj) and denoting this by µ̄(tj). For each simulated sample we then calculate ∆̄µ =
∑T−1

j=1 [µ̂(tj) −
µ̄(tj)]

2(tj+1 − tj). The empirical variance of the estimator for µ is then computed by taking the average
over the 100 obtained ∆̄µ values. In a similar way we obtain ∆̄w, ∆̄U , ∆̄θ and ∆̄ε.

A final remark is that for ∆θ and ∆̄θ, we use medians rather than means across all simulations as
a measure of central position, since sometimes estimation of some components of Σθ resulted in large
outlying values. However, even in the latter cases the quality of the estimated warping function was still
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Figure 6: Comparison between µ̃1 and µ̂1 for model M̃1 (n = 100 and T = 70, top) and for model M̃
HD

1

(n = 200 and T = 150, bottom) using the proposed method.

Table 2: Simulation results for the proposed procedure for models M̃1 and M̃
HD

1 .

criterion
M̃1 M̃

HD

1

bias variance bias variance
∆µ 0.0102 0.0090 0.0055 0.0065
∆ε 0.0089 0.0003 0.0074 0.0004
∆U 0.2349 0.1453 0.1880 0.1070
∆θ 6.5050 779.6355 4.7537 138.9394
∆w 0.0020 0.0019 0.0007 0.0009

very good, as will be seen from the reported results.

4.3 Simulation results for the proposed method

Models M̃1 and M̃
HD

1 . Figure 6 depicts the simulation results for estimating µ̃1 in M̃1 and M̃
HD

1 . In
the left panels we depict, for each time point tj , the boxplots of the obtained estimated values for µ̃1(tj),
whereas in the right panels we use a functional boxplot, as developed in Sun and Genton (2011). The
true curve µ̃1 is in all plots presented as the solid (red) curve. The black solid curve in the centre of the
functional boxplots indicates the deepest function among all estimated mean functions.

The quality of estimating µ̃1 is quite good for the proposed method. Passing from low dimension to
high dimension (from the top row to the bottom row plots), we see that the results improve for larger
values of n and T . Note that the largest variability occurs in the region where there was also most
variability noticed in the SNR plot for model M̃1 in Figure 5. Table 2 further summarizes the simulation

results for models M̃1 and M̃
HD

1 . The results on estimation of µ are in correspondence with what was
observed from Figure 6. Note that in estimation of Σθ there are quite some extreme estimation results.
However, the resulting estimation of the warping function w is still good, as can be noticed from the last
row in Table 2.
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Figure 7: Simulation results for the components of (Σ̂θ
i,i)1≤i≤7 for the proposed procedure for model M̃1

(left) and M̃
HD

1 (right). Boxplot without the outliers. True coefficient values: red horizontal lines.

Table 3: Simulation results for Σθ using the proposed procedure for models M̃1 and M̃
HD

1 .
Model maximum of estimated diagonal components

M̃1 30976.0730 6141.906 953.239 333.466 325.040 345.714 290.960

M̃
HD

1 4664.249 193.563 4.735 5.023 46.427 5.329 1.937

In Figure 7 we present boxplots of the estimation results for the components of Σθ for models M̃1

(left) and M̃
HD

1 (right), with the true component values indicated as red horizontal lines. Outliers have
been excluded for plotting the boxplots for clarity of presentation. To complement these boxplots, we
summarize in Table 3 the maximum (across simulations) of the estimated values for each of the seven
components of Σθ. Note that the most extreme values occur for the first coefficient. For larger n and T
there are less extreme estimates.

Next, we focus on estimating the individual curve amplitude variability, which is captured by the
estimation of the ten diagonal components of ΣU . In Figure 8 we provide boxplots of the estimation
results. The horizontal red line presents the true value 0.10 for all diagonal components. As can be seen
the estimation results tend to be better for larger value of n and T , as expected.

Models M̃
wCDG

2 and M̃
wGC

2 . To study the finite-sample performance of the proposed estimation
method when there is a misspecification with respect to the warping function, we consider the model
with µ̃2 and simulate data under two different warping schemes:

• scheme wCDG: the warping scheme of Section 2.3;
• scheme wGC: the warping scheme of Gervini and Carter (2014).

In the scheme wGC, θi are generated via a linear mixed effects model, and then mapped into the set
of landmarks using a Jupp transform. This is followed by interpolation by cubic splines to get to the
corresponding parameters. Simulations were carried out from the two models, referred to as models

M̃
wCDG

2 and M̃
wGC

2 .
Table 4 summarizes the simulation results for all elements in the functional mixed effects model.

Overall conclusions remain as above. Note that also under the misspecified warping scheme wGC the
proposed method continues to perform very well.
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Figure 8: Simulation results for the components of (Σ̂U
i,i)1≤i≤10 for models M̃1 (left) and M̃

HD

1 (right) for
the proposed procedure. The horizontal red line present the true value.

Table 4: Simulation results for the proposed procedure for models M̃
wCDG

2 , M̃
wGC

2

criterion
M̃

wCDG

2 M̃
wGC

2

bias variance bias variance
∆µ 0.0230 0.0136 0.0053 0.0052
∆ε 0.0079 0.0009 0.0089 0.0003
∆U 0.4044 0.2809 0.2552 0.1388
∆θ 16.3997 497.9732 3.7417 42.9801
∆w 0.0012 0.0027 0.0003 0.0003

Models M̃3 and M̃
HD

3 , and Models M4, M̃4 and M̃
HD

3 . Table 5 presents the simulation results for

the low- and high-dimensional settings for model M̃3. Also in these settings the method performs well.

Table 5: Simulation results for the proposed procedure for models M̃3 and M̃
HD

3

criterion
M̃3 M̃

HD

3

bias variance bias variance
∆µ 0.0183 0.0153 0.0126 0.0105
∆ε 0.0087 0.0003 0.0070 0.0005
∆U 0.2554 0.2111 0.2400 0.1622
∆θ 6.1263 1400.3432 4.8580 865.6914
∆w 0.0021 0.0020 0.0013 0.0018

For the fourth model we include simulation results (in the low-dimensional sample setting) when
simulating from the unprojected function µ4, for which the B-spline approximation induces a modeling
bias. As can be seen from columns 2—5 in Table 6 there is only a little loss in performance when modeling
bias is present.

Table 6: Simulation results for the proposed procedure for models M4, M̃4 and M̃
HD

4 .

criterion
M4 M̃4 M̃

HD

4

bias variance bias variance bias variance
∆µ 0.0110 0.0070 0.0088 0.0044 0.0057 0.0018
∆ε 0.0138 0.0003 0.0085 0.0004 0.0075 0.0003
∆U 0.4398 0.1033 0.3906 0.1241 0.3999 0.0942
∆θ 8.2414 2139.4377 4.0467 602.5896 4.3262 299.9634
∆w 0.0043 0.0032 0.0022 0.0012 0.0011 0.0005
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4.4 Comparison with available methods.

We compare the four methods introduced in Section 4.2 with the proposed one on models M̃1, M̃
HD

1 ,

M̃
wCDG

2 and M̃
wGC

2 . The simulation results are summarized in Table 7. Note that the proposed method

often has low/lowest bias, but at the price of having a larger estimation variance. On model M̃1, the
method fdakma performs the best, with a very low variance, but it has a comparable performance (in terms

of bias) to the proposed method for M̃
HD

1 . On models M̃
wCDG

2 and M̃
wGC

2 , our method has particularly
good results in mean, but with a larger variance.

Table 7: Simulation results for µ(·) for the proposed and competitive methods. Method (3)=Bayesian
warping; Method (4)= elastic square-root slope.

Simulation results for models M̃1, M̃
HD

1 , M̃
wCDG

2 and M̃
wGC

2

Method
M̃1 M̃

HD

1 M̃
wCDG

2 M̃
wGC

2

bias variance bias variance bias variance bias variance
proposed 0.0102 0.0090 0.0055 0.0065 0.0230 0.0236 0.0053 0.0052

GC 0.0454 0.0043 0.0588 0.0048 0.0703 0.0134 0.0280 0.0014
(3) 0.0435 0.0009 0.0201 0.0001 0.0493 0.0003 0.0423 0.0001
(4) 0.1062 0.0011 0.0745 0.0009 0.1277 0.0014 0.1245 0.0011

fdakma 0.0075 7.10−6 0.0069 3.10−6 0.0281 2.10−5 0.0283 1.10−5

Simulation results for models M̃3, M̃
HD

3 , M̃4 and M̃
HD

4

Method
M̃3 M̃

HD

3 M̃4 M̃
HD

4

bias variance bias variance bias variance bias variance
proposed 0.0183 0.0153 0.0126 0.0105 0.0088 0.0044 0.0057 0.0018

(3) 0.0794 0.0024 0.0491 0.0002 0.0280 0.0003 0.0212 0.0001
(4) 0.1851 0.0009 0.1951 0.0007 0.1555 0.0016 0.1754 0.0026

fdakma 0.0277 4.10−5 0.0272 2.10−5 0.0113 5.10−6 0.0104 2.10−6

As GC’s method is very slow (i.e high computational cost) and does not provide very good results

whereas the modelling is close to the proposed one, we restrict further comparisons, for Models M̃3, M̃
HD

3 ,

M̃4 and M̃
HD

4 , to the other three methods. On all models M̃3, M̃
HD

4 , M̃4 and M̃
HD

4 , fdakma performs the
best among the competitive methods, followed by the Bayesian warping method (method (3)), but both
are less good than the proposed method in terms of bias. Finally, we see that the elastic square-root
slope method (method (4) in the table) does not perform well on those simulated datasets.

5 Real data analysis

We analyze the Pinch Force dataset, available in the R package fda. These data were described and
analyzed in Ramsay et al. (1995). The data consist of measurements, at every second millisecond, on
the exerted force (in Newton) during a period of 0.3 seconds. The resulting measurements consist of 20
curves recorded on 151 points in [0, 0.3]. See Figure 1. For convenience the data were rescaled to the
domain [0, 1].

We analyzed these data, using B-splines of degree 2 for µ and U (i.e. pµ = pUi
= 2), with interior knots

{0.25, 0.50, 0.75}, resulting in six B-spline basis functions. For the function determining the warping in
(5) we use B-splines of degree 3 (i.e. ph = 3) and the same set of interior knots {0.25, 0.50, 0.75}, leading
to seven B-spline basis functions for h−1.

From the analysis with the proposed method, we get the estimated individual warping functions as
in the left panel of Figure 9, and the warped (aligned) functions Xi,j for each individual (right panel).

The estimated covariance matrix Σ̂U (respectively Σ̂θ) is presented in the left (respectively right) panel
of Figure 10. From this, we observe that there is more time variability induced by the coefficient of
the second B-spline basis function in the decomposition of h−1(.,θ), whereas there is more amplitude
variability caused by the coefficient associated to the third basis function in the decomposition of U , see
also Figure 9 (right panel).



Claeskens, Devijver, Gijbels 20

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

T
im

e

Warped functions

0.0 0.2 0.4 0.6 0.8 1.0

2
4

6
8

10
12

Time

F
or

ce

Aligned individual curves

Figure 9: Estimated warping functions (left) and warped individual curves (right).
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Figure 10: Estimated covariance matrices Σ̂U (left) and absolute value of Σ̂θ (right).

6 Conclusion and further discussion

In this paper we considered a nonlinear mixed effect model for functional data. We apply a B-splines
approximation on three different levels: on the inverse of the warping function describing the individual
phase variability; on the global mean function and on the individual amplitude random effects. Random
effects enter to model the individual amplitude as well as the phase variability. The main advantage of the
proposed method is that it avoids the (costly) choice of landmarks, and that we can provide important
theoretical support for the procedure: (i) convergence of the iterative algorithm to the target function(s);
(ii) consistency and asymptotic normality of the estimators.

In this paper we considered the discrete Ti time points to be fixed (non-random). However the
methodology could be generalized fairly easily to random time points. Typically one would then need
to assume that the distribution of the random time points is regular enough (meaning that there are no
empty regions in the observed pattern of discretized time points). This would require, for example, an
adaptation of the criteria used in Sections 3.2 and 3.3.2. An analysis of the assumptions, particularly
modeling assumptions of the noise, with the aim to see the robustness of the method, would be of
interest.We postpone this analysis to an experimental work.
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A Proof of results in Section 2

A.1 Proof of Lemma 1

Let θ1 and θ2 such that t = w(w−1(t;θ1);θ2). Then it follows that,

w−1(t;θ2) =

∫ t

0
exp(h−1(u;θ2))du∫ 1

0
exp(h−1(u;θ2))du

=

∫ t

0
exp(h−1(u;θ1))du∫ 1

0
exp(h−1(u;θ1))du

= w−1(t;θ1)

⇔
∫ t

0
exp(h−1(u;θ2))du∫ t

0
exp(h−1(u;θ1))du

=

∫ 1

0
exp(h−1(u;θ2))du∫ 1

0
exp(h−1(u;θ1))du

def
= δ(θ2,θ1)

⇔
∫ t

0

[
δ(θ2,θ1) exp(h−1(u;θ1))− exp(h−1(u;θ2))

]
du = 0.

As this equation is true whatever the value of t ∈ [0, 1], we have that the integrand is equal to 0 for every
u ∈ [0, 1] except for possibly a countable number of points. As B-splines are continuous, it is equal to 0
for every u ∈ [0, 1]. It holds that,

log(δ(θ2,θ1)) = h−1(u;θ2)− h−1(u;θ1) =

Kh∑
l=−ph

(θ2l − θ1l )B̄
h
l (u;κ

h).

As the left hand side does not depend on u, so the right hand side should be equal to 0 for all u. As

(Bh̃
l )l is a B-spline basis, it induces that θ2 = θ1.

A.2 Proof of Theorem 1

First, suppose that HU
i = ITi

. Let Σε = σ2
εITi

, and choose 0 < σ̃2
ε < σ2

ε. Then, H
U
i (Σε − Σ̃ε) = Σε − Σ̃ε.

Since σ̃2
ε − σ2

ε < 0, and (BU
i )

⊤BU
i ̸= 0mUi

,

Σ̃U = ΣU + (σ2
ε − σ̃2

ε){(BU
i )

⊤BU
i }−1

is semi positive, definite, and is diagonal. Thus, we have found two parameters (Σε,Σ
U ) and (Σ̃ε, Σ̃

U )
which define the same model. Hence we do not have identifiability.

Suppose now that model (8) is not identifiable. Then, according to Theorem 4.1 in Wang (2013), for
all (Σε,Σ

U ), there exists (Σ̃ε, Σ̃
U ) ̸= (Σε,Σ

U ) such that

� (BU
i )

⊤ΣεB
U
i ̸= (BU

i )
⊤Σ̃εB

U
i ;

� HU
i (Σε − Σ̃ε) = Σε − Σ̃ε;

� Σ̃U = ΣU + {(BU
i )

⊤BU
i }−1(Σε − Σ̃ε)B

U
i {(BU

i )
⊤BU

i }−1 = ΣU + (σ2
ε − σ̃2

ε){(BU
i )

⊤BU
i }−1.

As Σε ̸= Σ̃ε, H
U
i = ITi

.
Since Σ̃U ̸= ΣU , one gets (BU

i )
⊤(Σε−Σ̃ε)B

U
i = (σ2

ε−σ̃2
ε)(B

U
i )

⊤BU
i ̸= 0mUi

, which implies (BU
i )

⊤BU
i ̸=

0mUi
.

Moreover, as Σ̃U is diagonal, (BU
i )

⊤BU
i must be diagonal.

A.3 Proof of Theorem 2

We have
Xi(t) = X̃i

[
w−1

{
w(t;θi); θ̃i

}]
= µ(t) + Ui(t) + εi(t).

As Xi(t) is Gaussian distributed, the identifiability of the warping process is equivalent to the identifi-
ability of the mean and of the variance of Xi. We thus investigate the expectation and the variance of
Xi(t).

� Expectation:

E[Xi(t)] = E
[
X̃i{w−1{w(t;θi); θ̃i}}

]
= Eθi,θ̃i

[
E[X̃i{w−1{w(t;θi); θ̃i}}|θi, θ̃i]

]
;

µ(t) = Eθi,θ̃i

[
µ{w−1{w(t;θi); θ̃i}}

]
;



Claeskens, Devijver, Gijbels 22

which is equivalent to, by projecting onto the B-spline basis, for all l = −pµ, . . . ,Kµ, and for all
j = 1, . . . , Ti,

Bµ
l,pµ+1(ti,j ;κ

µ) = Eθi,θ̃i

[
Bµ

l,pµ+1{w
−1{w(ti,j ;θi); θ̃i};κµ}

]
or, in a matrix representation, Bµ

i = Eθi,θ̃i

{
(Bµ

i )
θi,θ̃i

}
.

� Variance.
By the formula of the conditional variance,

Var
[
X̃i{w−1{w(t;θi); θ̃i}}

]
=Eθi,θ̃i

[
Var

[
X̃i{w−1{w(t;θi); θ̃i}}

∣∣∣θi, θ̃i

]]
+Varθi,θ̃i

[
E
[
X̃i{w−1{w(t;θi); θ̃i}}

∣∣∣θi, θ̃i

]]
. (13)

Now,

Var

[[
X̃i{w−1{w(ti,j ;θi); θ̃i}}

]
j=1,...,Ti

]
= Eθi,θ̃i

[
{(BU

i )
θi,θ̃i}⊤ΣUi(BU

i )
θi,θ̃i

]
+ Eθi,θ̃i

[
Var

[(
εi{w−1{w(ti,j ;θi); θ̃i}}

)
j=1,...,Ti

]]
+Varθi,θ̃i

{
(Bµ

i )
θi,θ̃iαµ

}
,

and
Var [{Xi(ti,j)}j=1,...,Ti

] = (BU
i )

⊤ΣUiBU
i +Var[{εi(ti,j)}j=1,...,Ti

].

As Var[{εi(ti,j)}j=1,...,Ti
] = σ2

εITi
, and

Var

[(
εi{w−1{w(ti,j ;θi); θ̃i}}

)
j=1,...,Ti

]
= σ2

εITi
,

(13) becomes

(BU
i )

⊤ΣUiBU
i = Varθi,θ̃i

{
(Bµ

i )
θi,θ̃iαµ

}
+ Eθi,θ̃i

[
{(BU

i )
θi,θ̃i}⊤ΣUi(BU

i )
θi,θ̃i

]
.

B Proof of results in Section 3

B.1 Proof of Theorem 3

Before passing to the proof of Theorem 3 we study the weighted tail cross products, that are appearing
in this context. This is done in Lemmas 2 and 3.

Lemma 2. The weighted tail cross product of µ(w−1(ti,j ; .)) +Ui(w
−1(ti,j ; .)) with itself (with respect to

Ti) exists and

Qθi
(θ̃i) =|µ(w−1(ti,j ;θi)) + Ui(w

−1(ti,j ;θi))

− µ(w−1(ti,j ; θ̃i))− Ui(w
−1(ti,j ; θ̃i))|2

has a unique minimum at θ̃i = θi.

Proof. We assume that µ and Ui can be decomposed onto a spline basis. As every function is defined
on [0, 1], µ ◦w−1 and Ui ◦w−1 are L2. Then the tail cross product of µ(w−1(ti,j ;θi)) + Ui(w

−1(ti,j ;θi))

with µ(w−1(ti,j ; θ̃i)) + Ui(w
−1(ti,j ; θ̃i)) exists because it converges uniformly for θi ∈ Rr and θ̃i ∈ Rr.

The function Q has a unique minimum at θi: if Q(θ̃i) = 0, for every t ∈ [0, 1],

(µ+ Ui)(w
−1(t; θ̃i)) = (µ+ Ui)(w

−1(t;θi)) ⇒ t = w(w−1(t;θi); θ̃i).

Then, as the warping function is injective (see Lemma 1), θ̃i = θi.
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Lemma 3. For l = 1, . . . , r and l′ = 1, . . . , r, the derivatives

∂
[
µ(w−1(ti,j ;θi)) + Ui(w

−1(ti,j ; .))
]

∂[θi]l
and

∂2
[
µ(w−1(ti,j ;θi)) + Ui(w

−1(ti,j ; .))
]

∂[θi]l∂[θi]l′

exist and are continuous on Rr and all weighted tail cross products in between

µ(w−1(ti,j ;θi)) + Ui(w
−1(ti,j ; .))

and its first and second derivatives exist.

Proof. Each function is defined on [0, 1], and is either decomposed onto a spline basis, or composed with
the exponential function, then there is no problem to intervert derivation and integrals. As explained
before, the weighted tail cross products exist because those functions are L2([0, 1]).

Equipped with Lemmas 2 and 3 we can adapt results from Jennrich (1969) to prove Theorem 3.

Proof of Theorem 3. We consider the following compact set:

Eα(θ0,Σ
θ) =

{
x ∈ Rr | (θ0 − x)t(Σθ)−1(θ0 − x) ≤ χ2

r(1− α)
}

where χ2
r(1− α) denotes the 1− α quantile of the χ2-distribution with r degrees of freedom.

With probability 1−α, θi and θ̂
Ti

i belongs to Eα(θ0,Σ
θ). (Jennrich, 1969, Theorem 6) is used to get

the strong consistency and (Jennrich, 1969, Theorem 7) is used to get the asymptotic normality of θ̂
Ti

i .

B.2 Proof of Theorem 4

Proof. We use the dominated convergence theorem. As the variance is lower bounded by Σθ, the mean
is upper bounded by a fixed constant, so we can construct a dominating function. Then,

lim
σ2
ε→0

mθ̂
∞
i
(η) = lim

σ2
ε→0

∫
Rr

φ(θi; c, C)φ(η;θ0, σ
2
εa

−1
i (θi) + Σθ)dθi

=

∫
Rr

lim
σ2
ε→0

(
φ(θi; c, C)φ(η;θ0, σ

2
εa

−1
i (θi) + Σθ)

)
dθi

=

∫
Rr

φ(θi;θ0,Σ
θ)φ(η;θ0,Σ

θ)dθi = φ(η;θ0,Σ
θ).

B.3 Proof of Theorem 5

We consider η ∈ Eρ(θ0,A), with A positive definite.

mθ̂
∞
i
(η) =

∫
Rr

φ
(
θi; η, σ

2
εa

−1
i (θi)

)
φ
(
θi;θ0,Σ

θ
)
dθi

=

∫
Rr

φ
(
θi; η, σ

2
εa

−1
i (θ0)

)
φ
(
θi;θ0,Σ

θ
)
× det(a−1

i (θ0)ai(θi))

× exp

(
− 1

2σ2
ε

(θi − η)T
(
a−1
i (θi)− a−1

i (θ0)
)
(θi − η)

)
dθi

= φ(η;θ0, σ
2
εa

−1
i (θ0) + Σθ)

∫
Rr

φ(θi; c0, C0)× det(a−1
i (θ0)ai(θi))

× exp

(
− 1

2σ2
ε

(θi − η)T
(
a−1
i (θi)− a−1

i (θ0)
)
(θi − η)

)
dθi

where the last equality comes from Lemma 4, with

C0 = (σ−2
ε ai(θ0) + (Σθ)−1)−1;

c0 = C0

(
σ−2
ε ai(θ0)η + (Σθ)−1θ0

)
= θ0 + C0σ

−2
ε ai(θ0)(η − θ0).
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Our goal is now to prove that

I =

∫
Rr

φ(θi; c0, C0) det(a
−1
i (θ0)ai(θi))

× exp

(
− 1

2σ2
ε

(θi − η)T
(
a−1
i (θi)− a−1

i (θ0)
)
(θi − η)

)
dθi

is close to 1.
We then divide this integral into two parts: let ρ̃ > 0, if θi ∈ Eρ̃(θ0, A),

a−1
i (θi) = a−1

i (θ0) +Dθ0
a−1
i (θi − θ0) +O(ρ̃),

⇒ (θi − η)T (a−1
i (θi)− a−1

i (θ0))(θi − η) = O(ρ̃+ ρ), and

det(a−1
i (θ0)ai(θi)) = 1 +O(ρ̃).

If θi ∈ Eρ̃(θ0, A)
c, by Assumption E we get that

det(a−1
i (θ0)ai(θi)) = O(1)

⇒ exp

(
− 1

2σ2
ε

(θi − η)T
(
a−1
i (θi)− a−1

i (θ0)
)
(θi − η)

)
≤ 1.

This leads to

I = (1 +O(ρ))

∫
Eρ̃(θ0,A)

φ(θi; c0, C0)dθi +O(1)

∫
Eρ̃(θ0,A)c

φ(θi; c0, C0)dθi

= 1 +O(ρ).

B.4 Proof of Theorem 6

From Theorem 4, √
Ti(θ̂

Ti

i − θ0)
d−→

Ti→+∞
Nr(0,Σ

θ).

For i = 1, . . . , n, let ZTi
i ∼ N (θ0,

1
Ti
Σθ), and ∆Ti

i = θ̂
Ti

i − ZTi
i .

We know that ∆Ti
i

d−→
Ti→+∞

δ0 with δ0 the Dirac distribution in 0, which implies that ∆Ti
i

P−→
Ti→+∞

0.

Then, by inverting limits, 1
n

∑n
i=1 ∆

Ti
i

d−→
Ti→+∞,n→+∞

δ0.

For ZTi
i , we use Lindeberg Central limit Theorem, recalled in Theorem A of Appendix C.

Let S2
n = Σθ

∑n
i=1

1
Ti
. We assume that (14) holds. Then,

b
−1/2
n,T (

1

n

n∑
i=1

ZTi
i − θ0)

d−→
n→+∞

N (0,Σθ).

By Slustky’s Lemma, we get that

b
−1/2
n,T

(
θ̂0 − θ0

)
d−→

n→+∞,minTi→+∞
Nr(0,Σ

θ).

For i = 1, . . . , n, let ZTi
i ∼ N (θ0,

1
Ti
Σθ), and ∆̃Ti

i =
√
Ti(θ̂

Ti

i θ̂
Ti

i − ZTi
i ). We know that

√
TiZ

Ti
i ∼

N (θ0,Σ
θ) and then

∑n
i=1 TiZ

Ti
i (ZTi

i )T ∼ W(Σθ, n−1). Moreover, we know that ∆̃Ti
i

d−→
Ti→+∞

δ0,and then

1

n− 1

n∑
i=1

Ti∆
Ti
i (∆Ti

i )T
d−→

minTi→+∞,n→+∞
δ0.

Thus, we get

1

n− 1

n∑
i=1

Tiθ̂
Ti

i (θ̂
Ti

i )T =
1

n− 1

n∑
i=1

TiZ
Ti
i (ZTi

i )T +
1

n

n∑
i=1

Ti∆
Ti
i (∆Ti

i )T

d−→
n→+∞,minTi→+∞

W(Σθ, n− 1).
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B.5 Proof of Theorem 7

We check that our model satisfies the assumptions given in (Pinheiro, 1994, Chapter 3):

� The Ui are independent and follow a N (0,ΣUi) distribution, εi follows a NTi(0, σ
2
ε) distribution

and the Ui are independent of εi

� The matrix Bµ
i is of full rank, as it is a functional basis

� n ≥ mµ + 1 + 1

� The concatenated matrix [Bµ
i ,B

U
i ] has rank greater than mµ if we don’t take the same basis for µ

and Ui

� The matrices ITi
and BU

i (B
U
i )

t are linearly independent

� limn→+∞
n−rank(BU

i )
n = 1

So we get the asymptotic normality of the estimator.

B.6 Proof of Theorem 8

Recall the different operator parts of the iterative algorithm in (12). The Banach fixed point theorem,
recalled in Theorem B of Appendix C, is used to prove that there is a unique fixed point, and that the
algorithm converges. To use this theorem, we work in Rmµ+nmU+1+nr with the Euclidean distance. It
is a non-empty complete metric space. The mapping we consider is Ψ, as defined in (12). We need to
prove that Ψ is a contraction mapping.

Denote by kf the Lipschitz constant for the function f .
We want to find kΨ such that, for (x, y) ∈ (Rmµ+nmU+1+nr)2,

∥Ψ(x)−Ψ(y)∥2 ≤ kΨ∥x− y∥2.

As Ψ2 and Ψ3 are linear, for (x, y) ∈ (Rmµ+nmU+1+nr)2,

∥Ψ3 ◦Ψ2 ◦Ψ1(x)−Ψ3 ◦Ψ2 ◦Ψ1(y)∥2 = ∥Ψ3 ◦Ψ2(Ψ1(x)−Ψ1(y))∥2

The proof relies on Lemma 5 applied to Ψ3 and Ψ2, defined via the mixed effect models. The statement
of Lemma 5 and its proof can be found in Appendix C. Then, using Assumption G, there exists kΨ < 1
such that Ψ is kΨ-Lipschitz. Banach fixed point theorem concludes.

B.7 Proof of Theorem 9

First, we prove that for a fixed iteration ite, the several computations we are doing to the true parameters
(αµ, σ2

ε,Σ∼
U ,θ0,Σ

θ) are keeping it fixed under Assumption C.

Fix the iteration number (ite) and consider (αµ, σ2
ε,Σ∼

U ,θ0,Σ
θ). We know (θ0,Σ

θ) and we predict

θi with the BLUP. As n → ∞ and mini Ti → ∞, predictions are good. Then, we estimate (αµ, σ2
ε,Σ∼

U ),

by Theorem 7 we get (αµ, σ2
ε,Σ∼

U ) (strong consistency).
Then, we approximate θi for all i = 1, . . . , n. By Theorem 4, those pseudo-observations are close

to the true random variables, with the good distribution function. Finally, we estimate a linear mixed
model on those observations: by Theorem 6, we get θ0 and Σθ (consistency).

Then, under identifiability, Assumptions A, C and G, (αµ, σ2
ε,Σ∼

U ,θ0,Σ
θ) is a fixed point of Ψ.

By Theorem 8, there exists only one fixed point: then

((α̂µ)(∞), (σ̂ε)
(∞), (Σ̂∼

U )(∞), θ̂
(∞)

0 , (Σ̂θ)(∞)) −→
n→∞

minTi→∞

(αµ, σ2
ε,Σ∼

U ,θ0,Σ
θ).

This convergence is almost surely, as the convergence in each step is almost surely.
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C Additional useful results and tools.

Theorem A (Lindeberg Central Limit Theorem). Let (Ω,F ,P) be a probability space, and Xk : Ω →
R, k ∈ N, be independent random variables defined on that space. Assume that the expected values
E[Xk] = µk and variances Var [Xk] = σ2

k exist and are finite. Define s2n =
∑n

k=1 σ
2
k.

If this sequence of independent random variables Xk satisfies Lindeberg’s condition: for all ε > 0,

lim
n→∞

1

s2n

n∑
k=1

E
[
(Xk − µk)

2 · 1{|Xk−µk|>εsn}
]
= 0, (14)

where 1 is the indicator function, then the central limit theorem holds, i.e. the random variables Zn :=∑n
k=1(Xk−µk)

sn
converge in distribution to a standard normal random variable as n → ∞.

Theorem B (Banach fixed point theorem). Let (X, d) be a non-empty complete metric space with a
contraction mapping T : X → X with Lipschitz constant q ∈ [0, 1). Then, T admits a unique fixed-point
x∞ in X. Furthermore, x∞ can be found as follows: starts with an arbitrary element x0 in X and define
a sequence {xn} by xn = T (xn−1), then xn → x∞. Moreover, d(x∞, xn) = qnd(x1, x0)/(1− q).

Lemma 4 (Ahrendt (2005)). The following holds, for all x ∈ Rp, for A,B positive definite matrices of
size p× p and (a, b) ∈ (Rp)2:

φ(x; a,A)φ(x; b, B) = φ(a; b, A+B)φ(x; c, C),

with C = (A−1 +B−1)−1 and c = C(A−1a+B−1b).

Lemma 5. Let π1 and π2 be two orthogonal projections, and denote |||.||| the operator norm. Then,

|||π1||| = |||π2||| = 1; (15)

|||π1 ◦ π2||| < 1 if and only if Eπ1 ∩ Eπ2 = {0}. (16)

Proof. We first prove (15). Let π be an orthogonal projection. As it is a projection, its norm is larger
than 1. As it is an orthogonal projection, we can use Pythagorean theorem to prove that its norm is
smaller than 1.

We now prove (16). If Eπ1
∩ Eπ2

̸= {0}, let x ∈ Eπ1
∩ Eπ2

. Then, π1 ◦ π2(x) = x so |||π1 ◦ π2||| ≥ 1.
If Eπ1

∩ Eπ2
= {0}, assume that |||π1 ◦ π2||| = 1: there exists x ̸= 0 such that ∥π1 ◦ π2(x)∥ = ∥x∥.

But as π1 and π2 are projections, it means that x ∈ Eπ1 ∩ Eπ2 : contradiction.
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