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Stabilization of Aperiodic Sampled-data Linear Systems with Input Constraints: a Low Complexity Polyhedral Approach

The stabilization problem of aperiodic sampleddata linear systems subject to input constraints is dealt with. A state feedback control law is designed to optimize the size of a polyhedral estimate of the region of attraction of the origin (RAO) of the closed-loop system. The control law is derived from the computation of a controlled contractive polytope for the dynamics between two successive sampling instants. The polytope is of low complexity as its number of vertices is fixed a priori. As shown in the numerical example, the polyhedral estimate of the RAO associated with the proposed feedback control is larger than the ones obtained with other approaches in the literature.

I. INTRODUCTION

The use of methods based on polyhedral sets to address the stability analysis and stabilization of dynamic systems is quite appealing [START_REF] Blanchini | Set-Theoretic Methods in Control[END_REF]. In particular, it is known that a linear uncertain system is robustly stabilizable if and only if there exists a polyhedral control Lyapunov function for it or, equivalently, a polyhedral controlled invariant set [START_REF] Blanchini | Set-Theoretic Methods in Control[END_REF]. Moreover, polyhedrons form a class of sets particularly suitable for the application of iterative procedures like the one in [START_REF] Blanchini | Ultimate boundedness control for uncertain discretetime systems via set-induced Lyapunov functions[END_REF], that converges to the maximal controlled invariant/contractive set for the system. However, the sets obtained by such algorithms become more complex at each iteration, making the obtained solutions intractable in many important cases [START_REF] Blanchini | Set-Theoretic Methods in Control[END_REF]. In order to circumvent this problem, many approaches exist in the literature for linear systems subject to constraints, as, for instance, [START_REF] Anevlavis | Computing controlled invariant sets in two moves[END_REF], [START_REF] Fiacchini | Computing control invariant sets in high dimension is easy[END_REF], [START_REF] Blanco | On efficient computation of low-complexity controlled invariant sets for uncertain linear systems[END_REF], [START_REF] Oliveira | Cálculo de conjuntos invariantes controlados robustos com complexidade fixa usando otimizac ¸ão bilinear (in portuguese)[END_REF], [START_REF] Brião | Explicit computation of stabilizing feedback control gains using polyhedral Lyapunov functions[END_REF]. In [START_REF] Anevlavis | Computing controlled invariant sets in two moves[END_REF] a procedure that does not rely on iterative computations is developed while in [START_REF] Fiacchini | Computing control invariant sets in high dimension is easy[END_REF] an algorithm based on linear programming that allows to overcome the complexity inherent to the Minkowski set addition is presented. In turn, [START_REF] Blanco | On efficient computation of low-complexity controlled invariant sets for uncertain linear systems[END_REF], [START_REF] Oliveira | Cálculo de conjuntos invariantes controlados robustos com complexidade fixa usando otimizac ¸ão bilinear (in portuguese)[END_REF], [START_REF] Brião | Explicit computation of stabilizing feedback control gains using polyhedral Lyapunov functions[END_REF] develop methods to compute polyhedrons of low complexity in order to get conservative but computationally affordable results.

Aperiodic sampled-data systems have been the focus of many recent works, since they allow to model the behavior of networked control systems subject to uncertainties in the communication channel between computer algorithms, actuators and sensors [START_REF] Hetel | Recent developments on the stability of systems with aperiodic sampling: An overview[END_REF]. Many approaches exist to perform the stability analysis of such systems as, for instance, [START_REF] Fridman | Robust sampled-data stabilization of linear systems: An input delay approach[END_REF], [START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF], [START_REF] Hetel | Stabilization of linear impulsive systems through a nearly-periodic reset[END_REF] in the linear case and [START_REF] Seuret | Taking into account period variations and actuator saturation in sampled-data systems[END_REF], [START_REF] Fiacchini | Stability of sampleddata control systems under aperiodic sampling and input saturation[END_REF], [START_REF] Huff | Polyhedral regions of stability for aperiodic sampled-data linear control systems with saturating inputs[END_REF] in the presence a Université Grenoble Alpes (UGA), Gipsa-lab, Grenoble, France. {daniel.denardi-huff, mirko.fiacchini}@gipsa-lab.fr b Universidade Federal do Rio Grande do Sul (UFRGS), PPGEE, Porto Alegre, Brazil. {daniel.huff, jmgomes}@ufrgs.br This work was supported by the Coordenac ¸ão de Aperfeic ¸oamento de Pessoal de Nível Superior -Brasil (CAPES) -Finance Code 001 and by the French National Research Agency in the framework of the "Investissements d'avenir" program (ANR-15-IDEX-02). J.M. Gomes da Silva Jr. is also supported by CNPQ, Brazil (grant PQ-307449/2019-0). of input constraints, with the determination of estimates of the region of attraction of the origin (RAO). Some of the existing methods are also suitable for control design, like [START_REF] Seuret | Taking into account period variations and actuator saturation in sampled-data systems[END_REF], [START_REF] Huff | Stability and stabilization of sampled-data systems subject to control input saturation: a set invariant approach[END_REF], that, based on quadratic Lyapunov functions and semidefinite programming, provide linear feedback gains for sampled-data systems subject to input saturation.

In this work, we propose a method to design a piecewise linear state feedback control law that guarantees the asymptotic stability of the origin of aperiodic sampled-data linear systems subject to input constraints and leads to a polyhedral estimate of the RAO. Since the complexity -given by the number of vertices -of this estimate is fixed a priori, the resulting control law is of low complexity and suitable for practical use.

As shown in Section II, the method is based on a difference inclusion that models the behavior of the system state between two consecutive sampling instants. In Section III, a controlled contractive polyhedral set of low complexity is computed for this discrete-time model through the solution of an optimization problem with bilinear constraints. This set can be readily used in order to design a state feedback control law for the system. In Section IV, it is proved the equivalence between the asymptotic stability of the origin of the discrete-time system and the asymptotic stability of the origin of the continuous-time one. It is shown that the obtained polyhedron is contained in the RAO of the continuous-time closed-loop system and can therefore be used as an estimate of it. A numerical example is presented in Section V. The paper ends with some conclusions.

Notation. A C-set Ω is a compact and convex set containing the origin in its interior. Given a matrix M, M (i) is its i-th row, M ( j) its j-th column, M (i j) its (i j)-entry, M T its transpose and ∥M∥ its induced 2-norm. If M is symmetric then λ max (M) is its maximum eigenvalue. The operator ≥ must be interpreted elementwise when applied to vectors/matrices.

1 ≜ [1 . . . 1] T , B r ≜ {x ∈ R n : ∥x∥ ≤ r}. V (V ) ≜ x = V α : α ∈ R n v , α ≥ 0, 1 T α ≤ 1 ,V ∈ R n×n v ,
corresponds to the vertex representation of a compact and convex polyhedron and P(H, h) ≜ {x ∈ R n : Hx ≤ h} , H ∈ R n h ×n , h ∈ R n h , corresponds to the hyperplane representation of a closed and convex polyhedron.

N m ≜ {i ∈ N : 1 ≤ i ≤ m}.
Given Ω ⊆ R n , Co(Ω) is its convex hull and Ω • is its interior.

II. PROBLEM FORMULATION

Consider the following continuous-time system:

ẋ(t) = A p x(t) + B p u(t) (1) 
where x ∈ R n and u ∈ R m denote the state and the input of the plant, respectively, and A p and B p are constant matrices of appropriate dimensions. It is assumed that the control input is computed based on the sampled-value of the state at the time instants t k , k ∈ N, and satisfies

u(t) = f (x(t k )), ∀t ∈ [t k ,t k+1 ), ∀k ∈ N, (2) 
where f : R n → U , U ⊂ R m is a polyhedral C-set and f (0) = 0. By convention t 0 = 0 and the difference between two successive sampling instants, given by δ k ≜ t k+1t k , is considered to be lower and upper bounded as follows:

0 < τ m ≤ δ k ≤ τ M , ∀k ∈ N. (3) 
Since δ k depends on k, this system models an aperiodic sampling strategy. The particular case of periodic sampling corresponds to

δ k = τ m = τ M for all k ∈ N.
The following definition of stability is adapted from [16, Definition 4.1] to the particular case under analysis.

Definition 1: The equilibrium point x = 0 of (1)-( 2) is

• stable if, for each ε > 0, there is β = β (ε) > 0 such that ∥x(0)∥ ≤ β ⇒ ∥x(t)∥ ≤ ε, ∀t ≥ 0 (4) 
• asymptotically stable if it is stable and

β > 0 exists such that ∥x(0)∥ ≤ β ⇒ lim t→∞ x(t) = 0 (5) 
where ( 4) and (5) must hold uniformly for all possible realizations of {δ k } k∈N satisfying (3). Definition 2: Considering that x = 0 is asymptotically stable, the region of attraction of the origin (RAO) of ( 1)-( 2) is the set of all x ∈ R n such that for x(0) = x it follows that lim t→∞ x(t) = 0 for all possible realizations of {δ k } k∈N satisfying [START_REF] Anevlavis | Computing controlled invariant sets in two moves[END_REF].

The objective of this work is to solve the following problem.

Problem 1: Design a state feedback control law f : R n → U that guarantees the asymptotic stability of the origin and optimizes the size of a polyhedral estimate Ω of the RAO of the resulting closed-loop system.

Denoting

x k ≜ x(t k ) and u k ≜ f (x k )
, it follows from the solution of (1) considering (3) that the dynamics between two successive sampling instants can be described by the following difference inclusion:

x k+1 ∈ {A(δ )x k + B(δ )u k : δ ∈ ∆} ≜ G(x k , u k ), u k ∈ U , (6) 
where ∆ ≜ [τ m , τ M ], A(δ ) ≜ e A p δ and B(δ ) ≜ δ 0 e A p s dsB p . Next, we will first solve Problem 1 in Section III for the discrete-time system (6) (using the analogous of Definitions 1 and 2 in the discrete-time case) and then in Section IV we will show that the same control law and the corresponding estimate of the RAO are also valid for (1)- [START_REF] Blanchini | Ultimate boundedness control for uncertain discretetime systems via set-induced Lyapunov functions[END_REF].

A. Basic Concepts

The following definitions will be useful for the development of the results.

Definition 3: The Minkowski function

Ψ Ω : R n → R of the C-set Ω ⊂ R n is given by Ψ Ω (x) ≜ min{α ≥ 0 : x ∈ αΩ}. For a compact set D ⊂ R n , Ψ Ω (D) ≜ min{α ≥ 0 : D ⊆ αΩ}.
This function satisfies the properties stated by the lemma below, adapted from [START_REF] Blanchini | Set-Theoretic Methods in Control[END_REF]Proposition 3.12].

Lemma 1: Ψ Ω (•) is continuous, positive definite, convex, positively homogeneous of order 1, sub-additive (i.e. Ψ Ω (x 1 + x 2 ) ≤ Ψ Ω (x 1 ) + Ψ Ω (x 2 )) and lower and upper bounded as follows:

m∥x∥ ≤ Ψ Ω (x) ≤ M∥x∥, m, M > 0 (equivalently B 1/M ⊆ Ω ⊆ B 1/m ). Definition 4: (controlled λ -contractive set) Given 0 ≤ λ < 1, the C-set Ω ⊂ R n is said to be controlled λ -contractive for a generic difference inclusion x k+1 ∈ G(x k , u k ), u k ∈ U , if for every x k ∈ Ω there exists u k ∈ U such that G(x k , u k ) ⊆ λ Ω. If λ = 1, Ω is a controlled (positively) invariant set.
We can also express the definition above using the Minkowski function of Ω by means of the equivalence relation below, which is valid for all

(x k , u k ) ∈ R n × R m : G(x k , u k ) ⊆ λ Ω ⇔ Ψ Ω (x k+1 ) ≤ λ , ∀x k+1 ∈ G(x k , u k )

III. DESIGN OF THE FEEDBACK CONTROL LAW

The design of the state feedback can be divided in two steps. The first one, presented in Section III-A, consists in finding a controlled contractive polyhedral C-set Ω and a corresponding control law for the difference inclusion

x k+1 ∈ {A(δ )x k + B(δ )u k : δ ∈ ∆ J } , (7) 
where the input is constrained by u k ∈ U and

∆ J ≜ {d j ≜ τ m + ( j -1)τ J : j ∈ N J }, τ J ≜ τ M -τ m J
, J ∈ N. Notice that (7) considers only a finite subset ∆ J of the interval ∆. The second step regards the guarantee that Ω is contractive not only for [START_REF] Brião | Explicit computation of stabilizing feedback control gains using polyhedral Lyapunov functions[END_REF] but also for (6) (not necessarily with the same contraction factor λ ). A sufficient condition to ensure this is derived in Section III-B. At last, in Section III-C, it will be shown that the obtained contractive set is included in the RAO of the closed-loop system formed by [START_REF] Oliveira | Cálculo de conjuntos invariantes controlados robustos com complexidade fixa usando otimizac ¸ão bilinear (in portuguese)[END_REF] and the designed state feedback.

A. Computation of a contractive set for system [START_REF] Brião | Explicit computation of stabilizing feedback control gains using polyhedral Lyapunov functions[END_REF] Given a polyhedral C-set Ω and its vertex representation

Ω = V (V ),V ∈ R n×n v
, where the vertices of Ω are represented by columns of V , the following result holds. 1Lemma 2: Consider system [START_REF] Brião | Explicit computation of stabilizing feedback control gains using polyhedral Lyapunov functions[END_REF]. There exists a state feedback control law u k = f (x k ) satisfying the constraints and which makes the polyhedral C-set Ω = V (V ) λ -contractive for the closed-loop system if and only if there exist U ∈ R m×n v and nonnegative matrices

H j ∈ R n v ×n v , j ∈ N J , such that A(d j )V + B(d j )U = V H j , ∀ j ∈ N J ( 8 
)
1 T H j ≤ λ 1 T , ∀ j ∈ N J (9) 
U (i) ∈ U , ∀i ∈ N n v (10) 
where U (i) is the i-th column of U. Proof: The proof is analogous to the one of [1, Proposition 7.26], which deals with linear systems with polytopic uncertainties.

The lemma above can be used to obtain a λ -contractive polyhedral C-set Ω for [START_REF] Brião | Explicit computation of stabilizing feedback control gains using polyhedral Lyapunov functions[END_REF]. Since V and H j are variables, constraints (8) are bilinear while ( 9)-( 10) are both linear (since U is a given polyhedron). In order to optimize the size of Ω = V (V ), we propose the following optimization problem, where n v must be fixed a priori:

max V,U,H j ,Γ,L n r ∑ r=1 Γ (rr) w (r) (11) 
subject to ( 8) -( 10)

RΓ = V L, 1 T L ≤ 1 T , L ≥ 0 ( 12 
)
where L ∈ R n v ×n r , Γ ∈ R n r ×n r is diagonal, w ∈ R n r is a vector of positive weights (w > 0) for the elements of Γ ≥ 0 and R ∈ R n×n r . The columns of R, defined a priori, are directions along which the polyhedron Ω will be maximized. They can be freely chosen and do not affect the feasibility of the problem, although the estimation size depends on R. Notice that ( 12) is equivalent to Γ (rr) R (r) ∈ V (V ) = Ω, ∀r ∈ N n r , where Γ (rr) is a scaling factor. Consequently, V (RΓ) ⊆ Ω. Thus, the optimization problem maximizes a linear combination of the scaling factors Γ (rr) , where w (r) are positive weights for each factor, i.e. they weight the maximization of Ω in each one of the directions given by the columns of R. The matrix R ∈ R n×n r is chosen such that 0 ∈ V (R) • and we introduce in the optimization problem above the following additional constraint: Γ (rr) ≥ η, ∀r ∈ N n r , where η > 0 is a numerical tolerance. In this way, we guarantee that 0 ∈ Ω • . This property will be used afterwards in the proof of stability.

Since some of the constraints are bilinear, this is a nonlinear programming problem and, in principle, there is no guarantee of the global optimality of the solution. On the other hand, it is possible to obtain an initial feasible solution to the constraints using for instance the method presented in [START_REF] Blanco | On efficient computation of low-complexity controlled invariant sets for uncertain linear systems[END_REF]. Therefore, the solution of ( 11) will be at least as good as the one of [START_REF] Blanco | On efficient computation of low-complexity controlled invariant sets for uncertain linear systems[END_REF] with respect to the chosen size criterion of the polyhedron. In this work, [START_REF] Hetel | Stabilization of linear impulsive systems through a nearly-periodic reset[END_REF] is solved using the KNITRO toolbox [START_REF] Byrd | Knitro: An integrated package for nonlinear optimization[END_REF].

Remark 1: It should be noticed that, although V is a free variable, the number of columns of V (i.e. the number of vertices of Ω) is defined a priori. Hence there is a tradeoff regarding the choice of n v : a large value will result in principle in a larger polytope Ω, but will also increase the numerical complexity of the approach.

Lemma 2 gives a necessary and sufficient condition for the λ -contractivity of the polyhedral C-set Ω = V (V ), but does not provide the control law u k = f (x k ). One of the possible choices of construction of f (•) corresponds to the concept of control "at the vertices" [1, Pages 158-159]. Assume without loss of generality that the vertex representation Ω = V (V ) is minimal (otherwise it is possible to discard the redundant columns of matrix V and the corresponding ones of matrix U). The idea is to interpolate the control value at the vertices as follows: a) For any pair (V (i) ,U (i) ) of columns of V and U (defined in the statement of Lemma 2), f (

V (i) ) = U (i) ; b) for x k ∈ Ω, f (x k ) = Uα, where α ∈ R n v is such that x k = V α, 1 T α = Ψ Ω (x k ), α ≥ 0.
This control law can be constructed as described next [START_REF] Blanchini | Set-Theoretic Methods in Control[END_REF]. Firstly, Ω can be partitioned into simplices2 formed by n vertices and the origin:

Ω l ≜ {x = V l ᾱ : ᾱ ≥ 0, 1 T ᾱ ≤ 1, ᾱ ∈ R n } ( 13 
)
where V l is a matrix formed by the n columns of V corresponding to the l-th simplex (do not confuse it with V (l) ). This partition can be obtained using one of the triangulation methods presented in [18, Section 3.1]. We also denote as Ūl the n columns of U that correspond to the selected columns of V . Each simplex generates a polyhedral cone as follows:

C l ≜ {x = V l ᾱ : ᾱ ≥ 0, ᾱ ∈ R n }. (14) 
The sets above can be chosen in such a way that:

• Ω l and C l have non-empty interiors;

• Ω l Ω h and C l C h have empty interiors for l ̸ = h;

• l Ω l = Ω and l C l = R n . Then, the piecewise linear control law below is Lipschitz continuous, guarantees the λ -contractivity of Ω and satisfies the constraint u k ∈ U and properties a) and b) above [START_REF] Blanchini | Set-Theoretic Methods in Control[END_REF]:

u k = f (x k ) ≜ F l x k ≜ Ūl ( V l ) -1 x k , x k ∈ Ω l , (15) 
where the inverse of V l exists because Ω l has a non-empty interior. Notice that (15) satisfies property b), indeed. To see this, assume that simplex 1 (for the other simplices the same considerations apply) Ω 1 is generated by the first n columns

V 1 of V = [ V 1 Ṽ ]. Then, if x k ∈ Ω 1 , x k = V 1 ᾱ = V 1 Ṽ ᾱ 0 = V α,
where ᾱ ∈ R n is a nonnegative vector and α ≜ [ ᾱT 0 T ] T ∈ R n v . It follows that

u k = F 1 x k = Ū1 ( V 1 ) -1 V 1 ᾱ = Ū1 ᾱ = Ū1 Ũ ᾱ 0 = Uα.
B. Testing contractivity for system [START_REF] Oliveira | Cálculo de conjuntos invariantes controlados robustos com complexidade fixa usando otimizac ¸ão bilinear (in portuguese)[END_REF] The second step of the method consists in verifying if the control law [START_REF] Huff | Stability and stabilization of sampled-data systems subject to control input saturation: a set invariant approach[END_REF] guarantees the contractivity of Ω for [START_REF] Oliveira | Cálculo de conjuntos invariantes controlados robustos com complexidade fixa usando otimizac ¸ão bilinear (in portuguese)[END_REF], which takes into account all possible values for δ k ∈ ∆ and not only the finite set ∆ J . The following property plays a key role to verify that.

Lemma 3: Given d, τ ∈ R, the following identities hold:

A(d + τ) = A(d) + Φ(τ)e A p d A p (16) 
B(d + τ) = B(d) + Φ(τ)   A p d 0 e A p s dsB p + B p   = B(d) + Φ(τ)e A p d B p (17) 
where Φ(τ) ≜ τ 0 e A p s ds.

Proof: See the proof of [START_REF] Fujioka | A discrete-time approach to stability analysis of systems with aperiodic sample-and-hold devices[END_REF]Proposition 1]. Using the lemma above, it follows that

A(d + τ)x + B(d + τ)u = A(d)x + B(d)u+ +Φ(τ)e A p d (A p x + B p u) (18)
Define now the logarithmic norm of A p associated with the 2-norm [START_REF] Van Loan | The sensitivity of the matrix exponential[END_REF]:

µ(A p ) ≜ λ max A p + A T p 2
. Notice in particular that µ(A p ) can be negative. The following theorem can now be stated.

Theorem 1: Consider a controlled λ -contractive polyhedral C-set Ω for [START_REF] Brião | Explicit computation of stabilizing feedback control gains using polyhedral Lyapunov functions[END_REF] and the corresponding control law [START_REF] Huff | Stability and stabilization of sampled-data systems subject to control input saturation: a set invariant approach[END_REF].

If the constant c(Ω, J) ≜ c 1 (J)c 2 c 3 (Ω)c 4 (Ω), (19) 
where

c 1 (J) ≜    e µ(A p )τ J -1 µ(A p ) if µ(A p ) ̸ = 0, τ J if µ(A p ) = 0, c 2 ≜ max e µ(A p )τ m , e µ(A p )τ M , c 3 (Ω) ≜ max x∈Ω A p x + B p f (x) , c 4 (Ω) ≜ Ψ Ω (B 1 ) = min{α ≥ 0 : B 1 ⊆ αΩ}, is such that ν(Ω, J) ≜ λ + c(Ω, J) < 1, (20) 
then the control law [START_REF] Huff | Stability and stabilization of sampled-data systems subject to control input saturation: a set invariant approach[END_REF] guarantees the ν(Ω, J)-contractivity of Ω for [START_REF] Oliveira | Cálculo de conjuntos invariantes controlados robustos com complexidade fixa usando otimizac ¸ão bilinear (in portuguese)[END_REF].

Proof: We have to show that x k+1 given by ( 6) and ( 15)

satisfies Ψ Ω (x k+1 ) ≤ ν(Ω, J), ∀x k ∈ Ω. Given x k ∈ Ω, δ k ∈ ∆, there exist d k ∈ ∆ J and τ k ∈ [0, τ J ] such that δ k = d k + τ k .
Then, using [START_REF] Büeler | Exact volume computation for polytopes: A practical study[END_REF] it follows that

x k+1 = A(d k + τ k )x k + B(d k + τ k ) f (x k ) = A(d k )x k + B(d k ) f (x k ) ≜y k+1 + Φ(τ k )e A p d k (A p x k + B p f (x k )) ≜z k+1 . (21) 
From the fact that Ω is λ -contractive for [START_REF] Brião | Explicit computation of stabilizing feedback control gains using polyhedral Lyapunov functions[END_REF],

d k ∈ ∆ J and x k ∈ Ω, it follows that Ψ Ω (y k+1 ) ≤ λ . (22) 
Considering now (see [START_REF] Van Loan | The sensitivity of the matrix exponential[END_REF]) that ∥e A p s ∥ ≤ e µ(A p )s for all s ≥ 0, and since τ k ∈ [0, τ J ], one obtains:

∥Φ(τ k )∥ = τ k 0 e A p s ds ≤ τ k 0 e A p s ds ≤ τ J 0 e µ(A p )s ds = c 1 (J).
Moreover, one has that

e A p d k ≤ max e µ(A p )τ m , e µ(A p )τ M = c 2 .
Using the inequalities above we conclude that

∥z k+1 ∥ ≤ ∥Φ(τ k )∥ e A p d k A p x k + B p f (x k ) ≤ c 1 (J)c 2 c 3 (Ω), i.e. z k+1 ∈ c 1 (J)c 2 c 3 (Ω)B 1 .
Then, from (21), ( 22), and the properties in Lemma 1, we get that

Ψ Ω (x k+1 )≤Ψ Ω (y k+1 )+Ψ Ω (z k+1 )≤λ+c 1 (J)c 2 c 3 (Ω)Ψ Ω (B 1 ) = λ + c(Ω, J) = ν(Ω, J) < (20) 

■

Notice that J ∈ N can be freely chosen. Thus, if [START_REF] Van Loan | The sensitivity of the matrix exponential[END_REF] is not satisfied for some value of J, we recommend to increment it (as done in [START_REF] Huff | Stability and stabilization of sampled-data systems subject to control input saturation: a set invariant approach[END_REF], [START_REF] Huff | Polyhedral regions of stability for aperiodic sampled-data linear control systems with saturating inputs[END_REF], for instance) and to recompute the solution of [START_REF] Hetel | Stabilization of linear impulsive systems through a nearly-periodic reset[END_REF].

Using the properties of f (•), the constant c 3 (Ω) can be obtained, in practice, as follows [START_REF] Blanchini | Set-Theoretic Methods in Control[END_REF]:

c 3 (Ω) = max i A p V (i) + B p U (i) .
On the other hand, consider a hyperplane representation of Ω, that is, Ω = P(H, h), H ∈ R n h ×n , h ∈ R n h (assuming without loss of generality that h (i) > 0 for all i ∈ N n h ). Then, c 4 (Ω) can be computed through

c 4 (Ω) = Ψ Ω (B 1 ) = min{α ≥ 0 : B 1 ⊆ αΩ} = min{α ≥ 0 : Hx ≤ αh, ∀x ∈ B 1 } = max i∈N n h ∥H (i) ∥ h (i) .

C. Stability analysis of the discrete-time system

We show next that the ν-contractive polyhedral C-set Ω found for (6) belongs to the RAO of the closed-loop system composed by ( 6) and [START_REF] Huff | Stability and stabilization of sampled-data systems subject to control input saturation: a set invariant approach[END_REF].

Theorem 2: Given the ν-contractive polyhedral C-set Ω for (6) and the corresponding control law [START_REF] Huff | Stability and stabilization of sampled-data systems subject to control input saturation: a set invariant approach[END_REF], the trajectories of the closed-loop system composed by ( 6) and ( 15) satisfy

x k ∈ β Ω ⇒ x k+p ∈ ν p β Ω, ∀β ∈ [0, 1]. ( 23 
)
Proof: We will show that (23) holds for p = 1 and then the general result will follow by induction. From (15) and the shape of the simplices Ω l , the control law is positively homogeneous of order 1 inside Ω, i.e.

f (β x) = β f (x), ∀x ∈ Ω, ∀β ∈ [0, 1].
Thus, since (6) depends linearly on (x k , u k ), it follows that the closed-loop system satisfies:

G(β x, f (β x)) = β G(x, f (x)), ∀x ∈ Ω, ∀β ∈ [0, 1]. Therefore, if x k ∈ β Ω, 0 < β ≤ 1 (the case β = 0 is trivially satisfied), then, defining xk ≜ x k /β ∈ Ω: x k+1 ∈ G(x k , f (x k )) = G(β xk , f (β xk )) = β G( xk , f ( xk )) ⊆ β νΩ
where the set inclusion follows from the ν-contractivity of Ω and the fact that xk ∈ Ω.

The result above guarantees that the set Ω will remain νcontractive when scaled down. Since Ω is bounded, it follows that x k k→∞ → 0. Moreover, (23) is equivalent to

Ψ Ω (x k ) ≤ β ⇒ Ψ Ω (x k+p ) ≤ ν p β , ∀β ∈ [0, 1].
Thus, Ψ Ω (•) is a Lyapunov function inside Ω, which implies that Ω is included in the RAO of the discrete-time closedloop system ( 6)- [START_REF] Huff | Stability and stabilization of sampled-data systems subject to control input saturation: a set invariant approach[END_REF].

IV. STABILITY ANALYSIS OF THE CONTINUOUS-TIME

SYSTEM

Consider the continuous-time system composed by ( 1) and (2) with f (x(t k )) given by [START_REF] Huff | Stability and stabilization of sampled-data systems subject to control input saturation: a set invariant approach[END_REF]. From the analytical solution of ( 1)-( 2) in the interval [t k ,t k+1 ], notice that ∥x(t)∥ is bounded as shown below:

∥x(t)∥ ≤ ∥A(t -t k )∥∥x(t k )∥ + ∥B(t -t k )∥∥u(t k )∥ ≤ ∥A(t -t k )∥ + ∥B(t -t k )∥ max l ∥F l ∥ ∥x(t k )∥ ≤ max τ∈[0,τ M ] ∥A(τ)∥ + ∥B(τ)∥ max l ∥F l ∥ ∥x(t k )∥ ≜ c A ∥x(t k )∥, ∀t ∈ [t k ,t k+1 ], ∀k ∈ N ( 24 
)
where A(τ) = e A p τ and B(τ) = τ 0 e A p s dsB p . From the previous section (see ( 23)) we know that the origin of the discrete-time system that describes the behavior of the state x(t) at the sampling instants t k is asymptotically stable. Combining this property with the bound above, it follows that the origin of the continuous-time closed-loop system (1)-( 2) with ( 15) is also asymptotically stable. More precisely, given ε > 0, there exists β (ε) > 0 such that ∥x 0 ∥ ≤ β implies ∥x k ∥ ≤ ε, ∀k ∈ N and x k k→∞ → 0. Thus, since x k = x(t k ) by definition, β (ε) ≜ β (ε/c A ) satisfies conditions (4) and ( 5) of Definition 1. In particular, if ∥x(0)∥ ≤ β , then ∥x(t k )∥ ≤ ε/c A , ∀k ∈ N. Thus, from (24), it follows that ∥x(t)∥ ≤ c A (ε/c A ) = ε, ∀t ≥ 0. Moreover, from (24) it follows that x k k→∞ → 0 implies x(t) t→∞ → 0. Therefore, from (23), we conclude that Ω is included in the RAO of ( 1)-( 2) with f (•) given by [START_REF] Huff | Stability and stabilization of sampled-data systems subject to control input saturation: a set invariant approach[END_REF]. The columns of R, i.e. the directions over which the polyhedron is maximized, correspond to the elements of the following set:

cos(θ ) sin(θ ) : θ = (q -1)π 24 , q ∈ N 48 .
The resulting ν(Ω, J)-contractive polyhedron Ω is shown in Figure 1, where ν(Ω, J) ∼ = 0.996. This set belongs to the RAO of the closed-loop system (1)-(2) with the piecewise linear control law [START_REF] Huff | Stability and stabilization of sampled-data systems subject to control input saturation: a set invariant approach[END_REF], whose gains are presented in Table I. The corresponding simplices are depicted in Figure 2.

For comparison purposes we also show in Figure 1 the estimates of the RAO of the closed-loop system with the control law [START_REF] Huff | Stability and stabilization of sampled-data systems subject to control input saturation: a set invariant approach[END_REF]. obtained with the methods proposed in [START_REF] Fiacchini | Stability of sampleddata control systems under aperiodic sampling and input saturation[END_REF] and [START_REF] Huff | Stability and stabilization of sampled-data systems subject to control input saturation: a set invariant approach[END_REF], where the gain K p = [-10.70 4.38] was obtained with the algorithm of [START_REF] Huff | Stability and stabilization of sampled-data systems subject to control input saturation: a set invariant approach[END_REF]. As it can be seen, the method presented in this work provides a feedback control law of low complexity for which the corresponding estimate of the RAO of the closed-loop system is considerably larger than the estimates obtained in [START_REF] Fiacchini | Stability of sampleddata control systems under aperiodic sampling and input saturation[END_REF] and [START_REF] Huff | Stability and stabilization of sampled-data systems subject to control input saturation: a set invariant approach[END_REF] considering a linear saturated state feedback. If we replace the number of vertices n v = 10 by n v = 20, then the resulting polyhedron encompasses the latter estimates, as it is also shown in Figure 1.

u k = sat(K p x k ) (25) 
Moreover, Figure 1 depicts a decreasing sequence of outer approximations of the maximal controlled λ -contractive Cset for (7) (with J = 20, λ = 0.98) obtained with the method proposed in [START_REF] Blanchini | Ultimate boundedness control for uncertain discretetime systems via set-induced Lyapunov functions[END_REF]. By visual inspection it is possible to have an idea about the conservatism of our method. Notice that the obtained set Ω is an inner approximation (of low complexity) of the maximal controlled λ -contractive C-set for [START_REF] Brião | Explicit computation of stabilizing feedback control gains using polyhedral Lyapunov functions[END_REF]. Furthermore, we guarantee that Ω is also contractive for (6) using the result of Theorem 1.

In Figure 3, several trajectories with x(0) at the boundary of Ω and considering [START_REF] Huff | Stability and stabilization of sampled-data systems subject to control input saturation: a set invariant approach[END_REF] with δ k randomly chosen in the interval ∆ are shown. As expected, the convergence of the trajectories to the origin is ensured showing that Ω is indeed included in its region of attraction. 

VI. CONCLUSIONS

The problem of stabilization of aperiodic sampled-data linear systems subject to input constraints was tackled using a polyhedral framework. The proposed method allows to find a polytope of fixed complexity, which is controlled contractive for the dynamics of the system between two consecutive sampling instants. From this polytope, it is possible to derive a feedback control law for the system. Among the different existing approaches to do that (e.g. [START_REF] Blanchini | Set-Theoretic Methods in Control[END_REF]), we chose to construct a piecewise linear control law. It is then shown that the obtained polytope is included in the RAO of the continuoustime plant in closed loop with the computed sampled-data control law. A numerical example shows the efficiency of the resulting feedback control, for which the corresponding estimate of the RAO is larger than other ones obtained in the literature considering linear saturated feedback control laws [START_REF] Fiacchini | Stability of sampleddata control systems under aperiodic sampling and input saturation[END_REF], [START_REF] Huff | Stability and stabilization of sampled-data systems subject to control input saturation: a set invariant approach[END_REF].

V

  {u ∈ R : ∥u∥ ∞ ≤ 1}, where ∆ = [0.05, 0.1]. Problem (11) was solved using the KNITRO toolbox [17] and considering n v = 10, λ = 0.98, J = 20 and w = 1.

Fig. 1 .

 1 Fig. 1. Estimates of the RAO of the closed-loop system considering (15) and the proposed method (black-continuous for n v = 10 and black-dashed for n v = 20) and considering (25) and the methods in [13] (red-dotted for K p = [-10.70 4.38]) and [15] (blue-dashed for K p = [-10.70 4.38]). Outer approximations of the maximal λ -contractive C-set in blue-continuous.

Fig. 2 .

 2 Fig. 2. Partition of Ω in simplices.

Fig. 3 .

 3 Fig. 3. Trajectories starting at the vertices of Ω.

TABLE I FEEDBACK

 I GAINS OF THE PIECEWISE LINEAR CONTROL LAW

Since Ω has a nonempty interior, n v ≥ n + 1 by construction.

A simplex (plural: simplices or simplexes) is the simplest kind of polytope with nonempty interior. In R n it corresponds to the convex hull of n + 1 affinely independent points.