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Abstract

This article establishes that, unlike the legacy
tf*idf representation, recent natural language
representations (word embedding vectors)
tend to exhibit a so-called concentration of
measure phenomenon, in the sense that, as
the representation size p and database size n
are both large, their behavior is similar to that
of large dimensional Gaussian random vectors.
This phenomenon may have important conse-
quences as machine learning algorithms for
natural language data could be amenable to im-
provement, thereby providing new theoretical
insights into the field of natural language pro-
cessing.

1 Introduction

One of the reasons of the success of deep learn-
ing (DNN) representations (such as image features
or word embeddings) lies in their very high per-
forming and stable behavior, when used for in-
stance as inputs to classification or regression al-
gorithms. We hypothesize that the underlying ex-
planation is that, from the point of view of these
learning algorithms, these (usually large dimen-
sional) efficient representations exhibit a behavior
“akin” (although formally different) to large dimen-
sional random Gaussian vectors. In a sense, one
may think of these “compressed raw data” repre-
sentations as being all the better than they have
a large “entropy”, i.e., that they are composed of
independent and isotropic components (otherwise,
according to information theory, one may compress
them even more). However, large dimensional
“Gaussian-like” representation vectors x ∈ Rp dis-
play quite counter-intuitive behavior when com-
pared to small dimensional data, thereby disrupting
our standard approach to machine learning. In par-
ticular, they naturally suffer from various sources of
the curse of dimensionality: for instance, from the
law of large numbers, 1

p‖x‖
2 = 1

p

∑p
i=1 x

2
i tends

to converge as p→∞, so that the representations,
rather than occupying all of Rp, concentrate at the
edges of a sphere. Worse, the normalized distance
1
p‖x1 − x2‖2 = 1

p‖x1‖2 + 1
p‖x2‖2 − 2

px
T
1 x2 '

1
p‖x1‖2 + 1

p‖x2‖2 (due to 1
px

T
1 x2 → 0 for vectors

of independent entries) loses the information of
correlation between x1 and x2.

Fortunately, these curses of dimensionality can
be turned into blessings. Again by (advanced ver-
sions of) the law of large numbers, the behavior of
machine learning algorithms running on Gaussian-
like data becomes amenable to theoretical analysis,
in particular using recent advances in the fields of
large dimensional statistics and random matrix the-
ory. Therefore, these analyses allow for the perfor-
mance prediction, improvement, and optimization
of machine learning methods on real data. Conse-
quently, proving that data representations behave
like Gaussian vectors implies the possibility to the-
oretically control the learning algorithms designed
to handle these data.

In a recent line of works, Couillet and co-authors
suggest and theoretically support that DNN rep-
resentations are indeed not Gaussian per se, but
closely resemble concentrated random vectors. By
definition, a concentrated random vector x ∈ Rp
is a vector which satisfies a concentration of mea-
sure phenomenon in the sense of Ledoux (2001):
in essence, concentration means that x does not
converge (quite the opposite) but any scalar Lips-
chitz observation g(x) ∈ R of x converges around
its statistical mean when the size p of x increases;
Figure 1 schematically illustrates the concentra-
tion of measure phenomenon. In particular, a key
property to the present article is that the distance be-
tween any two concentrated random vectors x1 and
x2 with “nice properties” converges to a constant
value, which only depends on the data statistics,
and is in particular independent of their random re-
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alization. This fundamental phenomenon, not true
for small data, is at the core of our present study.

O(
√
p)

Distribution of x ∈ Rp

g1(x)

g2(x)

Observations in R

O(1)

O(1)

Figure 1: A visual interpretation of the concentration
of measure phenomenon. (Left) Schematics of 500 re-
alizations of p-dimensional Gaussian random vectors
x ∼ N (0, Ip) (concentrated by definition). (Right)
Concentration of two Lipschitz functionals (g1(x) =
xT1p/

√
p and g2(x) = ‖x‖∞). While x “spreads out”

in its ambient space, g1(x) and g2(x) converge.

In detail, Seddik et al. (2020) shows that natu-
ral images and their modern representations (such
as VGG, ResNet embeddings) can be appropri-
ately modelled by concentrated random vectors:
they precisely prove that the extremely realistic im-
ages produced by modern generative adversarial
networks (GANs) are by definition concentrated
random vectors. Besides, in Louart and Couillet
(2018), the authors establish a universality result
which proves that the performance of many ma-
chine learning algorithms – from support vector
machines to (kernel) spectral clustering – applied
to concentrated random data is asymptotically1 the
same as if the data had been Gaussian random vec-
tors with the same first and second order statis-
tics. These findings have important consequences
to modern machine learning: they in particular en-
sure that even involved algorithms applied to real
data are analytically tractable, and that their per-
formances can be anticipated and improved offline
(without the need for cross-validation).

As (possibly large dimensional) vector represen-
tations of words and documents have become a
basic building block of many natural language pro-
cessing methods (Turney and Pantel, 2010), in par-
ticular since the success of word embeddings such
as word2Vec (Mikolov et al., 2013) and Glove2

(Pennington et al., 2014), two natural questions
arise: (i) do word (and document) representations

1In the limit of large number and dimension of the data.
2Recent contextualized word embeddings, such as BERT

Devlin et al. (2019), cannot be reasonably used without fine
tuning. These are not considered in the present study, even
though we do believe our conclusions also apply to them, a
point to be investigated in future extensions.

exhibit concentration of measure phenomena?, and
(ii) do some of the aforementioned findings on real
images extend to words and textual documents?

The present article empirically investigates this
question and claims to reach a positive answer3.
Specifically, the main contributions of the article
are as follows:

1. We empirically establish that recent word em-
bedding representations can suffer a distance
concentration phenomenon, typical of concen-
trated random vectors but usually considered
as a manifestation of the curse of dimension-
ality;

2. We empirically confirm that these word em-
beddings, unlike tf*idf vectors, exhibit a uni-
versality phenomenon in the following sense:
letting x1, . . . ,xn ∈ Rp be n words or docu-
ment representations of dimension p, the ker-
nel matrix K ∈ Rn×n with Kij = f(1p‖xi −
xj‖2) for some smooth function f has the
same behavior (entry-wise and spectral) as a
matrix K′ built out of Gaussian random vec-
tors x′i having the same statistical mean and
covariance as the original data.4

3. As a concrete application, the classification
performances achieved by a kernel (least-
square) support vector machine applied to
classes of documents of popular databases are
shown to be theoretically predictable and to
match the theory established on mere Gaus-
sian random vectors, thereby confirming the
universality property of word embedding rep-
resentations and the possibility to use a simple
Gaussian vector theory to predict the perfor-
mance of machine learning algorithms for nat-
ural language processing.

Related works. Several works similarly tried to
reinterpret word embeddings, either in terms of
matrix factorization (Levy and Goldberg, 2014b)
or latent models Arora et al. (2016), and to ac-
count for the associations and analogies typical of
the linear behavior of these embeddings (Levy and
Goldberg, 2014a; Bolukbasi et al., 2016; Gittens
et al., 2017; Ethayarajh et al., 2019a,b; Allen and

3The source code used for our experiments is
available at https://github.com/ygcinar/
nlp-concentration

4Those means and covariances being evaluated empirically
from words and documents of a common class.

https://github.com/ygcinar/nlp-concentration
https://github.com/ygcinar/nlp-concentration
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Hospedales, 2019). In a different line of research,
many attempts were made to understand the syn-
tactic and semantic generalization capabilities of
different deep learning models based on word em-
beddings, as in Dessı̀ and Baroni (2019); Hewitt
and Manning (2019); Lakretz et al. (2019); Chi
et al. (2020) to list a few. Our approach is however
different in its trying to statistically model word
embeddings so to grasp the behavior of related
machine learning algorithms. To the best of the au-
thors’ knowledge, this the first time this approach
is being investigated.

2 Preliminaries and first observations

2.1 Asymptotics of learning

From a crude viewpoint, machine learning algo-
rithms may be seen as functionals Fθ : Rp×n ×
Rp → R, (X,x) → Fθ(X,x) which, for an in-
put training data matrix X = [x1, . . . ,xn] and a
test datum x returns a soft scalar score or hard
decision. Here θ accounts for the possible hyper-
parameter vector used to fine-tune the algorithm.
Assuming the training dataset X ∈ Rp×n to be a
random matrix with some prescribed distribution
(and similarly for x), evaluating the performances
of Fθ boils down to establishing the statistics of
the random variable Fθ(X,x). This has long been
a cumbersome, if not impossible, task which has
mainly been studied so far using the asymptotic
statistics n → ∞ and p fixed. Yet, these results
have long remained of little use, not very expres-
sive, and of limited interest when n is not much
larger than p; this being in particular due to the
non-linear (and often even implicit) nature of Fθ.
Random matrix theory and statistical physics have
recently changed this paradigm and managed to
break the non-linearity barrier by showing that,
as n, p→∞ simultaneously (thereby mimicking
the modern large and numerous data setting), the
performances of many non-trivial learning algo-
rithms become tractable since they converge, as
n, p → ∞, to some deterministic limits (Couillet
et al., 2016).

These latest results are based on sufficiently
“stable” random models for X (and x): statisti-
cal physics uses isotropy and symmetries, which
however often reduces to standard Gaussian data
assumptions, while random matrix theory is richer
and has lately exploited the Lipschitz stability
offered by concentrated random vector models
(Louart and Couillet, 2018). By definition, a ran-

dom vector z in a vector space S is concentrated if,
for all 1-Lipschitz functional g : S → R, we have
that for all ε > 0,

P (|g(z)−mg| > ε) ≤ Ce−cε2

for some constant C, c > 0 and mg a median of
g(z). That is, z itself may not converge in any
usual sense (in general it does not: for instance
z ∼ N (0, Ip) is concentrated but does not con-
verge) but its Lipschitz functionals, also called ob-
servations of z, do converge (e.g., 1√

p‖z‖ → 1

almost surely). Recall Figure 1 for a visual intu-
ition. Concentrated random vector modelling is
particularly convenient as it ensures that, if X is,
say, a concentrated random matrix, then for any
Lipschitz function G (that outputs either small or
large dimensional data), G(X) is still concentrated
and in particular functionals G : Rp×n → R are
such that G(X) almost surely converges.

It is proved in Louart and Couillet (2018) that,
for a rich family of functionals Fθ, if X and x are
concentrated, not only does Fθ(X,x) converge, but
it converges to the same limit as Fθ(X′,x′) for X′

and x′ random Gaussian matrix and vector having
the same statistics (mean and covariance) as X and
x, respectively. This is a classical but fundamen-
tal result in random matrix theory, referred to as
universality.

Remark 1 (When are n, p large enough?). If ran-
dom matrix theory predicts the asymptotic conver-
gence of algorithms as n, p → ∞, these results
are only useful if, in practice, n and p need not
be extremely large. As a matter of fact, and quite
surprisingly, the large dimensional effects arise
very rapidly so that, in practice, n, p of the or-
der of hundreds (sometimes even tens) is enough
for an asymptotic behavior to emerge. This is ex-
plained by the numerous (O(np)) degrees of free-
dom inherent to the data which in particular induce
rates of convergence, e.g., central limit theorems,
at speed 1/

√
np instead of 1/

√
n when n → ∞

alone. Word embedding vectors, of size p ∼ 100 or
more, naturally enter this regime.

2.2 How to testify of a concentration of
measure phenomenon?

With this introductory overview in mind naturally
arises the question of the relevance of a concen-
trated random vector modelling for practical data.
As pointed out in the introduction, the synthetic im-
ages produced by GANs (Goodfellow et al., 2014)
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are by definition concentrated random vectors: this
is because they are bounded Lipschitz functions
(the Lipschitz operator being the pre-trained neu-
ral network) of a Gaussian random vector which
is itself concentrated. Genuine images being so
well approximated by GAN synthetic images, this
strongly suggests that real images can be mod-
elled as concentrated random vectors, which is
confirmed by simulation results in Seddik et al.
(2020).

But words and documents are so far not reliably
produced by GANs and it is unclear whether they
might embrace the concentration of measure phe-
nomenon. The objective of the article is to empiri-
cally assess whether the most pregnant phenomena
occurring in concentration random vectors, namely
the convergence of distances between distinct vec-
tors and the (Gaussian-like) universality behavior,
are observed on word and document representa-
tions.

2.3 Concentration of distances, and kernel
spectrum

2.3.1 Concentration of distance

A first phenomenon arising in concentrated random
vectors, which disrupts standard machine learn-
ing intuition, is the convergence of distances phe-
nomenon. Specifically, if x1, . . . ,xn ∈ Rp are i.i.d.
concentrated random vectors with C ≡ Cov(xi)
of bounded spectral norm, then, as p, n → ∞ in
such a way that n grows no more than polynomi-
ally with p (which is the case, for example, if p/n
is constant),

max
1≤i 6=j≤n

∣∣∣∣1p‖xi − xj‖2 − τp
∣∣∣∣→ 0 (1)

almost surely, where τp ≡ 2
ptrC. That is, the

distances between any pair of data all converge to
the same limit.

Besides, and most importantly, if the xi’s are
drawn from a mixture of k distribution classes
(with k fixed) such that ‖µa − µb‖ = Op(1), with
µa = E[xi] for xi in Class a, and tr(Ca −Cb) =
Op(
√
p), with Ca = Cov(xi), then (1) remains

valid. This means that the classes cannot asymp-
totically be distinguished by the data distances.
Here τp can be taken to be any 2

ptrCa, for a ∈
{1, . . . , k}. The setting ‖µa − µb‖ = Op(1) and
tr(Ca −Cb) = Op(

√
p) is referred to as the non-

trivial classification regime.

Remark 2 (On “non-trivial” classification). The
above two assumptions ‖µa − µb‖ = Op(1) and
tr(Ca−Cb) = Op(

√
p) are quite natural to model

a non-trivial, that is neither too easy nor too hard,
classification scenario. In other words, if either
‖µa−µb‖ or 1√

ptr(Ca−Cb) were to increase with
p, then a simple Bayesian analysis demonstrates
that a trivial algorithm can achieve asymptotically
perfect classification as p increases; conversely, if
both ‖µa − µb‖ and 1√

ptr(Ca −Cb) were to van-
ish as p increases, it is theoretically impossible to
retrieve the classes with any algorithm. In practice,
of course, p remains fixed so that the conditions
‖µa −µb‖ = Op(1) and tr(Ca −Cb) = Op(

√
p)

are mostly quantitative: in fact, “good” vector rep-
resentations will tend to have rather large values
of ‖µa−µb‖ and sometimes fall in a rather trivial
regime (the classification task is then easy in gen-
eral and most standard algorithms perform well),
while other representations may be less discrimi-
native, in which case classification is non-trivial
and a well-tailored classification algorithm must
be devised.

Our first result consists in empirically confirm-
ing that the concentration of distances phenomenon
of Equation (1) occurs with popular word and doc-
ument representations. Specifically, Figure 2 dis-
plays the histogram of distances of a set of n vector
observations x1, . . . ,xn ∈ Rp under two main set-
tings:

1. The xi’s are i.i.d.N (µ, Ip) vs.N (−µ,T) for
µ = (4, 0, . . . , 0)T (which satisfies the condi-
tion ‖µ1 − µ2‖ = Op(1)), [T]ij = .4|i−j| is
a Toeplitz matrix, n = 200 and (i-a) p = 4 or
(i-b) p = 400, which serves as a theoretical
reference;

2. The xi’s correspond to n = 1100 bal-
anced documents from two classes (“Chris-
tian” versus “Forsale”) from the 20News-
Group database5) obtained by selecting in
each class the top 3 500 words according to
their tf*idf scores, the idf being computed
within the documents of the class, and en-
coded through (ii) tf*idf based weighted av-
erages of the Glove embeddings of the words
in the document, (iii) tf*idf based weighted
averages of the word2vec embeddings of the
words in the document, or merely through
their (iv) tf*idf vectors.

5http://qwone.com/∼jason/20Newsgroups/
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For comparison purposes, all datasets have been
centered.

A first observation is that the distances between
two-class distributions of both Glove and word2vec
representations seemingly “concentrate around

√
2”

instead of displaying a bi-modal distribution. Be-
sides, and possibly more importantly, the distribu-
tion closely matches the distribution of distances
obtained for mere large dimensional Gaussian ran-
dom vectors. This “resemblance to large (rather
than small) Gaussian vector behavior” provides a
first hint into a behavior typical of concentrated
random vectors. This conclusion does however
not hold for tf*idf representations, the distance his-
togram of which is far from being symmetrically
centered around

√
2, which is naturally explained

by the sparse nature of the the tf*idf vectors. To-
gether, these results are a first indicator of a pe-
culiar concentration behavior of “modern” vector
representations for documents, as opposed to tf*idf
vectors.

The above results are further supported in Fig-
ure 3 based on all the classes of the 20NewsGroup
dataset and detailed in the next section.

From a practical standpoint though, the mono-
modal histograms of Figure 2 strongly suggest that
“individual distance-based” document classification
methods are likely to fail. The next section in-
vestigates this aspect by showing that more elabo-
rate methods which treat data distances collectively
rather than individually, such as spectral-based
techniques, are more amenable to handle document
vector classification than individual distance-based
techniques.

2.3.2 Kernel spectral behavior
A broad range of machine learning algorithms
Fθ(X,x) are of the form Gθ(K,x) where K ∈
Rn×n is a kernel matrix of the input data X (ker-

6Exact calculus reveals that, for xi ∼ N (µa,Ca) and
xj ∼ N (µb,Cb), under the aforementioned non-trivial
regime, for τp = 1

p
tr(Ca +Cb) here,

1
√
p
‖xi − xj‖ ∼ N

(√
τp, σ

2
a,b

)
+ op(1)

σ2
a,b ≡

1

τp

1

p2
tr(CaCb) +

1

2τp

1

p2
tr(C2

a) +
1

2τp

1

p2
tr(C2

b)

the quantities appearing in the variance σ2
a,b being consis-

tently estimated from: 1
p
tr(Ĉ1Ĉ2) = 1

p
tr(C1C2) + op(1)

and 1
p
tr(Ĉ2) = 1

p
tr(C2) + 1

np
(tr(Ĉ))2 + op(1) with n the

number of independent samples used to evaluate the sample
covariance matrix Ĉ of C.

(i-a) Gaussian, p = 4 (i-b) Gaussian, p = 400

0 2 4 6 1.2 1.4 1.6

(ii) christian-vs-forsale,
Glove, p = 300

(iii) christian-vs-forsale,
word2vec, p = 300

0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5

(iv) christian-vs-forsale,
tf*idf, p = 3500

1.3 1.35 1.4 1.45 1.5

Figure 2: Distribution of (centered and normalized)
input data distances { 1√

p‖xi − xj‖}1≤i6=j≤n for (i)
two-class Gaussian mixture with mean ±µ of size (i-
a) p = 4 or (i-b) p = 400, and two-class documents
(20NewsGroups, “Christian” vs. “Forsale”) with (ii)
Glove, (iii) word2vec, or (iv) tf*idf representations. In
blue are displayed the intra- and inter-class distance dis-
tributions and in red the collective distance distribution,
as if all data were Gaussian and all distances were inde-
pendent (which they are not).6 Dashed-red line point-
ing the

√
2 position (where distances theoretically con-

centrate).

nel spectral clustering, kernel SVM, graph ker-
nel semi-supervised learning, etc.). Typically, fol-
lowing our distance-based development, Kij =
f(1p‖xi − xj‖2) for some smooth function f .

Studying the statistical behavior of such algo-
rithms, even under a mere Gaussian mixture model
setting, has long remained an open problem, due
to the non-linearity of f and of the intricate de-
pendence between the entries of K. As a positive
aftermath of the (a priori deleterious) concentra-
tion of distance phenomenon though, the authors in
El Karoui et al. (2010); Couillet et al. (2016) prove
that, when p, n → ∞, the involved matrix K is
asymtotically well approximated by a form

K = W +P+ o‖·‖(1) (2)

where W is a non-informative full-rank noise ma-
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trix and P is a low-rank7 informative matrix which
carries in its few eigenvectors the information about
(a) the k data classes only through the first and sec-
ond order statistics {µa}ka=1 and {Ca}ka=1 of the
classes, and (b) the kernel function f only through
its local behavior around the joint distance concen-
tration point τp. For instance, the popular radial-
basis (RBF) kernel f(t) = exp(− t

2σ2 ) behaves
theoretically the same as any other function (for
instance a mere polynomial of order 2) having the
same first two derivatives as f in τp. This finding
opens the perspective to improve kernel-based al-
gorithms based on a careful choice of the behavior
of f around τp.

One of the main consequences of the approxi-
mation (2) is the theoretical ability to anticipate
the spectral behavior, so in particular to describe
the statistics of the dominant eigenvectors8 of K,
thereby allowing for a theoretical prediction of the
performances of spectral learning (e.g., spectral
clustering, manifold learning, etc.). These results
are again universal in that they only depend on
the statistical means and covariances of the data
classes; see Couillet et al. (2016) for details.

We wish here to demonstrate that kernel matrices
built on natural language data similarly conform to
the behavior of large dimensional Gaussian vectors.
To this end, we use both the same two-class data
benchmark introduced in the previous section as
well as the complete set of classes from 20News-
Group. We design a matrix K for the popular RBF
kernel f(t) = exp(−t/2) (that is with bandwidth
σ2 = 1) and extract its second dominant eigenvec-
tor v2.9

This is depicted in Figure 3 and Figure 4, which
it is convenient to compare to Figure 2. It is first
observed that, while, according to Figure 2 and
subsequently supported by Figure 3, the entries
of K, i.e., exp(− · /2) applied to the distances
1
p‖xi − xj‖2, are not discriminating – the distance
distribution being unimodal in Figure 2 and the
contrast between inner and outer class similarity
being weak for Glove and word2vec in Figure 3 –,
the entries of v2 are instead strongly informative
and the eigenvector distribution is bi-modal: this
is in essence explained by a “redundancy” effect

7Of rank usually equal or bounded by the number of classes
in the dataset.

8Those associated to the largest (or smallest) isolated eigen-
values of K.

9Which is known to be the best discriminating eigenvector
in a two-class setting.

Figure 3: Display of the Gaussian kernel matrices for
tf*idf, word2vec and Glove embeddings over the whole
20News-Groups database. Very low contrast is ob-
served between inner and outer similarities, especially
for glove and word2vec, as a consequence of the dis-
tance concentration effect.

in the numerous data belonging to the same class
which “gather energy” into an isolated eigenvalue
with eigenvector v2.10 This cumulative effect is
not exploited by algorithms which treat data dis-
tances one-by-one (such a KNN kernel with few
neighbors) rather than collectively.

A second observation, more to the point for our
present demonstration, is that the histogram of the
entries of v2 for genuine natural language data is
a close match to the histogram of the synthetic
Gaussian vector counterparts: this is a second man-
ifestation of the universality of concentration of
measure.

Remark 3 (“Behaving like” is not “being” a Gaus-
sian). We wish to insist that this universality obser-
vation does not suggest that word and document
vectors look like Gaussian vectors (this would be
a mistake); it merely states that the observed func-
tional of the learning data X (here the entries of
an eigenvector of K) has the same asymptotic be-
havior as with Gaussian vector inputs.

These empirical results are strong indicators that
natural language data representations may behave
similar to concentrated random vectors and may
adequately be modelled as such. This implies that

10In Couillet et al. (2016), a mathematical argument using
random matrix theory is provided to fully justify this observa-
tion.
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the curse of dimensionality, appearing here in the
distance concentration phenomenon, is at play: as
a main consequence, we expect many standard al-
gorithms based on individual data distance evalu-
ations to dramatically fail, where more elaborate
techniques using spectral properties remain compet-
itive and, in addition, are now prone to theoretical
analysis. The next section investigates this claim
in the specific case of SVMs.

(i-a) Gaussian, p = 4 (i-b) Gaussian, p = 400

0 .025 .05 −.05 0 .05

(ii) christian-vs-forsale,
Glove, p = 300

(iii) christian-vs-forsale,
word2vec, p = 300

−.05 0 .05 −.05 0 .05

(iv) christian-vs-forsale,
tf*idf, p = 3500

−.1 −.05 0 .05 .1

Figure 4: Histogram of the entries of the second
dominant eigenvector v2 of K = {exp(− 1

2p‖xi −
xj‖2)}1≤i,j≤n. (Left) Real data (same setting as in
Figure 2; (Right) Gaussian vectors with the same (em-
pirically estimated) first and second order statistics as
their left counterpart. In red are displayed the theoreti-
cal distributions under Gaussian data input (according
to Couillet et al. (2016)).

3 Application to supervised learning

The concentration of measure phenomenon in real
data (Equation (1)) has a fundamental advantage:
the performance of many learning algorithms be-
come predictable and, consequently, amenable to
improvement. The results of the previous section
therefore strongly suggest that, for the first time to
the authors’ knowledge, one can predict to some ex-
tent (so long that the non-trivial conditions are met

for the processed data) the performance of a host of
machine learning algorithms for natural language
processing.

Specifically, we consider here the standard least-
square kernel support vector machine (LSSVM)
classifier (used, e.g., in Mitra et al. (2007) for text
classification with some refinement), with kernel
K = {f(1p‖xi−xj‖2)}1≤i,j≤n, for some function
f to be specified. The LSSVM classifier allocates
the class of a new datum x based on its position
with respect to a hyperplane in kernel space de-
signed from the training set X. Although not di-
rectly a spectral method (as in the unsupervised
spectral clustering algorithm (Von Luxburg, 2007)),
for large n, p, the LSSVM classifier inherently ex-
ploits the eigenspectrum of the kernel matrix K
and its performance is proved in Liao and Couillet
(2019) to be asymptotically predictable (for large
enough p, n) and in closed form (which is thus sim-
pler than the margin-based SVM, whose asymp-
totic performances do not admit a closed form).

Precisely, the class C1 or C2 allocated to x is the
result of the binary test

g(x)
C2
≷
C1
ζp

for some well-chosen threshold ζp ∈ R, where
g(x) = αTk(x) + b, with

α = S−1(y − b1n), b =
1TnS

−1y

1TnS
−11n

and S = K + n
γ In, for y ∈ {±1}n the vec-

tor of training data labels, k(x) = {f(1p‖xi −
x‖2)}1≤i≤n, and regularization γ > 0.

In Liao and Couillet (2019), the authors precisely
show that, for a two-class mixture of concentrated
random vectors with means µ1, µ2 and covariances
C1, C2, as n, p → ∞ in the non-trivial regime
described above, for x genuinely in class Ci,

g(x)→ N (mi, σ
2
i )

where m1, m2, σ21 and σ22 only depend on (a)
the ratio f ′(τp)/f ′′(τp) and (b) scalar functionals
of the statistical means and covariances (specif-
ically, only ‖µ1 − µ2‖2, tr(C1 − C2)/

√
p and

tr((C1 −C2)
2)/p); see Liao and Couillet (2019)

for details.11 For instance, f(t) = exp(−t/2σ2)
11Of particular interest, Liao and Couillet (2019) proves

that the optimal threshold ζp must be around n2
n
− n1

n
, with

na the number of elements of class Ca in the training dataset,
and not around 0 as conventionally assumed.
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is the standard radial-basis function kernel (RBF)
with bandwidth σ2, the asymptotic performances
of which only depend on f ′(τp)/f ′′(τp) = −2σ2.

Of utmost relevance here is that the asymptotic
performances are identical for concentrated ran-
dom vectors as for Gaussian random vectors hav-
ing the same first and second order statistics.

Figure 5 reports the performances of LSSVM
as a function of the ratio f ′(τ̂p)/f

′′(τ̂p), where
τ̂p ≡ 1

n(n−1)
∑

1≤i 6=j≤n
1
p‖xi − xj‖2 is a consis-

tent (and fast converging) estimate for τp, here for
two kernels: (a) the second order polynomial ker-
nel such that f(τ̂p) = 4, f ′′(τ̂p) = 1 and f ′(τp)
varying from −2 to 1, and (b) the RBF kernel with
bandwidth σ2 such that −2σ2 varies from −2 to 0
(of course −2σ2 cannot be positive).

The benchmark dataset are the Yahoo Answer
classes “cult” versus “education”, the feature vec-
tors of which are either (ii) tf*idf based weighted
averages of Glove embedding (p = 300), (iii) tf*idf
based weighted averages of word2vec embeddings
(p = 300) and (iv) tf*idf representation (with dic-
tionary size p = 3000). A comparison to (i) Gaus-
sian input data vectors is also provided for refer-
ence (p = 300). In each experiment, the number of
training data is n = 500 or n = 2000.

Figure 5 first shows a trend for the performances
to converge, as the results for both n = 500 and
n = 2000 are similar: as such, these performances
are not random and then possibly amenable to the-
oretical analysis.

More in detail, Figure 5 demonstrates that, for
the tf*idf representation, the theoretical equivalent
for concentrated vectors (red) and the empirical
performance (blue) are quite different, clearly con-
firming that tf*idf representations are not appro-
priately modelled by concentrated vectors. This is
again no surprise as these vectors are intrinsically
sparse, which concentrated vectors cannot be.

The case of word2vec and Glove is more interest-
ing as Figure 5 reports an extremely accurate fit be-
tween theory and practice for f ′(τ̂p)/f ′′(τ̂p) below
−1 and above .5. More crucially, in these regions,
the performances for both the RFB kernel and the
polynomial kernel with f ′(τ̂p)/f

′′(τ̂p) = −2σ2
perfectly coincide, so that real data performance
corroborates the theory. Only the region [−1, .5]
shows a severe discrepancy. This is explained by
two factors: (a) for any kernel (here for the poly-
nomial kernel), Liao and Couillet (2019) shows
that the region where f ′(τp) ' 0 is particularly

unstable to “strongly mean-discriminative data”,
i.e., data mixtures strongly identifiable from their
statistical means; this is what is observed here with
a vanishing performance (dropping to 50%) when
f ′(τ̂p) = 0, inducing instability; at this point of
our analysis though, we cannot explain the per-
formance increase near 0− predicted by the the-
ory while the empirical performance monotonously
drops; (b) for the RBF kernel, in the vicinity of
σ2 ∼ 0, the entries of K degenerate; K becomes
sparse, which goes against concentration; this is
already observed for Gaussian inputs (top display);
this gap can only be covered with larger p, n values.

4 Concluding Remarks

The results of this article may scratch the surface of
a new mathematical theory for harnessing modern
natural language processing representations: recent
word and document features (word2vec and Glove)
were shown here to exhibit some key characteristics
of concentrated random vectors, which tf*idf maps
do not. This, as a consequence of recent works
on the analysis of machine learning algorithms for
concentration random vectors, opens the path to
theoretical analyses, improved understanding, fine-
tuned and new algorithms for natural language data
processing.

Yet, the preliminary conclusions of the present
article are less compelling than similar conclusions
drawn for image representations (e.g., in Liao and
Couillet (2019); Seddik et al. (2020), where the per-
formance predictions on real images are extremely
accurate for wide ranges of hyperparameters). This
may be interpreted in two ways: either the docu-
ment representation (Glove and word2vec) need be
perfected to be as discriminative and “maximum
entropic”12 as VGG or ResNet are for images, or
the concentration power of document embeddings
is intrinsically weaker than image embeddings. If
the latter hypothesis is correct, further mathemati-
cal efforts are needed to improve our understanding
of these “weakly concentrated” data models. We
plan to investigate these points in the future.
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(i) Gaussian inputs, p = 300
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f ′(τ̂p)/f
′′(τ̂p) (= −2σ2 for RBF)

Figure 5: Comparative performance of LSSVM clas-
sification for various document vector representations:
empirical results (blue) versus asymptotic theory (red),
for n = 500 (thick) or n = 2000 (light), with ei-
ther RBF (plain) or second-order polynomial (dashed)
kernel. Good fit for word2vec and Glove embeddings
away from unstability region of f ′(τ̂p)/f ′′(τ̂p), sug-
gesting concentration (Gaussian-like) behavior; tf*idf
data do not concentrate.
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