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ABSTRACT

We study in this paper the problem of jointly clustering and learning representations. As several
previous studies have shown, learning representations that are both faithful to the data to be clustered
and adapted to the clustering algorithm can lead to better clustering performance, all the more so that
the two tasks are performed jointly. We propose here such an approach for k-Means clustering based on
a continuous reparametrization of the objective function that leads to a truly joint solution. The behavior
of our approach is illustrated on various datasets showing its efficacy in learning representations for
objects while clustering them.

c© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Clustering is a long-standing problem in the machine learning
and data mining fields, and thus accordingly fostered abundant
research. Traditional clustering methods, e.g., k-Means (Mac-
Queen, 1967) and Gaussian Mixture Models (GMMs) (Bishop,
2006), fully rely on the original data representations and may
then be ineffective when the data points (e.g., images and
text documents) live in a high-dimensional space – a problem
commonly known as the curse of dimensionality. Significant
progress has been made in the last decade or so to learn better,
low-dimensional data representations (Hinton and Salakhutdi-
nov, 2006). The most successful techniques to achieve such high-
quality representations rely on deep neural networks (DNNs),
which apply successive non-linear transformations to the data in
order to obtain increasingly high-level features. Auto-encoders
(AEs) are a special instance of DNNs which are trained to embed
the data into a (usually dense and low-dimensional) vector at
the bottleneck of the network, and then attempt to reconstruct
the input based on this vector. The appeal of AEs lies in the
fact that they are able to learn representations in a fully unsuper-
vised way. The representation learning breakthrough enabled by
DNNs spurred the recent development of numerous deep clus-
tering approaches which aim at jointly learning the data points’
representations as well as their cluster assignments.
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In this study, we specifically focus on the k-Means-related
deep clustering problem. Contrary to previous approaches that
alternate between continuous gradient updates and discrete clus-
ter assignment steps (Yang et al., 2017), we show here that one
can solely rely on gradient updates to learn, truly jointly, rep-
resentations and clustering parameters. This ultimately leads
to a better deep k-Means method which is also more scalable
as it can fully benefit from the efficiency of stochastic gradient
descent (SGD). In addition, we perform a careful comparison
of different methods by (a) relying on the same auto-encoders,
as the choice of auto-encoders impacts the results obtained, (b)
tuning the hyperparameters of each method on a small validation
set, instead of setting them without clear criteria, and (c) enforc-
ing, whenever possible, that the same initialization and sequence
of SGD minibatches are used by the different methods. The
last point is crucial to compare different methods as these two
factors play an important role and the variance of each method
is usually not negligible.

2. Related work

In the wake of the groundbreaking results obtained by DNNs
in computer vision, several deep clustering algorithms were
specifically designed for image clustering (Yang et al., 2016;
Chang et al., 2017; Dizaji et al., 2017; Hu et al., 2017; Hsu
and Lin, 2018). These works have in common the exploitation
of Convolutional Neural Networks (CNNs), which extensively
contributed to last decade’s significant advances in computer
vision. Inspired by agglomerative clustering, Yang et al. (2016)
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proposed a recurrent process which successively merges clusters
and learn image representations based on CNNs. In (Chang et al.,
2017), the clustering problem is formulated as binary pairwise-
classification so as to identify the pairs of images which should
belong to the same cluster. Due to the unsupervised nature
of clustering, the CNN-based classifier in this approach is only
trained on noisily labeled examples obtained by selecting increas-
ingly difficult samples in a curriculum learning fashion. Dizaji
et al. (2017) jointly trained a CNN auto-encoder and a multino-
mial logistic regression model applied to the AE’s latent space.
Similarly, Hsu and Lin (2018) alternate between representation
learning and clustering where mini-batch k-Means is utilized
as the clustering component. Differently from these works, Hu
et al. (2017) proposed an information-theoretic framework based
on data augmentation to learn discrete representations, which
may be applied to clustering or hash learning. Although these
different algorithms obtained state-of-the-art results on image
clustering (Aljalbout et al., 2018), their ability to generalize to
other types of data (e.g., text documents) is not guaranteed due
to their reliance on essentially image-specific techniques – Con-
volutional Neural Network architectures and data augmentation.

Nonetheless, many general-purpose – non-image-specific –
approaches to deep clustering have also been recently de-
signed (Huang et al., 2014; Peng et al., 2016; Xie et al., 2016;
Dilokthanakul et al., 2017; Guo et al., 2017; Hu et al., 2017; Ji
et al., 2017; Jiang et al., 2017; Peng et al., 2017; Yang et al.,
2017). Generative models were proposed in (Dilokthanakul
et al., 2017; Jiang et al., 2017) which combine variational AEs
and GMMs to perform clustering. Alternatively, Peng et al.
(2016, 2017); Ji et al. (2017) framed deep clustering as a sub-
space clustering problem in which the mapping from the original
data space to a low-dimensional subspace is learned by a DNN.
Xie et al. (2016) defined the Deep Embedded Clustering (DEC)
method which simultaneously updates the data points’ represen-
tations, initialized from a pre-trained AE, and cluster centers.
DEC uses soft assignments which are optimized to match stricter
assignments through a Kullback-Leibler divergence loss. IDEC
was subsequently proposed in (Guo et al., 2017) as an improve-
ment to DEC by integrating the AE’s reconstruction error in the
objective function.

Few approaches were directly influenced by k-Means clus-
tering (Huang et al., 2014; Yang et al., 2017). The Deep Em-
bedding Network (DEN) model (Huang et al., 2014) first learns
representations from an AE while enforcing locality-preserving
constraints and group sparsity; clusters are then obtained by
simply applying k-Means to these representations. Yet, as repre-
sentation learning is decoupled from clustering, the performance
is not as good as the one obtained by methods that rely on a joint
approach. Besides (Hsu and Lin, 2018), mentioned before in the
context of images, the only study, to our knowledge, that directly
addresses the problem of jointly learning representations and
clustering with k-Means (and not an approximation of it) is the
Deep Clustering Network (DCN) approach (Yang et al., 2017).
However, as in (Hsu and Lin, 2018), DCN alternatively learns
(rather than jointly learns) the object representations, the cluster
centroids and the cluster assignments, the latter being based
on discrete optimization steps which cannot benefit from the
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Fig. 1. Overview of the proposed Deep k-Means approach instantiated with
losses based on the Euclidean distance.

efficiency of stochastic gradient descent. The approach proposed
here, entitled Deep k-Means (DKM), addresses this problem.

3. Deep k-Means

In the remainder, x denotes an object from a set X of objects
to be clustered. Rp represents the space in which learned data
representations are to be embedded. K is the number of clusters
to be obtained, rk ∈ Rp the representative of cluster k, 1 ≤ k ≤
K, and R = {r1, . . . , rK} the set of representatives. Functions
f and g define some distance in Rp which are assumed to be
fully differentiable wrt their variables. For any vector y ∈ Rp,
c f (y;R) gives the closest representative of y according to f .

The deep k-Means problem takes the following form:
min
R,θ

∑
x∈X

g(x, A(x; θ)) + λ f (hθ(x), c f (hθ(x);R)),

with: c f (hθ(x);R) = argmin
r∈R

f (hθ(x), r).
(1)

g measures the error between an object x and its reconstruction
A(x; θ) provided by an auto-encoder, θ representing the set of the
auto-encoder’s parameters. A regularization term on θ can be
included in the definition of g. However, as most auto-encoders
do not use regularization, we dispense with such a term here.
hθ(x) denotes the representation of x in Rp output by the AE’s
encoder part and f (hθ(x), c f (hθ(x);R)) is the clustering loss cor-
responding to the k-Means objective function in the embedding
space. Finally, λ in Problem (1) regulates the trade-off between
seeking good representations for x – i.e., representations that are
faithful to the original examples – and representations that are
useful for clustering purposes. Similar optimization problems
can be formulated when f and g are similarity functions or a
mix of similarity and distance functions. The approach proposed
here directly applies to such cases. Figure 1 illustrates the over-
all framework retained in this study with f and g both based on
the Euclidean distance. The closeness term in the clustering loss
will be further clarified below.

The original k-Means problem is recovered by considering
that the encoder and decoder used in the auto-encoder corre-
spond to the identity function, hence hθ(x) = x, and that both
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f and g correspond to the Euclidean distance. In such a case,
g(x, A(x; θ)) = 0, x and r lie in the same vector space, and the
problem in (1) takes the form:

min
R

∑
x∈X

||x − c(x;R)||22,

with: c(x;R) = argmin
r∈R

||x − r||22.
(2)

This is exactly the standard k-Means problem. The formula-
tion in (1) thus encompasses what is generally referred to as
generalized k-Means, in which any dissimilarity can be used in
place of the Euclidean distance. Inasmuch as the formulation
and the solution for the generalized version and the standard one
when learning representations is the same, we simply refer to
Problem (1) as deep k-Means.

3.1. Continuous generalization of Deep k-Means
We now introduce a parameterized version of the above prob-

lem that constitutes a continuous generalization, whereby we
mean here that all functions considered are continuous wrt the
introduced parameter.1 To do so, we first note that the clustering
objective function can be rewritten as f (hθ(x), c f (hθ(x);R)) =∑K

k=1 fk(hθ(x);R) with:

fk(hθ(x);R) =

 f (hθ(x), rk) if rk = c f (hθ(x);R)
0 otherwise

Let us now assume that we know some function Gk, f (hθ(x), α;R)
such that:

(i) Gk, f is differentiable wrt to θ,R and continuous wrt α (dif-
ferentiability wrt R means differentiability wrt to all dimen-
sions of rk, 1 ≤ k ≤ K);

(ii) ∃α0 ∈ R ∪ {−∞,+∞} such that:

lim
α→α0

Gk, f (hθ(x), α;R) =

1 if rk = c f (hθ(x);R)
0 otherwise

Then, one has, ∀x ∈ X: lim
α→α0

f (hθ(x), rk) Gk, f (hθ(x), α;R) =

fk(hθ(x);R), showing that the problem in (1) is equivalent to:

min
R,θ

lim
α→α0

F (X,α;θ,R)︷                                                                ︸︸                                                                ︷∑
x∈X

g(x, A(x; θ)) + λ

K∑
k=1

f (hθ(x), rk) Gk, f (hθ(x), α;R)

(3)
All functions in the above formulation are fully differentiable
wrt both θ and R. One can thus estimate θ and R through a
simple, joint optimization based on stochastic gradient descent
(SGD) for a given α:

(θ, R)← (θ, R) − η
1
|X̃|
∇(θ,R)F (X̃, α; θ,R) (4)

with η the learning rate and X̃ a random mini-batch of X.

1Note that, independently from this work, a similar relaxation has been previ-
ously proposed in (Agustsson et al., 2017) – wherein soft-to-hard quantization is
performed on an embedding space learned by an AE for compression. However,
given the different nature of the goal here – clustering – our proposed learning
framework substantially differs from theirs.

3.2. Choice of Gk, f

Several choices are possible for Gk, f . A simple choice, used
throughout this study, is based on a parameterized softmax func-
tion. The fact that the softmax function can be used as a dif-
ferentiable surrogate to argmax or argmin is well known and
has been applied in different contexts, as in the recently pro-
posed Gumbel-softmax distribution employed to approximate
categorical samples (Jang et al., 2017; Maddison et al., 2017).
The parameterized softmax function which we adopted takes the
following form:

Gk, f (hθ(x), α;R) =
e−α f (hθ(x),rk)∑K

k′=1 e−α f (hθ(x),rk′ )
(5)

with α ∈ [0,+∞). The function Gk, f defined by Eq. 5 is differ-
entiable wrt θ,R and α (condition (i)) as it is a composition of
functions differentiable wrt these variables. Furthermore, one
has:

Property 1. (condition (ii)) If c f (hθ(x);R) is unique for all x ∈
X, then:

lim
α→+∞

Gk, f (hθ(x), α;R) =

1 if rk = c f (hθ(x);R)
0 otherwise

The proof, which is straightforward, is detailed in the Supple-
mentary Material.

The assumption that c f (hθ(x);R) is unique for all objects is
necessary for Gk, f to take on binary values in the limit; it is not
necessary to hold for small values of α. In the unlikely event
that the above assumption does not hold for some x and large α,
one can slightly perturbate the representatives equidistant to x
prior to updating them. We have never encountered this situation
in practice.

Finally, Eq. 5 defines a valid (according to conditions (i) and
(ii)) function Gk, f that can be used to solve the deep k-Means
problem (3). We adopt this function in the remainder of this
study.

3.3. Choice of α

The parameter α can be defined in different ways. Indeed, α
can play the role of an inverse temperature such that, when α
is 0, each data point in the embedding space is equally close,
through Gk, f , to all the representatives (corresponding to a com-
pletely soft assignment), whereas when α is +∞, the assignment
is hard. In the first case, for the deep k-Means optimization
problem, all representatives are equal and set to the point r ∈ Rp

that minimizes
∑

x∈X f (hθ(x), r). In the second case, the solution
corresponds to exactly performing k-Means in the embedding
space, the latter being learned jointly with the clustering process.
Following a deterministic annealing approach (Rose et al., 1990),
one can start with a low value of α (close to 0), and gradually
increase it till a sufficiently large value is obtained. At first, rep-
resentatives are randomly initialized. As the problem is smooth
when α is close to 0, different initializations are likely to lead to
the same local minimum in the first iteration; this local minimum
is used for the new values of the representatives for the second
iteration, and so on. The continuity of Gk, f wrt α implies that,
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Algorithm 1: Deep k-Means algorithm
Input: data X, number of clusters K, balancing

parameter λ, scheme for α, number of epochs T ,
number of minibatches N, learning rate η

Output: autoencoder parameters θ, cluster
representatives R

Initialize θ and rk, 1 ≤ k ≤ K (randomly or through
pretraining)

for α = mα to Mα do # inverse temperature
for t = 1 to T do # epochs per α

for n = 1 to N do # minibatches

Draw a minibatch X̃ ⊂ X
Update (θ, R) using SGD (Eq. 4)

end
end

end

provided the increment in α is not too important, one evolves
smoothly from the initial local minimum to the last one. In the
above deterministic annealing scheme, α allows one to initialize
cluster representatives. The initialization of the auto-encoder
can as well have an important impact on the results obtained and
prior studies (e.g., Huang et al. (2014); Xie et al. (2016); Guo
et al. (2017); Yang et al. (2017)) have relied on pretraining for
this matter. In such a case, one can choose a high value for α
to directly obtain the behavior of the k-Means algorithm in the
embedding space after pretraining. We evaluate both approaches
in our experiments.

Algorithm 1 summarizes the deep k-Means algorithm for the
deterministic annealing scheme, where mα (respectively Mα) de-
note the minimum (respectively maximum) value of α, and T is
the number of epochs per each value of α for the stochastic gra-
dient updates. Even though Mα is finite, it can be set sufficiently
large to obtain in practice a hard assignment to representatives.
Alternatively, when using pretraining, one sets mα = Mα (i.e., a
constant α is used).

3.4. Scaling-down phenomenon
The loss functions defined in 1 and 3 – as well as the loss

used in the DCN approach (Yang et al., 2017) and potentially in
other approaches – may in theory induce a behavior in the learn-
ing procedure where the clustering loss can be made arbitrarily
small while preserving the reconstruction capacity of the AE
by “scaling down“ the subspace where the object embeddings
and the cluster representatives live – thus reducing the distance
between embeddings and representatives. This is not a problem
per se as the clustering problem is still well defined and the
clusters obtained are still meaningful. This situation indeed con-
trasts with the one where all objects and cluster representatives
collapse into a single point, a situation which can happen when
no reconstruction loss is used, as in Xie et al. (2016) and Yang
et al. (2016). In such a case, no valid cluster is obtained.

We tested L2 regularization on the auto-encoder parameters to
assess whether scaling down happens or not in practice. Indeed,
by symmetry of the encoder and decoder, having small weights
in the encoder, leading to scaling down, requires having large

weights in the decoder for reconstruction; L2 regularization
penalizes such large weights and thus prevents scaling down in
the encoder. We have however not observed any difference in
our experiments with the case where no regularization is used,
showing that the scaling-down phenomenon does not happen
in practice. For the sake of simplicity, we dispense with L2
regularization in the remainder.

4. Experiments

In order to evaluate the clustering results of our approach,
we conducted experiments on different datasets and compared
it against state-of-the-art standard and k-Means-related deep
clustering models.

4.1. Datasets

The datasets used in the experiments are standard clustering
benchmark collections. We considered both image and text
datasets to demonstrate the general applicability of our approach.
Image datasets consist of MNIST (70,000 images, 28×28 pixels,
10 classes) and USPS (9,298 images, 16 × 16 pixels, 10 classes)
which both contain hand-written digit images. We reshaped the
images to one-dimensional vectors and normalized the pixel
intensity levels (between 0 and 1 for MNIST, and between -1
and 1 for USPS). The text collections we considered are the
20 Newsgroups dataset (hereafter, 20NEWS) and the RCV1-v2
dataset (hereafter, RCV1). For 20NEWS, we used the whole
dataset comprising 18,846 documents labeled into 20 different
classes. Similarly to (Xie et al., 2016; Guo et al., 2017), we
sampled from the full RCV1-v2 collection a random subset of
10,000 documents, each of which pertains to only one of the
four largest classes. Because of the text datasets’ sparsity, and
as proposed in (Xie et al., 2016), we selected the 2000 words
with the highest tf-idf values to represent each document.

4.2. Baselines and deep k-Means variants

Clustering models may use different strategies and different
clustering losses, leading to different properties. As our goal
in this work is to study the k-Means clustering algorithm in
embedding spaces, we focus on the family of k-Means-related
models and compare our approach against state-of-the-art mod-
els from this family, using both standard and deep clustering
models. For the standard clustering methods, we used: the
k-Means clustering approach (MacQueen, 1967) with initial
cluster center selection (Arthur and Vassilvitskii, 2007), denoted
KM; an approach denoted as AE-KM in which dimensionality
reduction is first performed using an auto-encoder followed by k-
Means applied to the learned representations.2 We compared as
well against the only previous, “true” deep clustering k-Means-
related method, the Deep Clustering Network (DCN) approach
described in (Yang et al., 2017). DCN is, to the best of our

2We did not consider variational auto-encoders (Kingma and Welling, 2014)
in our baselines as Jiang et al. (2017) previously compared variational AE
+ GMM and “standard” AE + GMM, and found that the latter consistently
outperformed the former.



5

knowledge, the current most competitive clustering algorithm
among k-Means-related models.

In addition, we consider here the Improved Deep Embedded
Clustering (IDEC) model (Guo et al., 2017) as an additional
baseline. IDEC is a general-purpose state-of-the-art approach in
the deep clustering family. It is an improved version of the DEC
model (Xie et al., 2016) and thus constitutes a strong baseline.
For both DCN and IDEC, we studied two variants: with pretrain-
ing (DCNp and IDECp) and without pretraining (DCNnp and
IDECnp). The pretraining we performed here simply consists in
initializing the weights by training the auto-encoder on the data
to minimize the reconstruction loss in an end-to-end fashion –
greedy layer-wise pretraining (Bengio et al., 2006) did not lead
to improved clustering in our preliminary experiments.

The proposed Deep k-Means (DKM) is, as DCN, a “true”
k-Means approach in the embedding space; it jointly learns
AE-based representations and relaxes the k-Means problem by
introducing a parameterized softmax as a differentiable surro-
gate to k-Means argmin. In the experiments, we considered
two variants of this approach. DKMa implements an anneal-
ing strategy for the inverse temperature α and does not rely
on pretraining. The scheme we used for the evolution of the
inverse temperature α in DKMa is given by the following re-
cursive sequence: αn+1 = 21/ log(n)2

× αn with mα = α1 = 0.1.
The rationale behind the choice of this scheme is that we want
α to spend more iterations on smaller values and less on larger
values while preserving a gentle slope. Alternatively, we studied
the variant DKMp which is initialized by pretraining an auto-
encoder and then follows Algorithm 1 with a constant α such
that mα = Mα = 1000. Such a high α is equivalent to having
hard cluster assignments while maintaining the differentiability
of the optimization problem.

Implementation details.. For IDEC, we used the Keras code
shared by their authors.3 Our own code for DKM is based on
TensorFlow. To enable full control of the comparison between
DCN and DKM – DCN being the closest competitor to DKM –
we also re-implemented DCN in TensorFlow. The code for both
DKM and DCN is available online.4

Choice of f and g.. The functions f and g in Problem (1) de-
fine which distance functions is used for the clustering loss and
reconstruction error, respectively. In this study, both f and g are
simply instantiated with the Euclidean distance on all datasets.
For the sake of comprehensiveness, we report in the supplemen-
tary material results for the cosine distance on 20NEWS.

4.3. Experimental setup

Auto-encoder description and training details.. The auto-
encoder we used in the experiments is the same across all

3https://github.com/XifengGuo/IDEC-toy. We used this version in-
stead of https://github.com/XifengGuo/IDEC as only the former enables
auto-encoder pretraining in a non-layer-wise fashion.

4https://github.com/MaziarMF/deep-k-means

datasets and is borrowed from previous deep clustering stud-
ies (Xie et al., 2016; Guo et al., 2017). Its encoder is a fully-
connected multilayer perceptron with dimensions d-500-500-
2000-K, where d is the original data space dimension and K
is the number of clusters to obtain. The decoder is a mirrored
version of the encoder. All layers except the one preceding the
embedding layer and the one preceding the output layer are ap-
plied a ReLU activation function (Nair and Hinton, 2010) before
being fed to the next layer. For the sake of simplicity, we did
not rely on any complementary training or regularization strate-
gies such as batch normalization or dropout. The auto-encoder
weights are initialized following the Xavier scheme (Glorot and
Bengio, 2010). For all deep clustering approaches, the training
is based on the Adam optimizer (Kingma and Ba, 2015) with
standard learning rate η = 0.001 and momentum rates β1 = 0.9
and β2 = 0.999. The minibatch size is set to 256 on all datasets
following (Guo et al., 2017). We emphasize that we chose ex-
actly the same training configuration for all models to facilitate
a fair comparison.

The number of pretraining epochs is set to 50 for all models
relying on pretraining. The number of fine-tuning epochs for
DCNp and IDECp is fixed to 50 (or equivalently in terms of
iterations: 50 times the number of minibatches). We set the
number of training epochs for DCNnp and IDECnp to 200. For
DKMa, we used the 40 terms of the sequence α described in
Section 4.2 as the annealing scheme and performed 5 epochs for
each α term (i.e., 200 epochs in total). DKMp is fine-tuned by
performing 100 epochs with constant α = 1000. The cluster rep-
resentatives are initialized randomly from a uniform distribution
U(−1, 1) for models without pretraining. In case of pretraining,
the cluster representatives are initialized by applying k-Means
to the pretrained embedding space.

Hyperparameter selection.. The hyperparameters λ for DCN
and DKM and γ for IDEC, that define the trade-off between
the reconstruction and the clustering error in the loss func-
tion, were determined by performing a line search on the set
{10i | i ∈ [−4, 3]}. To do so, we randomly split each dataset into
a validation set (10% of the data) and a test set (90%). Each
model is trained on the whole data and only the validation set
labels are leveraged in the line search to identify the optimal λ or
γ (optimality is measured with respect to the clustering accuracy
metric). We provide the validation-optimal λ and γ obtained
for each model and dataset in the supplementary material. The
performance reported in the following sections corresponds to
the evaluation performed only on the held-out test set.

While one might argue that such procedure affects the unsu-
pervised nature of the clustering approaches, we believe that a
clear and transparent hyperparameter selection methodology is
preferable to a vague or hidden one. Moreover, although we did
not explore such possibility in this study, it might be possible to
define this trade-off hyperparameter in a data-driven way.

Experimental protocol.. We observed in pilot experiments that
the clustering performance of the different models is subject to
non-negligible variance from one run to another. This variance is
due to the randomness in the initialization and in the minibatch
sampling for the stochastic optimizer. When pretraining is used,
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the variance of the general pretraining phase and that of the
model-specific fine-tuning phase add up, which makes it difficult
to draw any confident conclusion about the clustering ability
of a model. To alleviate this issue, we compared the different
approaches using seeded runs whenever this was possible. This
has the advantage of removing the variance of pretraining as
seeds guarantee exactly the same results at the end of pretraining
(since the same pretraining is performed for the different models).
Additionally, it ensures that the same sequence of minibatches
will be sampled. In practice, we used seeds for the models
implemented in TensorFlow (KM, AE-KM, DCN and DKM).
Because of implementation differences, seeds could not give the
same pretraining states in the Keras-based IDEC. All in all, we
randomly selected 10 seeds and for each model performed one
run per seed. Additionally, to account for the remaining variance
and to report statistical significance, we performed a Student’s
t-test from the 10 collected samples (i.e., runs).

4.4. Clustering results

The results for the evaluation of the k-Means-related cluster-
ing methods on the different benchmark datasets are summarized
in Table 1. The clustering performance is evaluated with respect
to two standard measures (Cai et al., 2011): Normalized Mu-
tual Information (NMI) and the clustering accuracy (ACC). We
report for each dataset/method pair the average and standard
deviation of these metrics computed over 10 runs and conduct
significance testing as previously described in the experimental
protocol. The bold (resp. underlined) values in each column
of Table 1 correspond to results with no statistically significant
difference (p > 0.05) to the best result with (resp. without)
pretraining for the corresponding dataset/metric.

We first observe that when no pretraining is used, DKM with
annealing (DKMa) markedly outperforms DCNnp on all datasets.
DKMa achieves clustering performance similar to that obtained
by pretraining-based methods. This confirms our intuition that
the proposed annealing strategy can be seen as an alternative to
pretraining.

Among the approaches integrating representation learning
with pretraining, the AE-KM method, that separately performs
dimension reduction and k-Means clustering, overall obtains the
worst results. This observation is in line with prior studies (Yang
et al., 2017; Guo et al., 2017) and underlines again the impor-
tance of jointly learning representations and clustering. We note
as well that, apart from DKMa, pretraining-based deep cluster-
ing approaches substantially outperform their non-pretrained
counterparts, which stresses the importance of pretraining.

Furthermore, DKMp yields significant improvements on all
collections except RCV1 over DCNp, the other “true” deep k-
Means approach. In all cases, DCNp shows performance on par
with that of AE-KM. This places, to the best of our knowledge,
DKMp as the current best deep k-Means clustering method.

To further confirm DKM’s efficacy, we also compare it against
IDEC, a state-of-the-art deep clustering algorihm which is not
based on k-Means. We report the corresponding results in Ta-
ble 2. Once again, DKMa significantly outperforms its non-
pretrained counterpart, IDECnp, except on RCV1. We note as
well that, with the exception of the NMI results on MNIST,
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Fig. 2. t-SNE visualization of the embedding spaces learned on USPS.

DKMp is always either significantly better than IDECp or with
no significant difference from this latter. This shows that the pro-
posed DKM is not only the strongest k-Means-related clustering
approach, but is also remarkably competitive wrt deep clustering
state of the art.

4.5. Illustration of learned representations

While the quality of the clustering results and that of the rep-
resentations learned by the models are likely to be correlated, it
is relevant to study to what extent learned representations are
distorted to facilitate clustering. To provide a more interpretable
view of the representations learned by k-means-related deep clus-
tering algorithm, we illustrate the embedded samples provided
by AE (for comparison), DCNp, DKMa, and DKMp on USPS
in Figure 2 (best viewed in color). DCNnp was discarded due
to its poor clustering performance. We used for that matter the
t-SNE visualization method (van der Maaten and Hinton, 2008)
to project the embeddings into a 2D space. We observe that
the representations for points from different clusters are clearly
better separated and disentangled in DKMp than in other models.
This brings further support to our experimental results, which
showed the superior ability of DKMp to learn representations
that facilitate clustering.

5. Conclusion

We have presented in this paper a new approach for jointly
clustering with k-Means and learning representations by con-
sidering the k-Means clustering loss as the limit of a differen-
tiable function. If several studies have proposed solutions to
this problem with different clustering losses, to the best of our
knowledge, this is the first approach that truly jointly optimizes,
through simple stochastic gradient descent updates, representa-
tion and k-Means clustering losses. In addition to pretraining,
that can be used in all methods, this approach can also rely on a
deterministic annealing scheme for parameter initialization.

We further conducted careful comparisons with previous ap-
proaches by ensuring that the same architecture, initialization
and minibatches are used. The experiments conducted on several
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Table 1. Clustering results of the k-Means-related methods. Performance is measured in terms of NMI and ACC (%); higher is better. Each cell contains
the average and standard deviation computed over 10 runs. Bold (resp. underlined) values correspond to results with no significant difference (p > 0.05)
to the best approach with (resp. without) pretraining for each dataset/metric pair.

Model MNIST USPS 20NEWS RCV1

ACC NMI ACC NMI ACC NMI ACC NMI

KM 53.5±0.3 49.8±0.5 67.3±0.1 61.4±0.1 23.2±1.5 21.6±1.8 50.8±2.9 31.3±5.4
AE-KM 80.8±1.8 75.2±1.1 72.9±0.8 71.7±1.2 49.0±2.9 44.5±1.5 56.7±3.6 31.5±4.3

Deep clustering approaches without pretraining

DCNnp 34.8±3.0 18.1±1.0 36.4±3.5 16.9±1.3 17.9±1.0 9.8±0.5 41.3±4.0 6.9±1.8
DKMa 82.3±3.2 78.0±1.9 75.5±6.8 73.0±2.3 44.8±2.4 42.8±1.1 53.8±5.5 28.0±5.8

Deep clustering approaches with pretraining

DCNp 81.1±1.9 75.7±1.1 73.0±0.8 71.9±1.2 49.2±2.9 44.7±1.5 56.7±3.6 31.6±4.3
DKMp 84.0±2.2 79.6±0.9 75.7±1.3 77.6±1.1 51.2±2.8 46.7±1.2 58.3±3.8 33.1±4.9

Table 2. Clustering results of the DKM and IDEC methods. Performance is measured in terms of NMI and ACC (%); higher is better. Each cell contains
the average and standard deviation computed over 10 runs. Bold (resp. underlined) values correspond to results with no significant difference (p > 0.05)
to the best approach with (resp. without) pretraining for each dataset/metric pair.

Model MNIST USPS 20NEWS RCV1

ACC NMI ACC NMI ACC NMI ACC NMI

Deep clustering approaches without pretraining

IDECnp 61.8±3.0 62.4±1.6 53.9±5.1 50.0±3.8 22.3±1.5 22.3±1.5 56.7±5.3 31.4±2.8
DKMa 82.3±3.2 78.0±1.9 75.5±6.8 73.0±2.3 44.8±2.4 42.8±1.1 53.8±5.5 28.0±5.8

Deep clustering approaches with pretraining

IDECp 85.7±2.4 86.4±1.0 75.2±0.5 74.9±0.6 40.5±1.3 38.2±1.0 59.5±5.7 34.7±5.0
DKMp 84.0±2.2 79.6±0.9 75.7±1.3 77.6±1.1 51.2±2.8 46.7±1.2 58.3±3.8 33.1±4.9

datasets confirm the good behavior of Deep k-Means that outper-
forms DCN, the current best approach for k-Means clustering in
embedding spaces, on all the collections considered.
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