

Short interval or continuous training programs to improve walking distance for intermittent claudication: Pilot study

Béatrice Villemur, Valérie Thoreau, Michel Guinot, Elodie Gailledrat, Véronique Evra, Céline Vermorel, Alison Foote, Patrick Carpentier, Jean-Luc Bosson, Dominic Pérennou

▶ To cite this version:

Béatrice Villemur, Valérie Thoreau, Michel Guinot, Elodie Gailledrat, Véronique Evra, et al.. Short interval or continuous training programs to improve walking distance for intermittent claudication: Pilot study. Annals of Physical and Rehabilitation Medicine, 2020, 63 (6), pp.466-473. 10.1016/j.rehab.2020.03.004. hal-03345300

HAL Id: hal-03345300 https://hal.univ-grenoble-alpes.fr/hal-03345300

Submitted on 15 Dec 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Short interval or continuous training programs to improve walking distance for intermittent claudication: pilot study

Short title: Training with active recovery for intermittent claudication

Béatrice Villemur, MD^a; Valérie Thoreau, MD^a; Michel Guinot, MD, PhD^{b,c}; Elodie Gailledrat, MD^{b,d}; Véronique Evra, MSc^a; Céline Vermorel, MSc^e; Alison Foote, PhD^f; Patrick Carpentier, MD, PhD^{g,h}; Jean-Luc Bosson, MD, PhDⁱ; Dominic Pérennou, MD, PhD^{d,j}

^aDepartment of Vascular Rehabilitation, Grenoble Alpes University Hospital, Grenoble, F-38433, France

^bSports Medicine Department, Grenoble Alpes University Hospital, Grenoble, F-38433, France

°INSERM U1042, Laboratory HP2, Grenoble Alpes University Hospital F-38000 Grenoble France

^dDepartment of Physical and Rehabilitation Medicine, Grenoble Alpes University Hospital, Grenoble, F-38433, France

^eINSERM CIC-1406 Grenoble Alpes University Hospital F-38043 Grenoble, France

^fResearch Division, Grenoble Alpes University Hospital, Grenoble, F-38043, France

^gVascular Medicine Department, Grenoble Alpes University Hospital, Grenoble, F-38043, France

^hFaculty of Medicine, University Grenoble Alpes, Grenoble, F-38000 France

ⁱTIMC-IMAG, University Grenoble Alpes, Grenoble, F-38000 France

^jLab. Cognitive Neurosciences, CNRS UMR5105, Université Grenoble Alpes, 38040 Grenoble, France

Corresponding author: Dr Alison Foote, CIC-P, Hôpital Michallon, CHU de Grenoble

Alpes 38043 Grenoble, France

tel +33 476769434, fax +33 476765876, AFoote@chu-grenoble.fr

1 Short interval or continuous training programs to improve walking distance for

- 2 intermittent claudication: pilot study
- 3

4 Abstract

5 Objective. Supervised exercise training is part of first-line therapies for intermittent 6 claudication. Short periods of intensive treadmill training have been found efficient; however, 7 the optimal modalities remain to be determined, especially interval training with active recovery 8 (ITAR). In this prospective assessor-blinded single-centre pilot study, we assessed the feasibility 9 of a randomised controlled trial comparing parallel 4-week intensive rehabilitation programs 10 comprising treadmill training performed as ITAR or conventional training with constant slope 11 and speed interspersed with rest periods (CT).

Methods. A total of 38 in- or out-patients were randomised to the ITAR or CT program for 5 days/week for 4 weeks. The primary outcome was change in maximum walking distance measured on a graded treadmill before and after the program.

15 Results. Adherence was high. All training sessions were completed in the ITAR program and only a few were not completed in the CT program (median 100% [Q1–Q3 96-100]). Tolerance 16 17 was excellent (no adverse events). VO_{2peak} was low in both groups, corresponding to moderate to 18 severe exercise intolerance. The 2 groups did not differ in the primary outcome (median ITAR vs 19 CT 480 [135-715] vs 315 m [0-710]; p=0.62) or other walking distances (constant speed and 20 gradient treadmill test). For all 38 participants, both programs greatly increased maximum 21 walking distance in the graded treadmill test: median 415 [240-650] to 995 m [410-1490], with a 22 large effect size ($p < 10^{-4}$).

Conclusion. A 4-week intensive rehabilitation program with ITAR or CT for intermittent
 claudication showed high adherence, was well tolerated, and improved walking distance as much
 as that reported for longer conventional programs. These findings prompt the design of a larger
 multicenter randomised controlled trial.

5

6 Key Words: peripheral arterial disease; intermittent claudication; physical therapy; exercise
7 physiology; treadmill training with active recovery; supervised exercise

8

9 ClinicalTrials.gov registration: NCT01734603

10

11 Introduction

Peripheral artery disease (PAD) with intermittent claudication (IC) affects about 2% of the general population, severely limiting walking ability and physical activity [1-5]. We now have strong evidence that individuals with IC should receive management of cardiovascular risk factors [1, 3, 6-9], therapeutic education [1, 3, 8-10], and medical treatment [1, 3, 8, 9] and should perform supervised exercise therapy [1, 6, 7, 11-15] and home exercises [7, 14, 16, 17].

Since the 1970s [5], treadmill exercise therapy has become an important part of rehabilitation programs for individuals with IC [6, 18, 19], although other training modalities may also be efficient [7, 20]. The benefits are multifactorial, attributed to metabolic and microcirculatory adaptations of the muscles and to improvements in cardiorespiratory fitness [21-23]. However, the duration and frequency of sessions (number of hours per day and days per week) is debated, as is the total length of rehabilitation programs. Programs may last from 6 weeks to 6 months, the frequency of sessions inversely proportional to the total length [24, 25]. 1 The interest in short intensive programs of several days per week is increasing [6, 18, 26]. 2 Such programs induce a rapid gain in walking abilities (within the first 2 months), maintained 3 with further training [27]. Relatively short rehabilitation programs (6-8 weeks) might have better adherence than less intensive programs spread out over 6 months as well as less cost, thereby 4 5 allowing more individuals to be treated [26-28]. As well, the duration and frequency of 6 rehabilitation sessions might be reduced to reduce the total length of the program to 4 weeks 7 [28]. Hence, individuals living far from the rehabilitation centre might more easily benefit from 8 such programs [28].

9 Conventional training (CT) on a treadmill is often performed at an intensity close to the 10 maximum tolerated before the onset of claudication pain. When claudication pain occurs, the 11 pain imposes complete rest before continuing the exercise. During interval training with active 12 recovery (ITAR), exercise is at a level well below the pain threshold and is interspersed with 13 periods of low-level exercise but not rest. Such low-intensity active recovery facilitates lactate 14 removal [29] favouring better metabolic recovery of muscles [30]. Hence, ITAR is efficient and 15 safe for cardiac [31-33], respiratory [34], and metabolic [35] rehabilitation, with preliminary 16 evidence suggesting that it might provide benefits for patients with IC [26].

The results of our preliminary pilot study of individuals with PAD, involving 2 weeks of the ITAR modality only, were encouraging, with walking distance clearly increased as compared to baseline [28]. In the present study, we investigated the feasibility of a parallel-group randomised study design, this time comparing two 4-week intensive treadmill exercise programs, ITAR versus CT, at constant speed and slope with rest recovery if necessary.

22

1 Methods

2 Study design and setting

This study was a prospective assessor-blinded single-center randomised controlled trial that compared 2 parallel rehabilitation interventions. It took place at Grenoble Alpes University Hospital (France) from November 2012 to March 2014. The objectives were to assess the feasibility of intensive 4-week treadmill exercise programs for PAD and compare 2 modes of treadmill training: ITAR and CT. All physiotherapists and rehabilitation physicians involved had received specific training and had at least 10 years of experience working with PAD patients in a university hospital setting.

10 Ethics

The study protocol was approved by the regional medical research ethics committee (French *Comité de Protection des Personnes* CPP Sud-Est V: no. 2011 A00969-32). The study was financed by Grenoble Alpes University Hospital and registered at ClinicalTrials.gov (NCT01734603). Written informed consent was obtained from all participants. The CONSORT guidelines for reporting randomised trials of non-pharmacological treatments were followed.

16 Inclusion and non-inclusion criteria

17 Individuals, with or without prior revascularization, were referred by their vascular surgeon, 18 specialist in vascular medicine, or general practitioner. All eligible participants had been 19 examined by their cardiologist and vascular physician less than 3 months before inclusion. This 20 examination included evaluation of potential acute cardiac comorbidities, such as myocardial 21 ischemia, severe heart rhythm disorders or conduction disorders by exercise myocardial 22 perfusion scintigraphy, a graded maximal exercise test on an ergocycle or stress

echocardiography (exercise or dobutamine). The inclusion criteria were out-patient or 1 2 hospitalized patient 18 to 80 years old with claudication (in one or both lower limbs) due to PAD 3 diagnosed by a trained vascular physician based on a duplex scan, ankle–brachial index < 0.90 at 4 rest and a 20% decrease in ankle-brachial index after a constant speed (3 km/hr) and constant 5 gradient (10%) treadmill test (C-test, often called the "Strandness test"). Non-inclusion criteria 6 were exercise tolerance limited by factors other than claudication (poorly controlled blood 7 pressure, acute coronary artery disease, dyspnea, severe osteoarticular or neurological 8 deficiencies) or abdominal aortic aneurysm with diameter > 40 mm.

9

10 **Common therapeutic program**

All participants received therapeutic education on the management of cardiovascular risk factors. Their regular medication remained unchanged during the study. They were advised on the need to walk for at least 1 hr a day, at a pain-free level, if they wanted to maintain the benefits of training. All participants followed a 4-week rehabilitation program (20 working days, 3 hr/day) that combined supervised treadmill training (CT or ITAR) plus additional daily 2-hr supervised physical therapy sessions. During this program, all individuals had a daily medical check-up to detect any adverse events and ensure that the training was well tolerated.

Treadmill training was performed on a TechmedPhysio® treadmill (Auxerre, France) allowing precise speed and slope adjustments (speed accuracy 0.1 km/hr [0.06 mph] and slope accuracy 0.5%). For each participant, training was adjusted according to their baseline maximal walking speed, determined without slope but with a speed increased by 1 km/hr every 3 min to find the speed at which maximum tolerable pain occurred. Then during the training period, the intensity incremental was based on the achievement of the previous session. After each successfully
 completed session, either the slope or the speed was increased (Fig. 1).

Additional supervised exercises combined 20 min of continuous arm-cycling (starting at 10 watts and increased by 5 watts weekly, depending on upper-limb tolerance), 20 min of stationary ergocycle (starting at 25 watts and increased by 5 watts weekly) and 45 min of soft floor gymnastics. Each workshop was separated by about 5 min of passive recovery.

7 Specific interventions

8 The 2 arms differed in the modality of the treadmill training (Fig. 1). In the CT arm, individuals 9 walked at the predetermined constant speed, completely stopping if in pain and resting until the 10 pain ceased. In ITAR, individuals alternated 2 different walking speeds and slope, constituting 11 the exercise and recovery periods. Each session lasted 40 min, including warm-up.

12

13 *Conventional training (CT)*

14 This program, presented in Figure 1 (left side) was based on that proposed by Hiatt et al. [22]. 15 Each treadmill session lasted 50 min, including a 5-min warm-up, 40 min of exercise at constant speed and slope (including a 10-min run-in period), then 5 min of relaxation. The initial speed 16 17 was set at 3.2 km/hr (2 mph) with 0% slope, but 11 individuals unable to walk at this speed 18 started at 1.6 km/hr with 0% slope. If claudication pain occurred (\geq 3 on the 4-point claudication 19 pain rating scale of the American College of Sports Medicine) [22], individuals could stop 20 walking until all pain ceased, before restarting [10]. For this reason, the total duration of CT 21 sessions was set at 10 min longer than the ITAR program. The training intensity was increased 22 the next session if the individual was able to walk for at least 8 min.

23

1 Interval training with active recovery (ITAR)

2 This training program is also presented in Figure 1 (right side). Each session lasted 40 min
3 starting with 5-min warm up, then 5 cycles of 6 min: 3 min of walking at the targeted intensity
4 followed by 3 min of active recovery, and finally 5 min of relaxation.

5 At the first session, the walking speed was set at 70% and active recovery speed at 40% 6 of baseline walking speed. If no claudication pain occurred during the training session, the 7 intensity was increased at the next session.

8 **Randomisation and blinding**

9 The randomisation procedure was centralised, using a computer random-number generator with 10 random block size. Participants were included after screening for eligibility and randomised after 11 baseline assessments. Participants were aware of the type of training program (ITAR or CT) but 12 were assumed to have no idea as to which one was thought to be superior. Assessments were 13 performed by 2 physiotherapists and physicians who were blinded to treatment allocation.

14 Assessments

15 The battery of assessments was performed at baseline during the week before the start of training 16 and in the week after the end of the program, when walking distances and cardiovascular, 17 respiratory and psychological parameters were collected, in addition to general medical data.

Walking distance tests were performed with at least a 20-min rest between each test, in the following order: 6-min walk test (6MWT) [36, 37], maximum distance at constant speed and gradient before onset of claudication (C-test) [38], a graded treadmill test (G-test) derived from the Gardner test [39], and finally a treadmill test of maximal walking speed before onset of maximum tolerable pain with measurement of VO_{2peak}.

1 For the 6MWT, participants were instructed to walk at their fastest comfortable speed on a flat surface (e.g., along a corridor) for 6 min, with or without stopping for rests. As 2 3 recommended for patients with PAD [40], the 6MWT was performed after 15 min of rest. The C-4 test was performed at 3.2 km/hr (2 mph) on a 10% slope (TechmedPhysio® treadmill). The G-5 test started at 3.2 km/hr and 0% slope. With speed remaining constant, the slope was increased 6 by 0.5% every 2 min until limited by pain (claudication). The slope increment was less than in 7 the original version (2%) for better feasibility for severely affected patients able to achieve only 8 very short walking distances [41]. For participants with the most severe disease and balance 9 disorders, handrail support was allowed during all treadmill tests. Running during treadmill tests 10 was not allowed.

11 Cardiopulmonary exercise testing was performed at baseline and during certain treadmill 12 tests to assess exercise tolerance and energy expenditure. Aerobic capacity and cardiovascular, 13 metabolic and respiratory parameters were measured during a graded exercise test on a Gymrol 14 Super 2500 treadmill (Tecmachine SA, Andrezieux-Boutheon, France). The initial speed was 2.4 15 km/hr with no slope. The speed or slope was increased every 2 min by 2% or 0.8-km/hr 16 increments, respectively, until pain limitation or exhaustion. Gas exchange was measured 17 continuously on an automated ergospirometer with a mixing chamber method (Metasys TRM, 18 Brainware, Toulon France), allowing for monitoring oxygen uptake (VO₂).

19 Outcomes

The primary outcome was the change in maximum walking distance (MWD) on the G-test. Secondary outcomes were feasibility and safety of the program (adverse effects during the sessions or reported at the daily medical check-up), adherence to rehabilitation (total number of sessions attended*100/total number of sessions planned), and changes in other walking distances
 (6MWT, C-test) and cardiorespiratory and exercise parameters.

3 Sample size

Taking into account the results of our previous non-randomised pilot study [28] we hypothesized an improvement of 650 m (\pm 350) in the ITAR group and an improvement of 300 m (\pm 350) in the CT group in a graded treadmill test. To show this clinically significant between-group difference in walking distance of 350 m (Mann-Whitney test), with power of 80% and alpha risk of 5%, we estimated that we needed 36 participants (18 in each group). We planned to include 10% more participants (i.e., 40 individuals) in anticipation of potential dropouts.

10 Statistical analysis

11 The statistician was blinded to the intervention group. Statistical analysis was according to 12 intention to treat and by using Stata v13.0 (Stata Corp., College Station, TX). P<0.05 was 13 considered statistically significant. Categorical variables are expressed with number (percentage) 14 and continuous variables with median (interquartile range [Q1-Q3]). For quantitative variables, 15 we used the Mann-Whitney (non-parametric) test to compare the 2 groups. The effect sizes of significant differences were calculated with the z values of the Mann-Whitney test $[r = \frac{Z}{\sqrt{N}}]$ and 16 interpreted according to Cohen's guidelines (1988) as medium difference with r > 0.29 and large 17 18 difference with r > 0.49.

19

1 **Results**

2 Participant characteristics

3 Among the 60 individuals screened, 40 were enrolled between November 2012 and April 2014. 4 The flow chart of the study in Figure 2 respects the extension of the CONSORT statement for 5 randomised pilot and feasibility trials [42]. Characteristics of participants are in Table 1. Because 6 2 participants in the CT arm were included in error and were excluded soon after randomisation, 7 and given the relatively small sample size of the study, some variables differed between the 2 8 arms (Table 1). ITAR participants were older, tended to be diabetic, and had higher body mass 9 index and bilateral IC than CT participants. All received antiplatelet agents and statins; none was 10 on pentoxyfylline or cilostazol.

11 Adherence and safety

12 No adverse event related to the training programs was reported. Adherence to the ITAR program 13 was excellent throughout the entire study; all 20 individuals successfully completed all daily 14 training sessions. Three participants in the CT program did not complete all training sessions. 15 One participated only sporadically in the study due to alcohol abuse; chronic heart failure was 16 discovered in a second participant, and the steering committee decided to stop this participant's 17 participation prematurely for safety reasons and delete the data from the database considering 18 that he/she had been wrongly included. A third individual missed a few training sessions but 19 finished the study. Finally in the CT arm, the median number of completed sessions was 100% 20 [Q1–Q3 96–100]. This procedure maintained intention to treat.

1 Walking distances

2 Table 2 and Figure 3 show maximum walking distances before and after the training programs. 3 The main outcome criterion (MWD measured with the G-test) improved in both arms (p=0.007 4 for CT and p <0.001 for ITAR), but this improvement was not significantly different between the 5 groups (p=0.62). Likewise, the secondary outcome MWD was improved in both groups, with no 6 significant difference between the groups whatever the test used: C-test (p=0.76) or 6MWT 7 (p=0.84). Because of the lack of difference between the 2 groups, we compared the MWD for the 8 whole study population of 38 participants before and after the program. The improvement in 9 treadmill walking distances reached nearly 100% with very large effect sizes: median distance 10 before vs after was 415 [240-650] vs 995 m [410-1490], respectively, with r=0.71 and p<10⁻⁴ for 11 the G-test, and 150 [90-290] vs 290 m [140-530], respectively, with r=0.84 and p<10⁻⁴ for the C-12 test. The before-after difference was less marked when walking along the floor at comfortable 13 speed (6MWT): median 355 [298-398] vs 378 m [338-428], respectively with r=0.54 and p< 10^{-3} . 14 For several participants, claudication was not reached until after 6 min.

15 **Exercise tolerance**

Table 2 shows that VO_{2peak} was low in both arms for participants' age, corresponding to about 65% to 70% of the predicted value. This finding corresponds to a moderate to severe exercise intolerance. We found no significant difference in VO_2 change between the 2 groups after the training.

20

21 **Discussion**

22 To our knowledge, this is the first randomised trial to assess the efficiency of a short exercise

23 program for PAD, lasting 4 weeks; almost all other reported programs lasted at least 6 weeks.

1 A short program is feasible, safe and efficient

2 Both programs, CT and ITAR, were safe, with no adverse events. Hence, individuals with severe 3 IC may follow an intensive rehabilitation program of 3 hr/day for 4 weeks, provided potential cardiovascular complications have been previously identified. In our study, all individuals 4 5 underwent assessment by 2 specialists, in cardiology and vascular medicine, and eligibility to 6 participate in the program was carefully weighed for each participant. Our study exhibited one of 7 the highest rates of adherence to treatment ever reported in IC rehabilitation, but this is likely due 8 to the duration of the program, the shortest proposed so far. Indeed, a 6-month trial found that 9 adherence to exercise progressively declines [27]. This observation clearly argues in favour of 10 short programs, which seem more suitable for individuals who are still working, and also might 11 be less costly for both patients and the community. Future medico-economic studies need to 12 investigate this issue.

The major finding of this study was that individuals who completed an ITAR or CT program improved their physical capabilities without any significant differences in the primary or secondary criteria. Indeed, the increases in walking distance of 315 and 480 m in CT and ITAR groups, respectively, along with doubling the MWD on the Gardner test with a very large effect size, were greater than the minimally important improvement considered in the field (305 m) [43], and higher than that reported in most studies [7, 12, 15, 18, 26, 34, 44].

The second finding was that a 4-week exercise training program increased the MWD by a clinically relevant level in individuals with PAD, as shown by the main (G-test) and secondary outcomes (6MWT, C-test), and the results were similar to those from previous trials with exercise programs lasting 6 months [45].

1 Differences between the 2 programs

Similar improvements in walking distance were observed in both groups despite lower intensity relative to the VO_{2peak} in the ITAR arm. This finding could be explained by both programs being performed at relatively low intensities regarding percentage of VO_{2peak} (about 50%) because the included participants had shown exercise intolerance. Also, we cannot exclude that the other exercise activities that formed part of the rehabilitation along with the treadmill training may have played a role in the improved physical functioning in both groups.

8 Strengths and limitations

9 The strengths of the study include the training being intensive (> 3 hr/day) with daily medical 10 check-ups to detect adverse events and assessments by 2 different physiotherapists and 11 physicians.

12 Although the results of this trial support the efficacy of both 4-week physical therapy 13 programs for individuals with PAD as compared with results obtained by previous published 14 studies, our study had several limitations. In retrospect, the study was underpowered to be able to 15 conclude for the main objective, and the comparison between the two groups featured a risk of 16 randomization in which participants of the control group were significantly younger. Also, the 17 relatively small sample size (calculated for the primary outcome) may explain why some results 18 for the secondary outcomes did not reach significance, although other studies have been able to 19 show improvements in basic cardiorespiratory parameters [12, 31]. Most assessments were 20 performed with blinding to treatment group, but there were some exceptions regarding walking 21 tests for some participants due to the unforeseen unavailability of physiotherapists. Treadmill 22 training made up only one-third of the daily rehabilitation. This situation may explain the lack of 23 significant difference between the 2 types of program. Indeed, the other exercises performed

1 during the common part of the rehabilitation have also been found effective in increasing aerobic 2 capacity and walking abilities in people with PAD [44]. Current smokers were included in the 3 study, which might have influenced response to training with altered muscular or cardiorespiratory adaptations, but the number of current smokers did not differ significantly 4 5 between the 2 groups. The long-term maintenance of progress achieved during a course of 6 exercise training (long or short) remains a challenge, and a panel of strategies is needed to 7 encourage patients to continue exercising. This will require long-term patient follow-up, but for 8 logistic reasons the present study was not designed to do this. Long-term follow-up with regular 9 simple home-based exercises, possibly using information technology, should be included in 10 future trials of exercise strategies.

Exercise has multiple effects on the physiology of PAD, influencing quality of life, morbidity and mortality. Analysing the neurovegetative and metabolic effects of the exercise programs would have been of interest.

Concerning the tests used, because claudication was not reached in some participants during the 6MWT, this test may not be well adapted to the context of this study. In addition, the question of the most-effective intensity of effort to increase the walking distance remains (should the pain of claudication be induced during walking?): for certain authors, the answer is no [44,46,47], for others it is yes [7, 48].

19

20 Conclusion

This study showed the tolerance, high adherence, and efficacy of a 4-week supervised intensive rehabilitation program based on ITAR or conventional treadmill training (3 hr/day except weekends) designed for individuals with intermittent claudication. With both programs, walking

1	ability improved as much as with less-intensive (3 days/week) and longer (6-month) programs
2	described in the literature, with maximal walking distance on treadmill tests multiplied by 2 and
3	very large effect sizes. These results appeal for further studies with larger sample sizes and long-
4	term follow-up.
5	
6	Funding. This work was supported by Grenoble Alpes University Hospital.
7	
8	Conflict of interest. None declared.
9	
10	Figure legends
11	Figure 1. Four-week treadmill training programs: left part, conventional training (CT) and right
12	part, interval training with active recovery (ITAR). Wk, week
10	
13	Figure 2. Flow chart of the study, according the extension of the CONSORT statement for
14	randomised pilot and feasibility trials [44]. ITAR, interval training with active recovery; VO ₂ ,
15	oxygen uptake
16	Figure 3. Maximum walking distance (m) before and after interval training with active recovery
17	(ITAR) or conventional training (CT) in a graded treadmill test (G-test). Maximum walking
18	distance improved in both arms (p=0.007 for CT and p<0.001 for ITAR), without significant
19	

20

21 **References**

- 1
- Campia U, Gerhard-Herman M, Piazza G, Goldhaber SZ. Peripheral Artery Disease:
 Past, Present, and Future. Am J Med 2019;132:1133-1141.
- Criqui MH, Fronek A, Barrett-Connor E, Klauber MR, Gabriel S, Goodman D. The
 prevalence of peripheral arterial disease in a defined population. Circulation
 1985;71:510-5.
- Fowkes FG, Aboyans V, Fowkes FJ, McDermott MM, Sampson UK, Criqui MH.
 Peripheral artery disease: epidemiology and global perspectives. Nat Rev Cardiol
 2017;14:156-170.
- Grenon SM, Chong K, Alley H, Nosova E, Gasper W, Hiramoto J, et al. Walking
 disability in patients with peripheral artery disease is associated with arterial
 endothelial function. J Vasc Surg 2014;59:1025-34.
- Hertzer NR. The natural history of peripheral vascular disease. Implications for its
 management. Circulation 1991;83:I12-9.
- Casillas JM, Troisgros O, Hannequin A, Gremeaux V, Ader P, Rapin A, et al.
 Rehabilitation in patients with peripheral arterial disease. Ann Phys Rehabil Med
 2011;54:443-61.
- Lane R, Harwood A, Watson L, Leng GC. Exercise for intermittent claudication.
 Cochrane Database Syst Rev 2017;12:CD000990.
- 20 8. Ratchford EV. Medical management of claudication. J Vasc Surg 2017;66:275-280.
- Layden J, Michaels J, Bermingham S, Higgins B, Guideline Development G. Diagnosis
 and management of lower limb peripheral arterial disease: summary of NICE
 guidance. BMJ 2012;345:e4947.
- Abaraogu UO, Dall PM, Seenan CA. The Effect of Structured Patient Education on
 Physical Activity in Patients with Peripheral Arterial Disease and Intermittent
 Claudication: A Systematic Review. Eur J Vasc Endovasc Surg 2017;54:58-68.
- In Jansen SCP, Hoorweg BBN, Hoeks SE, van den Houten MML, Scheltinga MRM, Teijink
 JAW, et al. A systematic review and meta-analysis of the effects of supervised

- exercise therapy on modifiable cardiovascular risk factors in intermittent
 claudication. J Vasc Surg 2019;69:1293-1308 e2.
- Hageman D, Fokkenrood HJ, Gommans LN, van den Houten MM, Teijink JA.
 Supervised exercise therapy versus home-based exercise therapy versus walking
 advice for intermittent claudication. Cochrane Database Syst Rev 2018;4:CD005263.
- 13. van den Houten MM, Lauret GJ, Fakhry F, Fokkenrood HJ, van Asselt AD, Hunink MG,
 et al. Cost-effectiveness of supervised exercise therapy compared with endovascular
 revascularization for intermittent claudication. Br J Surg 2016;103:1616-1625.
- 9 14. Vemulapalli S, Dolor RJ, Hasselblad V, Schmit K, Banks A, Heidenfelder B, et al.
 10 Supervised vs unsupervised exercise for intermittent claudication: A systematic
 11 review and meta-analysis. Am Heart J 2015;169:924-937 e3.
- Fokkenrood HJ, Bendermacher BL, Lauret GJ, Willigendael EM, Prins MH, Teijink JA.
 Supervised exercise therapy versus non-supervised exercise therapy for
 intermittent claudication. Cochrane Database Syst Rev 2013:CD005263.
- 15 16. Heikkila K, Coughlin PA, Pentti J, Kivimaki M, Halonen JI. Physical activity and
 peripheral artery disease: Two prospective cohort studies and a systematic review.
 Atherosclerosis 2019;286:114-120.
- 17. Golledge J, Singh TP, Alahakoon C, Pinchbeck J, Yip L, Moxon JV, et al. Meta-analysis
 of clinical trials examining the benefit of structured home exercise in patients with
 peripheral artery disease. Br J Surg 2019;106:319-331.
- 18. Lyu X, Li S, Peng S, Cai H, Liu G, Ran X. Intensive walking exercise for lower
 extremity peripheral arterial disease: A systematic review and meta-analysis. J
 Diabetes 2016;8:363-77.
- Aggarwal S, Moore RD, Arena R, Marra B, McBride A, Lamb B, et al. Rehabilitation
 Therapy in Peripheral Arterial Disease. Can J Cardiol 2016;32:S374-S381.
- 26 20. Lauret GJ, Fakhry F, Fokkenrood HJ, Hunink MG, Teijink JA, Spronk S. Modes of
 27 exercise training for intermittent claudication. Cochrane Database Syst Rev
 28 2014:CD009638.

- Harwood AE, Cayton T, Sarvanandan R, Lane R, Chetter I. A Review of the Potential
 Local Mechanisms by Which Exercise Improves Functional Outcomes in Intermittent
 Claudication. Ann Vasc Surg 2016;30:312-20.
- 4 22. Hiatt WR, Regensteiner JG, Hargarten ME, Wolfel EE, Brass EP. Benefit of exercise
 5 conditioning for patients with peripheral arterial disease. Circulation 1990;81:6026 9.
- 7 23. Hamburg NM, Balady GJ. Exercise rehabilitation in peripheral artery disease:
 8 functional impact and mechanisms of benefits. Circulation 2011;123:87-97.
- 9 24. Treat-Jacobson D, McDermott MM, Beckman JA, Burt MA, Creager MA, Ehrman JK, et
 10 al. Implementation of Supervised Exercise Therapy for Patients With Symptomatic
 11 Peripheral Artery Disease: A Science Advisory From the American Heart
 12 Association. Circulation 2019;140:e700-e710.
- 25. Cornelis N, Nassen J, Buys R, Fourneau I, Cornelissen V. The Impact of Supervised
 Exercise Training on Traditional Cardiovascular Risk Factors in Patients With
 Intermittent Claudication: A Systematic Review and Meta-Analysis. Eur J Vasc
 Endovasc Surg 2019;58:75-87.
- Pymer S, Palmer J, Harwood AE, Ingle L, Smith GE, Chetter IC. A systematic review of
 high-intensity interval training as an exercise intervention for intermittent
 claudication. J Vasc Surg 2019.
- 20 27. Gardner AW, Montgomery PS, Parker DE. Optimal exercise program length for
 21 patients with claudication. J Vasc Surg 2012;55:1346-54.
- 22 28. Villemur B, Marquer A, Gailledrat E, Benetreau C, Bucci B, Evra V, et al. New
 23 rehabilitation program for intermittent claudication: Interval training with active
 24 recovery: pilot study. Ann Phys Rehabil Med 2011;54:275-81.
- 25 29. Baldari C, Videira M, Madeira F, Sergio J, Guidetti L. Blood lactate removal during
 26 recovery at various intensities below the individual anaerobic threshold in
 27 triathletes. J Sports Med Phys Fitness 2005;45:460-6.

- 30. Mukaimoto T, Semba S, Inoue Y, Ohno M. Changes in transverse relaxation time of
 quadriceps femoris muscles after active recovery exercises with different
 intensities. J Sports Sci 2014;32:766-75.
- 4 31. Keech A, Holgate K, Fildes J, Indraratna P, Cummins L, Lewis C, et al. High-intensity
 5 interval training for patients with coronary artery disease: Finding the optimal
 6 balance. Int J Cardiol 2019.
- Juneau M, Hayami D, Gayda M, Lacroix S, Nigam A. Provocative issues in heart
 disease prevention. Can J Cardiol 2014;30:S401-9.
- 9 33. Angadi SS, Mookadam F, Lee CD, Tucker WJ, Haykowsky MJ, Gaesser GA. Highintensity interval training vs. moderate-intensity continuous exercise training in
 heart failure with preserved ejection fraction: a pilot study. J Appl Physiol (1985)
 2015;119:753-8.
- 34. Beauchamp MK, Nonoyama M, Goldstein RS, Hill K, Dolmage TE, Mathur S, et al.
 Interval versus continuous training in individuals with chronic obstructive
 pulmonary disease--a systematic review. Thorax 2010;65:157-64.
- 35. Tjonna AE, Lee SJ, Rognmo O, Stolen TO, Bye A, Haram PM, et al. Aerobic interval
 training versus continuous moderate exercise as a treatment for the metabolic
 syndrome: a pilot study. Circulation 2008;118:346-54.
- 36. McDermott MM, Guralnik JM, Criqui MH, Liu K, Kibbe MR, Ferrucci L. Six-minute
 walk is a better outcome measure than treadmill walking tests in therapeutic trials
 of patients with peripheral artery disease. Circulation 2014;130:61-8.
- 22 37. Laboratories ATSCoPSfCPF. ATS statement: guidelines for the six-minute walk test.
 23 Am J Respir Crit Care Med 2002;166:111-7.
- 38. Strandness D. Duplex scanning for diagnosis of peripheral arterial disease. Herz
 1988:372–7.
- 39. Gardner AW, Skinner JS, Cantwell BW, Smith LK. Progressive vs single-stage
 treadmill tests for evaluation of claudication. Med Sci Sports Exerc 1991;23:402-8.
- 40. Montgomery PS, Gardner AW. The clinical utility of a six-minute walk test in
 peripheral arterial occlusive disease patients. J Am Geriatr Soc 1998;46:706-11.

- 1 41. Nicolai SP, Viechtbauer W, Kruidenier LM, Candel MJ, Prins MH, Teijink JA. 2 Reliability of treadmill testing in peripheral arterial disease: a meta-regression 3 analysis. J Vasc Surg 2009;50:322-9.
- 42. Eldridge SM, Chan CL, Campbell MJ, Bond CM, Hopewell S, Thabane L, et al. 4 5 CONSORT 2010 statement: extension to randomised pilot and feasibility trials. Pilot 6 Feasibility Stud 2016;2:64.
- 7 43. van den Houten MM, Gommans LN, van der Wees PJ, Teijink JA. Minimally 8 Important Difference of the Absolute and Functional Claudication Distance in 9 Patients with Intermittent Claudication. Eur J Vasc Endovasc Surg 2016;51:404-9.
- 10 44. Parmenter BJ, Dieberg G, Smart NA. Exercise training for management of peripheral 11 arterial disease: a systematic review and meta-analysis. Sports Med 2015;45:231-44. 12
- 13 45. Gardner AW, Katzel LI, Sorkin JD, Bradham DD, Hochberg MC, Flinn WR, et al. 14 Exercise rehabilitation improves functional outcomes and peripheral circulation in 15 patients with intermittent claudication: a randomized controlled trial. J Am Geriatr Soc 2001;49:755-62. 16
- 17 46. Gardner AW, Parker DE, Montgomery PS, Scott KJ, Blevins SM. Efficacy of quantified 18 home-based exercise and supervised exercise in patients with intermittent 19 claudication: a randomized controlled trial. Circulation 2011;123:491-8.
- 20 47. Mika P, Spodaryk K, Cencora A, Unnithan VB, Mika A. Experimental model of pain-21 free treadmill training in patients with claudication. Am J Phys Med Rehabil 22 2005;84:756-62
- 23 48. Schlager O, Giurgea A, Schuhfried O, Seidinger D, Hammer A, Gröger M, et al. Exercise training increases endothelial progenitor cells and decreases asymmetric 24 25 dimethylarginine in peripheral arterial disease: a randomized controlled trial. 2011; 26 217:240-8.
- 27

29

28

4 week treadmill training program

	CT group (n=18)	ITAR group (n=20)	p-value			
Age (years), median [Q1–Q3]	62 [51-64]	68 [63-70]	0.03			
Male, n (%)	15 (83%)	16 (80%)	1.00			
Body mass index, kg/m ⁻²	27.2 [24.4-29.5]	29.8[27.9-32.1]	0.05			
High blood pressure, n (%)	14 (78%)	18 (90%)	0.39			
Diabetes, n (%)	6 (33%)	12 (60%)	0.10			
Dyslipidemia, n (%)	15 (83%)	18 (90%)	0.65			
Tobacco consumption (%)						
Never	0%	2 (10%)				
Former	11 (61%)	15 (75%)	0.13			
Current	7 (39%)	3 (15%)				
Previous surgery of lower limb arteries, n (%)	6 (33%)	4 (20%)	0.47			
Claudication side, n (%)						
Unilateral	9R+4L (72%)	5R+4L (45%)	0.09			
Bilateral	5 (28%)	11 (55%)				
Arterial Doppler ultrasound						
Hemodynamically significant arterial						
stenosis, n (%)	13 (72%)	14 (70%)	0.88			
Distal	2 (15%)	0%				
Proximal	10 (77%)	12 (86%)				
Both	1 (8%)	2 (14%)				
Artery occlusion, n (%)	14 (78%)	14 (70%)	0.72			
Distal	2 (14%)	3 (21%)				
Proximal	11 (79%)	9 (64%)				
Both	1 (7%)	2 (14%)				
R, right; L, left						

Table 1. Baseline clinical characteristics of participants undergoing conventional (treadmill)

 training (CT) and interval training with active recovery (ITAR).

Variables	Pre-training (baseline)	Post-training	Change in score	P-value (CT vs ITAR)
Graded treadmill test:				
MWD (m)				
CT (n=18)	415 [240-760]	815 [410-1930]	315 [0-710]	0.62
ITAR (n=20)	400 [170-595]	1040 [420-1330]	480 [135-715]	
C-test: MWD (m)				
CT (n=18)	135 [100-270]	205 [140-500]	110 [20-230]	0.76
ITAR (n=20)	170 [85-295]	350 [165-620]	130 [35-325]	
6MWT (m)				
CT (n=18)	357 [245-398]	363 [330-403]	40 [-40-98]	0.84
ITAR (n=20)	356 [306-403]	390 [342-436]	37 [14-49]	
VO _{2 peak} (mL/kg/min)				
CT (n=18)	18.2 [13.9-21.0]	17.7 [15.0-23.4]	1.1 [-2.2-4.6]	0.72
ITAR (n=20)	17.9 [15.7-21.8]	17.8 [14.7-25.1]*	0.7 [-0.5-3.0]*	

Table 2. Walking measurements. 415 [240-650] vs 995m [410-1490]

Mann-Whitney tests comparing gain after rehabilitation between ITAR and CT.

Data are median [Q1–Q3].

MWD, maximum walking distance; 6MWT, 6-min walk test.

* 2 missing values