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ABSTRACT 
Dysgraphia is a writing disorder that affects a significant part of the population, especially school aged children and particularly 

boys. Nowadays, dysgraphia is insufficiently diagnosed, partly because of the cumbersomeness of the existing tests. This study 

aims at developing an automated pre-diagnosis tool for dysgraphia allowing a wide screening among children. Indeed, a wider 

screening of the population would allow a better care for children with handwriting deficits. This study is based on the world’s 

largest known database of handwriting samples and uses supervised learning algorithms (Support Vector Machine). Four 

graphic tablets and two acquisition software solutions were used, in order to ensure that the tool is not tablet dependent and can 

be used widely. A total of 580 children from 2nd to 5th grade, among which 122 with dysgraphia, were asked to perform the 

French version of the BHK test on a graphic tablet. Almost a hundred features were developed from these written tracks. The 

hyperparameters of the SVM and the most discriminating features between children with and without dysgraphia were selected 

on the training dataset comprised of 80% of the database (461 children). With these hyperparameters and features, the 

performances on the test dataset (119 children) were a sensitivity of 91% and a specificity of 81% for the detection of children 

with dysgraphia. Thus, our tool has an accuracy level similar to a human examiner. Moreover, it is widely usable, because of 

its independence to the tablet, to the acquisition software and to the age of the children thanks to a careful calibration and the 

use of a moving z-score calculation.  

 

Keywords: BHK test, Children, Diagnosis, Dysgraphia, Handwriting, SVM. 

 

INTRODUCTION 
Dysgraphia is a generic term used to describe handwriting deficits that lead to a poor-quality and/or slow script. Here, the most 

common definition is considered, as being a disturbance or difficulty in the production of written language that is related to the 
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mechanics of writing and the result of a failure to acquire the fine motor task of handwriting [1–4]. Depending on the country 

and the method used, the proportion of children in the population varies between 5 and 34% [5, 6]. School aged children, and 

particularly boys, seem to be the most affected. 

 

The Concise Evaluation Scale for Children’s Handwriting (BHK) is the gold standard test used to evaluate handwriting quality 

and speed and to diagnose dysgraphia in France [1]. It relies on the assessment of 13 qualitative criteria (such as the tilt of the 

margin, the size of the letters or the space between words). The number of characters written by the child during the 5 minutes 

of the test is also registered, to estimate handwriting speed. Children can be diagnosed as dysgraphic based on their score on 

the 13 qualitative criteria or on their average writing speed. Very specific instructions are given to the people in charge of 

evaluating the writing, in order to make the test as objective as possible. Nevertheless, despite training of the examiners, some 

of the qualitative criteria remain subjective, such as ambiguous letters or chaotic writing, which is a potential source of false 

negatives. In addition, this test only analyses the final product of handwriting, and does not take into account the dynamic 

aspects of the writing process. Nowadays, the use of graphic tablets enables to record the pen motion during handwriting with 

high spatial and temporal resolutions. These tools thus allow access to hidden kinematic features reflecting neuromotor 

processes. 

 

The objective of our work is to design a machine learning classifier relying on dynamic spatio-temporal handwriting texts 

collected from children with and without dysgraphia, to help in the diagnosis of dysgraphia. Once designed, this tool should be 

easy to scale up, faster and cheaper than the actual process. Mekyska et al. [2] designed a performing tool to pre-diagnose 

dysgraphia based on writing a sequence of seven semi-letters, but their study focused on a limited population (27 children with 

dysgraphia, 27 typically developing ones) and relies primarily on two tablet-dependent features: pen pressure and pen tilt data 

[7].  Asselborn et al. [3] also developed a similar tool based on the handwriting of BHK texts that seemed very effective at first 

sight but appeared lately flawed by some methodological issues that made their conclusions weaker [4]. These issues include 

the use of distinct tablets for acquiring data from children with and without dysgraphia respectively, which create an undesirable 

bias. Indeed, their algorithm may be biased to classify data from the two kinds of tablets rather than to detect children with 

dysgraphia. Their database consisted in 56 children with dysgraphia and 242 control children. Importantly, according to 

literature, 5 to 10% of these control children are expected to display dysgraphia, but this fact was not considered in their 

analyses. Moreover, all children with dysgraphia were recruited at the Reference Center for Language and Learning Disorders 

of the Grenoble Hospital. Therefore, all these children suffered from severe dysgraphia, which certainly introduced a bias in 

the model toward recognizing only the most severe dysgraphia, as demonstrated recently [8]. Thus, when used with children 

from a wider range of origins, notably children with less severe dysgraphia such as some children from schools, this model 

could present difficulties to detect less severe cases of dysgraphia. These biases were partly corrected in their new study [9] by 

using an IPad to acquire all their BHK texts. Once again, the results shown in this paper are very good, but they might not be 

easily generalizable. Indeed, writing on a tablet is quite different from writing on a paper sheet, and it has been shown to affect 

movement control and execution, especially in children [10-12]. Moreover, to achieve a generalizable model, it is preferable to 

acquire data from different models of tablets and to use those in all groups. It is also important to mix mild and severe 

dysgraphia.  Finally, Dimauro et al. [13] obtained interesting results by focusing on the BHK features and trying to rate them 

as a human examiner would. 
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Most of the studies about dysgraphia are based on small population, around 30 or 40 children [5, 6, 14-16] and have a descriptive 

approach, trying to determine whether a variable seems discriminant or not. Our approach is different as we mainly use the 

features previously demonstrated as discriminant to predict if a child has dysgraphia or not. Acquiring the data with different 

tablets and software solutions allowed us to determine that some of these features seemed too dependent on the acquisition 

equipment to be used in a large-scale tool. In addition, our study is based on the largest dataset of labeled handwritten samples 

ever published (580 children). For each children, we recorded the position of the pen tip, sampled every 5ms, during the writing 

of the BHK test. In-air movements were also recorded. We chose to use the BHK test because it has been largely validated as 

a good diagnosis tool. Out of 580 children, 122 had dysgraphia. Although imbalanced, our dataset is larger and more 

representative of children with dysgraphia than previous studies. Our objective is thus to develop a more reliable tool based on 

a large database, with different origins for generalizability and a very rigorous methodological approach in order to avoid 

overfitting of the model.  

 

MATERIAL AND METHODS 
In this part, we describe the method applied to create the dysgraphia pre-diagnosis tool, from the participants selection to the 

machine learning framework.  

 

Participants 
In total, 580 children were recruited, from 2nd to 5th grade. 450 of them come from 7 different schools (23 classes) near 

Grenoble, France. Schools were selected to include different socio-economic environments. The 130 other children were 

recruited at the Reference Center for Language and Learning Disorders of the Grenoble University Hospital (CRTLA, Centre 

Hospitalier Universitaire Grenoble), where they came in the context of various neurodevelopmental disorders. 

 

Task and Procedure 
All the children involved in this study have written the BHK text on an A5 blank paper affixed in the landscape format to a 

graphic tablet. The pen was inked to ensure conditions of writing close to those of the classroom. Four different Wacom graphic 

tablets and two software solutions have been used in order to ensure that our results are not dependent on the equipment. The 

”Ductus” software was developed by LPNC in 2010 [17]. The ”Graph Logger” software was developed at CEA-Leti. Both of 

them were calibrated carefully as follows: to check the written length calibration, we measured different distances on the real 

written tracks made by the children on paper. The same distances were measured on the computer database. These distances 

were then compared to check the reliability of the tablets and software solutions. The sampling frequency was fixed at 200Hz 

and the spatial resolution at 0.25mm. TABLE 1 summarizes the information about the graphic tablets and software solutions 

used. 

Table 1: Summary of graphic tablets and software solutions used to acquire the data 

Software Graph Logger Ductus 

Population Schools Hospital Schools Hospital 

Tablet Wacom Pro M Wacom Pro L Wacom 4M Wacom 3L 

Size (mm) 224x148 311x216 223x139 300x200 

Number of children 258 29 192 101 
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The conditions in which the children were performing the test were the same for all children. The instructions given to the 

children were those explained in the BHK reference book [1]. Whatever the tablet size, the same size of paper sheet (A5) was 

used for the test. We ensured that the writing posture was the same for all children. 

 

The 5 first lines of all BHKs were scored by 1 to 3 trained therapists [8]. Mean quality and speed scores were then computed 

and children were assigned to the Dysgraphia (D) group if at least one of the 2 scores was beyond 2 standard deviations from 

the normative group. In this article “Dysgraphia” (D) refers to children from the hospital or from schools who presented a 

dysgraphia. “No dysgraphia” (ND) refers to children from the hospital who did not present a dysgraphia. “Typical” (TD) refers 

to the typically developing children from the schools, who did not present dysgraphia. In TABLE 2, the ND children are shown 

separately from others to emphasize their relatively low scores compared to the TD children. When designing classification 

algorithms, TD and ND groups were merged into a single group (no dysgraphia) and opposed to the D group. 

 

Among the population acquired at CRTLA between 2nd grade to 5th grade, 92 children out of 130 (71%) presented a dysgraphia 

based on the BHK, while the 38 other children (29%) did not. TABLE 3 and FIGURE 1 summarizes the scores and number of 

children according to their diagnosis and to the places where they have been recruited. 

 

Table 2: Number of children between 2nd and 5th grade in the database according to the origin and the diagnosis. 

 Schools Hospital Total 
Typical (TD)  

Number 420 0 420 
With dysgraphia (D)  

Number 30 92 122 
No dysgraphia (ND)  

Number 0 38 38 
All Annotations  

Number 450 130 580 
 

Table 3: Quality and Speed scores for each category. 

 Mean quality score (std) Mean speed score (std) 

Typical (TD) 0.058 (0.92) 0.66 (1.0) 

With dysgraphia from school (D) -2.6 (0.76) 0.067 (1.35) 

With dysgraphia from hospital (D) -3.1 (1.29) -1.1 (1.08) 

No dysgraphia (ND) -0.92 (0.66) -0.60 (0.73) 
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Figure 1: Quality and Speed scores with p-values. One the left the quality scores, on the right the speed scores of the 

BHK for each category. TD and ND don’t have dysgraphia but have different scores. D schools (children with 

dysgraphia from school) and D hospital (children with dysgraphia detected at the hospital) both have dysgraphia but 

it is less severe for D schools (better quality and speed score). * : p < 0.05 ; ** : p < 0.005. 

 

Data Processing 
For each child, the gender, laterality, age and grade were recorded. During the acquisition, at each time stamp, 7 coordinates 

are registered: the time, the x, y, z positions (up to 1 cm above the tablet) of the pen tip, the pressure applied by the pen on the 

tablet, and the azimuth and altitude angles of the pen with the tablet. 

 

Coordinates Preselection 
Although pressure has previously been considered by several groups as discriminative when studying handwriting deficits 

[18,19], Danna et al. [7] pointed out two limits of pressure quantification. The first one is the fact that pressure highly depends 

on the tilt of the pen with respect to the writing surface. This leads to very different pressure measurements because of tilt 

variations and not of pressure changes. Moreover, with standard graphic tablets, the pressure depends on the pen that is used. 

This leads to significant differences between the values acquired with different tablets and/or pens. This is an important issue 

for large studies as the one described in this paper, involving a large number of subjects, making the use of only one tablet and 

one pen impossible. Tablet dependency has also been noticed for pen tilt with regard to the tablet. Moreover, we noticed some 

important irregularities in the pressure values in our database that could ultimately lead to a bias in the pre-diagnosis tool. For 

these reasons, we decided not to use the pen pressure and pen tilt data to create our models. 

 

Filtering 
To get rid of any noise that might cause a tablet dependency, a low pass fourth order Butterworth filter with a cut-off frequency 

of 15 Hz was applied on all the data. We chose the frequency of 15 Hz after a bibliographic study comparing the frequencies 

used in several articles [20-23]. In general, all the handwriting information is found between 0 and 10 Hz, most of it being 

located around 5 Hz. Choosing a cut-off frequency of 15 Hz allowed us to include all the writing information while attenuating 

the high frequency noise. The Fast Fourier Transform (FFT) algorithm has been applied on the x and y components of the pen 

speed, corroborating the fact that no important information about the writing process is found above 15 Hz. 
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Features Extraction 
More than 90 features were implemented in total. Some of them are very specific to the BHK test, such as line or margin 

inclination, and others are more general. To stay as close as possible to the BHK test, we decided to analyze only the first five 

lines written by the children although some children wrote more. We developed an algorithm able to recognize the first five 

lines written by each child and calculated all our variables on these lines. When the algorithm failed to recognize the five lines 

(because of a very poor-quality handwriting for instance), we selected them manually. This happened for 99 children out of 

580 (17%). Thanks to this manual correction, we were able to ensure the same number of written lines taken into account for 

all children.  

 

The counting features (number of velocity peaks, number of draw backs…) were used raw, and normalized by the writing time. 

This allowed the models to have access to the value of the features on the 5 lines of the BHK, and per unit of time. The main 

variables we used are described below: 

 

BHK Specific Features 

• The features that are specific to the BHK are listed below. 

• Continuity: difference on the y axis between consecutive words for each line. The median, the standard deviation, the 

25 and 75% quantiles were computed. 

• Crow flies: sum of the distances between consecutive strokes. 

• Draw backs per line: a draw back is a stroke that belongs to a previous word than the current one. This feature 

corresponds to the number of draw backs divided by the number of lines. 

• Lines height: median of the differences between the highest and lowest points of each line. 

• Margin evolution: for each line, the margin is defined as the x coordinate of the leftmost point. The difference between 

the consecutive lines was computed. Features calculated were the median and the standard deviation of these 

differences. The average of the significant differences (>2 mm) was also computed. 

• Slopes of the lines: for each line, we calculated the linear regression of all points included in that line. We extracted 

the standard deviation of the slopes of all lines to quantify the consistency of the lines. 

• Space between lines: mean difference on the y coordinate of the leftmost point for each line. 

• Space between words: the space between each word was calculated. We extracted the mean, the median, the standard 

deviation, and the 75% quantile. 

• Standard deviation of the distance between the points of a line and the linear regression corresponding to this line.  

The goal of this feature is to evaluate the regularity of the written line around the corresponding linear regression. The 

standard deviation of this feature among the lines is computed to estimate the regularity of the writing during the task. 

• Telescoping per line: number of strokes with a point closer than 0.5 mm to a stroke of the next line, divided by the 

number of lines. 

• Width and Height: the width is the difference between the highest and lowest x coordinates of all points. The height 

is the difference between the highest and lowest y coordinates of all points. 
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Figure 2: Illustration of feature SNvpd on a "g" written by a subject. Here the SNvpd is 4-2 = 2. 

 

General Features 

• The more general features, which could be applied to all sort of stimuli, are listed below. 

 

• Average Normalized Jerk: the jerk is the third time derivative of the position. It has been shown to be a discriminative 

feature to identify children with dysgraphia [7]. We computed the Average Normalized Jerk (ANJ) as described in 

[7]. 

• Distance to moving average: two features were extracted. The first one is the percentage of variation between the true 

writing path and the moving averaged path of order 11. The second one is the average distance from real points to 

moving average points. 

• Lift Time: lift time is the time spent during the writing task with the pen tip in the air. Four features are computed: 

total lift time, ratio of total lift time by record time, mean lift duration and standard deviation of the lifts duration. 

• Mean writing velocity: this feature extracts the ratio between the written length and the writing time. Thus, it does not 

take into account the time and distance when the pen is in the air. 

• Slow moves: a slow move starts when less than 1mm is written in 150 ms and ends when the local speed is higher 

than 1/150  for at least 3 consecutive points. We extracted the number of slow moves, the mean, median and standard 

deviation of their duration. The ratio between the total slow moves length and the total written length was also 

calculated as well as the ratio between the total slow move time and the total writing time. 

• SNvpd: this feature was defined in [7]. It consists in subtracting the number of velocity peaks when filtering the signal 

with a low-pass filter with a cut off frequency of 5 Hz to the number of velocity peaks when filtering the signal with 

a low-pass filter with a cut off frequency of 10 Hz (cf FIGURE 2). Danna et al. [7] demonstrated its efficiency to 

describe abnormal velocity fluctuations in cursive handwriting. Thus, this feature might be performing to discriminate 

children with dysgraphia from the others. 

• Stops: stops were only taken into account when the pen tip still touches the paper. A stop starts when less than 0.01 

mm is written in 5 ms and ends when more than 0.01 mm is written in 5 ms. The number of stops, their mean, median 

and standard deviation of their duration were used. 

• Abnormal stops: abnormal stops are defined as stops longer than 35ms. Looking at this abnormal stops has been 

recommended by Paz-Villagran et al. in [24]. 
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• Stops on the x/y axis: a stop on a specific axis is defined as a normal stop. It starts when less than 0.01 mm is written 

on the current axis in 5 ms, and ends when more than 0.01 mm is written on the same axis in 5 ms. 

• Record Time: Total Time taken by the subject to write the stimulus (here the 5 BHK lines). 

• Strokes: this feature calculates the number of strokes the child has drawn during the writing task, as well as the mean, 

maximum and the standard deviation of their duration. The number of strokes could be higher for children with 

dysgraphia once reported to a same written distance or writing time. 

• Velocity peaks: the number of velocity peaks is supposed to be higher for children with handwriting difficulties [21]. 

Here, we chose to extract the number of velocity peaks, but also the mean, median and standard deviation of the 

amplitude of the peaks. 

• Writing length: this feature extracts the total length of the “on-paper” trace. 

• Writing time: this feature extracts the total “on-paper” time. 

• Rényi Entropy of order 2 [25]: delivers an information about the entropy of the trajectory along x axis (resp. y or (x, 

y)). The entropy rate is linked to the uncertainty of the path, which manifests through a chaotic and unpredictable 

handwriting that is typical of children with dysgraphia. Their total Rényi Entropy (1) is supposed to be higher in 

absolute value. We also extracted the mean and standard deviation of the Rényi entropy of the standardized and 

normalized strokes. 

)log(
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2
2 ∑

−

=

−=
N

i
ipRE                                                                                (1) 

• where N is the number of dots in the signal of interest (which is either x or y or the two-dimensional time series of 

both x and y), and p are the probabilities of each dot i to be where they are considering that the handwriting is a strictly 

uniform movement. 
• Signal-to-Noise Ratio (SNR) [25]: reveals quick and unexpected movements from the children by comparing the 

trajectory along x (resp. y) to its smoothed version obtained by applying a basic low-pass-filter. Children with 

dysgraphia shall have a lower value for this feature. We have modified this feature as it appears in [25] because the 

energy term was not relevant in its computation (2). 

)N(s
11

×=
N

SNR                                                                                                    (2) 

• where N is the number of dots in the signal s (which is either x or y). N(s) represents the noise of the signal. 

It is computed as the sum of the squared difference between the signal and its smoothed version. 

 

Machine-Learning Approach 
Train/Test split: In order to be able to validate the performances of the classification model on a completely separate, unseen 

dataset, the full database was split into a train dataset (80% of the children) and a test dataset (20 % of the children) from the 

start. These datasets were carefully made in order to keep the same proportion of children with and without dysgraphia in each 

of them. Moreover, the same proportion of children in each grade was kept. All the following processing steps were applied on 

the train dataset only, to avoid any data leakage. 
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Moving z-Score calculation: One of the main challenges to develop a performing diagnosis tool is the wide range of ages and 

grades. It is indeed not possible to compare straightforwardly 6 years old children to 10 years old ones, as handwriting skills 

improve very quickly during this developmental window. Adding the age and grade of the children in the inputs of the classifier 

improved the performances, but a bias was still present. 

 

To limit the influence of age and grade, we used a moving z-score method. The idea was to standardize the calculated features 

in a similar way to the BHK test. First, the raw scores of all features were calculated for all participants. Then for each child, 

we selected all the children of the same grade, or of similar age (+/- 6 months). Only the children recruited in schools, 

representative of the population, were taken into account at that point. The mean and standard deviation of all features were 

calculated among these children. Finally, the z-score for each feature was calculated using these moving mean and standard 

deviation. With this method, each child was compared to a unique set of children who are in the same grade than him/her and/or 

are close to his/her age. FIGURE 3a presents the raw score of the feature “Stroke Mean Time” for all children, and FIGURE 

3b presents the moving z-score of the same feature. The z-scored feature is much more appropriate than the raw score, as it 

allows a straightforward comparison between children of different ages. 

 

All classification models were developed to use the moving z-scored features as input. 

 

 

 
Figure 3: Mean duration of the strokes of all children as a function of age, without (a) and with (b) moving z-score 

computation. 
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Features Preselection 
In order to make a preselection of the discriminative features, the Fisher criterion method has been used. This method consists 

in computing the ratio between the inter-class variance and the intra-class variance for each feature. The features maximizing 

this ratio are potentially efficient to discriminate the different classes of the problem. As explained in [26], this method selects 

each feature independently according to their scores under the Fisher criterion. Therefore, it fails to select the features that have 

relatively low individual scores but a very high score when they are combined together. In addition, it cannot handle redundant 

features. Because of these limits, this method was only used as a preselection technique, and was completed with a Sequential 

Forward Floating Selection method (SFFS) later on in the process. The 40 features with the best Fisher criterion score were 

selected as the starting point of the SFFS method. The classes used to compute the Fisher criterion are the children with 

dysgraphia (D) on one side and the children without dysgraphia (TD + ND) on the other side. 
 

For information, the 10 best features from the Fisher criterion are the following ones, ranked from the highest Fisher 

score to the lowest: 

• Record time 

• Total writing time 

• Total lift time 

• SNvpd 

• Number of velocity peaks 

• Mean duration of the lifts 

• Stroke maximum time 

• Number of stops 

• Number of stops on the x axis 

• Standard deviation of the slow moves duration 

Training of the Model 
Once the features computed and ordered according to the Fisher criterion, we were able to start training the classification model. 

The Scikit-learn package [27] was used to develop our algorithms with the language Python. To choose which machine learning 

method to use for the pre-diagnosis tool, we decided to compute the performances of 11 different techniques using the 40 best 

features from the Fisher criterion method described above. Default hyperparameters were used for this comparison. The 

sensitivity (3) (proportion of actual children with dysgraphia that are correctly identified as such, corresponding to the True 

Positive ratio) and specificity (4) (proportion of actual children without dysgraphia, TD or ND, that are correctly identified as 

such, corresponding to the True Negative ratio) obtained with all techniques are given in TABLE 4. Because both sensitivity 

and specificity are important factors for this model evaluation step, their mean, the balanced accuracy, was computed as well 

and used to compare models performances. We can see in FIGURE 4 the models and their balanced accuracy score. These 

performances were computed on the validation groups using a k-fold cross validation repeated 1000 times, as described in the 

process below. 
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FNTP
TPysensitivit
+

=                                                                          (3) 

FPTN
TNyspecificit
+

=                                                                          (4) 

 

Where: 

• TP is the number of children with dysgraphia (D) that are correctly identified as such 

• FN is the number of children with dysgraphia (D) that are not correctly identified 

• TN is the number of children without dysgraphia (TD + ND) that are correctly identified as such 

• FP is the number of children without dysgraphia (TD + ND) identified as with dysgraphia 

With so few data, normal deep learning methods would not have good performances. However, it was decided to test a class 

of Recurrent Neural Network: Long short-term memory (LSTM) networks, adapted for analysis of time series. To this end, raw 

data was directly used instead of the features extracted from it, because LSTM go through time series with a settable time 

window and is able to retain some long-term information and pattern [28]. The raw data was filtered with a low pass fourth 

order Butterworth filter with a cut-off frequency of 15 Hz before feeding it to the network, with 10 epochs with batches of size 

40. The network consists of one LSTM layer of size 64, followed by a dense layer with a sigmoid activation. The package 

TensorFlow [29] was used for this model. 

 

Table 4: Classification performances of different machine learning techniques. They were all evaluated with 

default hyperparameters, except for LSTM, which had a layer of size 64 and a sigmoid activation. The model selected 

for the following steps (fine-tuning and evaluation on the test set) was the one with the best-balanced accuracy. 

Model Sensitivity Specificity Balanced Accuracy 

Gaussian Process 35% 95% 65% 

LSTM 74% 58% 66% 

SVM (polynomial kernel degree 2) 40% 92% 66% 

Decision Tree 48% 85% 66,50% 

SVM (polynomial kernel degree 3) 39% 96% 68% 

SVM (sigmoid kernel) 68% 68% 68% 

Gradient Boost 50% 93% 71,50% 

Gaussian Naive Bayes 56% 90% 73% 

Random Forest 63% 84% 73,50% 

Adaboost 55% 93% 74% 
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SVM (linear kernel) 70% 84% 77% 

SVM (RBF kernel) 74% 80% 77% 

  

 
Figure 4: Graph display of the previous results. We see both SVM with linear and RBF kernels were better than the 

other models, but RBF work better in practice with a lot of problems. 
 

Support Vector Machine (SVM) with linear kernel and Radial Basis Kernel (RBF) showed comparable performances (the two 

rightmost models in FIGURE 4). Following this comparison, it was decided to use SVM technique with RBF kernel to design 

the pre-diagnosis tool. RBF kernel is indeed known to work well in practice for a lot of problem. Moreover, it is relatively 

simple to tune with only two hyperparameters. 

 

SVM is one of the most commonly used Machine Learning technique [16]. It is known to perform well even with high 

dimensional data and small datasets [30]. Different weights can be assigned to the samples, which makes the model usable with 

imbalanced datasets as done in this study. The Scikit-learn website gives a good overview of the SVM technique. For more 

details, one can refer to [31]. 

 

To tune a SVM using a RBF kernel two hyperparameters have to be considered: C and γ. C is common to all SVM kernels. It 

trades off misclassification of training examples against simplicity of the decision surface. The γ parameter defines how much 

influence a single training example has. As described below, a large number of features has been developed, and the Fisher 

criterion cannot be used alone to select features. In order to make an effective classification algorithm and to avoid overfitting, 

a features selection approach was lead using the Sequential Forward Floating Selection (SFFS) method [32]. 
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To conciliate hyperparameters optimization and features selection, the following process was carried out. A first set of 

hyperparameters was set using a Random Search method with the 40 best features according to the Fisher criterion. Then the 

SFFS method was applied to identify the most discriminative features. A new set of hyperparameters was then fixed with a 

new Random Search optimization, and so on. 

 

Because our datasets were imbalanced (many more children without dysgraphia than children with it) we used a balanced 

accuracy metric to evaluate the quality of the models during training. Every time a set of hyperparameters and features was 

fixed, the model was evaluated using a repeated stratified 10-fold cross validation [33]. Here is a summary of the method: 

• Shuffle the train dataset randomly 

• Split the train dataset into k groups (here k = 10), keeping a similar proportion of children with and without dysgraphia  

in each group 

• For each unique group: 

o Take the group as a validation data set 

o Take the remaining groups as a training data set 

o Fit a model on the training set and evaluate it on the validation set 

o Retain the evaluation score and discard the model 

This whole process was repeated 1000 times, and the performances were averaged over these 1000 10-fold repetitions. The 

final selected hyperparameters and features were the ones leading to the best-balanced accuracy averaged on these 1000 k-

folds. 

 

Test of the Final Model on the test Dataset 

With the final hyperparameters and features, a model was trained using the whole train dataset. This model was 

finally tested on the test dataset (20 % of the children) set aside at the beginning of the machine learning procedure 

and not used for the model training. The test dataset was normalized with the moving z-score calculation method 

described above using the average and standard deviation values from the train dataset, in order to avoid data 

leakage. 

 

RESULTS 
The results of the rating of the BHK of all children are presented in TABLE 3. Among the children recruited in schools, 30 

have been diagnosed with dysgraphia (6.7%). This is in agreement with previous observations [1, 8]. As expected, the average 

quality score of the children with dysgraphia from the hospital is lower than that of children with dysgraphia from schools. The 

first ones have an average BHK quality score of -3.1 and an average speed score of -1.1 whereas the second ones have an 

average quality score of -2.6 and an average speed score of 0.1. According to Welch’s t-test, these means are significantly 

different (p<0.05 and p<0.0005 respectively).  This confirms that involving children with dysgraphia from schools (less severe 

dysgraphia) in the creation of the pre-diagnosis tool is important to avoid recognizing only the most severe cases of dysgraphia 

[4]. 
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The hyperparameters optimization and features selection loop converged to the following results: 

• C = 0.374 

• γ = 0.144 

The best performances of the models on the validation folds were obtained with a total of 15 features listed below (cf Features 

extraction for more details about the features). 

• BHK specific features (4): 

o Draw backs per line 

o Mean of the significant differences of the margin (>2 mm) 

o Standard deviation of the space between the words 

o Number of telescoping per line 

• General features (11): 

o Mean duration of the slow moves 

o Mean Rényi Entropy of order 2 on the x axis 

o Mean Rényi Entropy of order 2 on the y axis 

o Mean velocity of the velocity peaks 

o Number of stops on the x axis 

o Number of strokes per second 

o Number of velocity peaks per second 

o Strokes median time 

o Signal to Noise ratio on the y axis 

o Total lift time 

o Total writing time 

 

One can note the presence in these features of some of the best features from the Fisher criterion. Unfortunately, the SNvpd, 

which was expected to be a discriminative feature, does not emerge. On the other hand, the total writing, total lift time, number 

of stops on the x axis and number of velocity peaks, which were among the best features from the Fisher criterion, were selected 

by the SFFS process. All these features are linked with the dynamic characteristics of dysgraphia (see Features extraction for 

more precisions). With these features and hyperparameters, the results of the final model on the test dataset are the following: 

- Specificity: 91% 

- Sensitivity: 81% 

- Accuracy: 86% 

- Balanced Accuracy: 83% 

This means that 91% of the children with dysgraphia and 81% of the children without dysgraphia were correctly identified as 

such.  

 

Out of 22 children with dysgraphia in the test dataset, only 2 were badly identified by the model. The first one had a BHK 

quality score of -2.03 and a BHK speed score of -0.57. Therefore, he/she is very close to not presenting a dysgraphia, and one 

can imagine that another human examiner could have diagnosed this child as without dysgraphia as well. The other false 
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negative child had a quality score of -3.49, but a speed score of 1.29, meaning that he/she wrote the BHK text quite fast. This 

fast writing may have misled the model, TABLE 5. 

 

Table 5: Confusion matrix of the final classification model on the test dataset. 

  Predicted label 

  No Dys Dys 

T
ru

e 
la

be
l 

N
o 

D
ys

 

81% 19% 

D
ys

 

9% 91% 

 

On the other hand, out of the 97 children without dysgraphia in the test dataset, 18 were identified as having dysgraphia by the 

model (false positive). The average BHK quality score of these children is -0.46, and their average speed score is -0.01. More 

than half of these false positive children (12 out of 18) have a quality score and/or a speed score close to or below -1, meaning 

they present signs of a poor handwriting. Diagnosing these children as having dysgraphia does not seem problematic as they 

could benefit from an appointment with a clinician to help improve their handwriting. Three out of the 6 last children have 

written the text in an unusual way (only on 2 or 3 lines, or with many erasures), which may have misled the model. Two 

examples of written records of such children are given in FIGURE 5 and FIGURE 6. 

 

 

Figure 5: Example of written record of one of the false positive children who wrote the BHK text with many erasures. 

 

 

Figure 6: Example of written record of one of the false positive children who wrote the BHK text on 3 lines only. 
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DISCUSSION 
Database Richness 
This paper is based on the world’s largest database of numeric handwriting samples. This database was carefully acquired using 

four different models of graphic tablets and two acquisition software solutions. Thus, our results are likely to be the most 

reliable for a large-scale use. Moreover, children were recruited from various origins to ensure a wide range of writing 

characteristics. Recruiting children with dysgraphia from the hospital is a good way to increase the number of data available 

for children with dysgraphia. But we would like to emphasize the fact that it is very important to include children with 

dysgraphia from schools in the database, since a difference in the severity of dysgraphia between children recruited in hospital 

and in schools has been described [8], which is in agreement with our results. This ensures that the model is not biased toward 

recognizing only the most severe dysgraphia. We indeed confirmed that the children from the hospital have significantly worse 

BHK quality and speed scores than the children with dysgraphia from schools. This can be explained by the fact that only the 

worst writers are sent to the Reference Center for Language and Learning Disorders of the Grenoble Hospital. Thus, the model 

created by Asselborn et al. in [3] seems biased, and the excellent performances claimed by the authors must be qualified. A 

comment paper [4] has been published to highlight some methodological issues creating some important biases in this paper, 

such as artifacts not filtered and not written by the children, only present in the (D) dataset, or the lack of correction for age-

related changes in features. Therefore, the strength of our database is not only its size, but also its inclusion of a wide range of 

profiles allowing better generalizability of the models. 
 

BHK Test Limitations 
We would also like to stress that the inter-rater correlation in the French version of the BHK test goes from 0.68 for beginner 

raters, to 0.90 for very experienced ones [1]. The intra-rater agreement percentage is around 85% when correcting the same 

texts with a 6 months interval [1]. Thus, the mean sensitivity and specificity of around 80% obtained by our classifier are thus 

comparable to what we could expect from a single human expert rated by his peers. In order to improve these figures, it could 

be necessary to assess all BHK texts by multiple raters to try to get as close as possible from a purely objective and certain 

label of the children. 

 

Moving z-Score Computation 
Between the age of 6 and 10, the children handwriting improves quickly, creating big differences in the quality of the written 

trace between a 6-year-old and a 10-year-old child. Consequently, comparing the handwriting quality of children of different 

ages is difficult. In this paper, we developed the method that we called the “moving z-score” to compensate for this handwriting 

quality improvement with respect to children age. Thanks to this method, we were able to gather children of various ages in 

the same database and use them all to create a dysgraphia pre-diagnosis model. 

 

Comments on the Feature Selected for the Final Model 

Almost all features in the final model we developed are interpretable (durations, number of peaks, writing regularity…). An 

advantage of our model compared to a method that would be only based on highly sophisticated, non-interpretable features is 

that once a child is identified as having dysgraphia, our tool could help the clinicians to identify which aspects of the 

handwriting have to be improved. In addition, our tool is more valuable for researchers working on dysgraphia, as the features 

used as inputs of our model are more easily interpretable in terms of neuromotor or neuropsychological processes. 
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Several selected features are closely related to the detection of irregularities in writing. These irregularities are not sources of 

precision loss, but instead constitute the basis of the discrimination between typical and atypical writing, since children with 

dysgraphia tend to present these irregularities. Some features are related to the static features of the writing, such as “Number 

of telescoping per line” (which represents overlapping characters) or “Standard deviation of the space between the words” 

(which represents irregularity in word separation): this is mostly what the standard BHK test evaluates. Other features are 

linked to the kinematic of the movement during writing, such as “Mean Rényi Entropy” (which represents erratic movements) 

or “Number of stops” (which represents the difficulty to write without making stops). Thus, irregularities in writing should not 

be filtered, but instead interpreted as they are relevant for detecting children with dysgraphia. 

 

Comments on the Model Performances 

 

Table 6: Results from other studies. Some studies tried several models of classification of children whith dysgraphia 

(D) and typically developing children (TD). 1The score used is not balanced accuracy but only the percentage of 

children with dysgraphia actually detected by the algorithm. 2The score used is the accuracy, because the sets are 

almost balanced. 
Reference D/TD repartition Model used Score 

[2] 27/27 Random Forest 96.43% 

[3] 56/242 Random Forest 97.9% 

[16] 48/43 SVM (RBF Kernel) 82.51% 

[34] 24/971 RNN 90%1 

[35] 48/43 Backpropagation 84.7% 

[36] 42/36 Random Forest 67% 

[36] 42/36 SVM 66% 

[36] 42/36 AdaBoost 64% 

[37] 57/63 Random Forest 77.6%2 

[37] 57/63 SVM 78.8%2 

[37] 57/63 AdaBoost 79.5%2 

 

The classification performances presented are a little bit below the ones given in some recent papers [3, 34], but close or better 

than some others [16, 35–37], and they are presented in TABLE 6. The results in these papers are good and very interesting 

but each of these articles has a limitation that seems to make it unfit to be extended for a large-scale dysgraphia pre-diagnosis. 

[3, 34] only study children with dysgraphia from the CRTLA. Yet we just showed that their BHK scores are in average 

significantly worse than the ones of a more generic dysgraphic population recruited in schools. Therefore, there is strong chance 

that models showing good performances on these children would give poorer results when tested at a large scale on children 

from schools. On the contrary, we have included children with dysgraphia from schools, improving generalizability of the 

model if used on populations not from medical centers. On the other hand, [16, 35, 36] only focus on a small number of children 

(91 and 78), which can be an issue especially when the data have high dimensions. Moreover [16]  and [35] use writing on a 

tablet device (Android), which is known to affect movement control and execution [10-12]. Once again, there is no proof that 
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the performances they claim could be generalized. Finally, Drotár et al. [37] used more than 1000 features with a database of 

120 children, which may lead to some overfitting to the database. Besides, the children with dysgraphia included in their study 

come from the “Centre for Special-Needs”, which may indicate that they do not represent the general population of children 

with dysgraphia, but again only the children with really low BHK score. Our study is the only one that focuses on a large 

number of children with dysgraphia from various origins and with a wide range of BHK scores. Therefore, the results presented 

in this paper are certainly the most realistic ones for a wide screening of the population. 

 

CONCLUSION 
Aiming to develop a pre-diagnosis tool for dysgraphia, we created a database of handwriting trajectory of 580 children, 

including 122 children with dysgraphia, by using four graphic tablets and two acquisition software solutions. Moreover, the 

age-related evolution of handwriting has been taken into account thanks to the moving z-score method. In order to avoid bias 

of our pre-diagnosis algorithm towards the children with the most severe dysgraphia, we also considered children with 

dysgraphia from the general population from schools. We used a SVM approach as this kind of algorithm is known to exploit 

not only the most relevant features but also “minor features”. They are also known to give good performances with high 

dimensional problems. Our SVM based model achieves a sensitivity of 91% for children with dysgraphia and a specificity of 

81% for children without dysgraphia. Thus, our tool has an accuracy level comparable to a human examiner. Although our 

model is based on BHK rating from 1 to 3 raters, it would be improved if BHK tests were rated by more raters in order to 

minimize the effect of the inter-rater variability, well known for the BHK test. Overall, our dysgraphia pre-diagnosis algorithm 

could be widely usable, because of its independence to the tablet, the acquisition software and the age of the children. The 

approach by classification algorithms as we present in this paper and as we can find in [3] is a good first step toward automated 

pre-diagnosis of dysgraphia. However, its main flaw is that it does not estimate the severity of dysgraphia. Indeed, further work 

will aim at developing and estimating the performances of a regression model for dysgraphia severity, and compare it to BHK 

scores. 

 

Finally, writing the BHK text takes some time and is clearly language dependent. Developing a model able to diagnose 

dysgraphia based on language-independent stimuli such as drawings would allow creating a unique international diagnosing 

tool for dysgraphia. 
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