Real-Time Look-Ahead Distance Optimization for Smooth and Robust Steering Control of Autonomous Vehicles
Hussam Atoui, V Milanés, Olivier Sename, John Jairo Martinez Molina

To cite this version:
Hussam Atoui, V Milanés, Olivier Sename, John Jairo Martinez Molina. Real-Time Look-Ahead Distance Optimization for Smooth and Robust Steering Control of Autonomous Vehicles. MED 2021 - 29th Mediterranean Conference on Control and Automation, Jun 2021, Bari (virtual), Italy. 10.1109/MED51440.2021.9480235. hal-03301885

HAL Id: hal-03301885
https://hal.univ-grenoble-alpes.fr/hal-03301885
Submitted on 27 Jul 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Real-Time Look-Ahead Distance Optimization for Smooth and Robust Steering Control of Autonomous Vehicles*
H. Atoui1,2, V. Milanés1, O. Sename2 and John J. Martinez2

Abstract—This paper presents an optimization problem for the look-ahead distance used in lateral automated vehicle control. A relation is formulated to describe the sensitivity of the control input steering speed \(\delta \) with respect to the variation of the look-ahead distance \(L \). The nonlinear relation is written as an LPV model using the grid-based approach. The aim is to design a controller which minimizes the steering speed \(\delta \) by optimizing an additional look-ahead distance \(L_d \) that is added to the nominal look-ahead distance. Such action generates a smooth/stable vehicle motion when subjected to high oscillations due to noises, large lateral errors, etc. The proposed solution is based on the Linear Parameter Varying (LPV) control approach, where an output-feedback dynamic controller is designed based on Linear Matrix Inequalities (LMIs). The control synthesis is carried out using the grid-based approach combined with the \(H_\infty \) control problem. Simulation results show the tracking performance and the smoothness of the steering input, when the vehicle is subjected to successive large lateral errors, which provides a comfortable riding.

I. INTRODUCTION

Day by day, automated vehicles are entering a new level of intelligence. The lateral vehicle control is vital problem to achieve an on-road automated movement. It is important as much as it is critical where it concerns lane-keeping, lane-changing, obstacle avoidance, autonomous parking, etc. Most of the path-tracking methods in practice encounter challenges when high accuracy and robustness are required [1]. The first role of the lateral control is to keep the vehicle within the boundaries of a lane, which is performed by adjusting the steering actuator to minimize the lateral error between the vehicle position and a target point in the generated reference. The question comes on how to choose the target point. If the target point is chosen to be the closest point (in the reference) to the vehicle, the actuator may not be able to minimize the corresponding lateral error in case of high speeds, high curvature changes, etc. This is due to delays found in the used sensors and actuators. Then, a look-ahead approach is raised to predict the future lateral error at a chosen look-ahead distance. Look-ahead systems use sensors as machine vision, radar, and LiDAR, to measure the lateral displacement in front of the vehicle.

In 90s, the control concepts based on look-ahead systems have been raised. These concepts have been developed to mainly improve the efficiency and performance of the longitudinal and lateral vehicle controls. [2] proposes a new approach to improve the vehicle trajectory prediction for the Adaptive Cruise Control (ACC) system. It concludes that the more look-ahead distance increases, the greater the prediction errors. Moreover, the look-ahead approach is also used to optimize traffic flow, minimize trip time [3], decrease fuel consumption and provide safety for heavy-duty vehicles [4], [5], [6].

On the other hand, look-ahead systems are used for lateral objectives as shown in the pioneering works [7], [8]. In [9] and [10], the authors have recognized that the closed-loop stability is sensitive to the variation of speed. Specifically, when the vehicle speed increases, the closed-loop zeros and poles move toward the imaginary axis leading to poor damping of the poles. Increasing the look-ahead distance moves the zeros closer to the real axis, improving the damping of the closed-loop poles. As a result, the choice of a proper look-ahead distance is important for stability and performance of the closed-loop system. Practically, as much as the look-ahead distance decreases, the vehicle will lose farther information which leads to periodic oscillations due to actuators and sensors delays. On the other hand, when the look-ahead distance increases, the vehicle may not be able to deal with near obstacles or maneuvers. A relation has been analyzed between the look-ahead distance and the longitudinal velocity, the road curvature and the processing delay of the vision. In [11], the authors introduce an equation which calculates the look-ahead distance as a function of vehicle specifications and longitudinal speed taking into account the distance between the vehicle and a bumper. [12] proposes a dynamic look-ahead distance \(L(s) \) which varies with respect to speed. The aim was to obtain the lateral acceleration independent of the longitudinal speed which makes the design of the steering control much easier.

Recently, several studies aim to find the best tuning of the look-ahead distance \(L \) with respect to the vehicle speed \(v_x \). The studies in [13], [14] and [15] propose to tune \(L \) from numerical analysis. [16] estimates \(L \) manually by analyzing the closed-loop poles with respect to speed, look-ahead distance, and lateral control feedback gains. In [17], the authors indicate three look-ahead distances \((L_1, L_2, L_3) \) at a fixed speed. Then, a feedback lateral control uses vehicle lateral deviations at the indicated look-ahead points to improve the performance of the vehicle at different road curvatures. In [18], the look-ahead distance is formulated.
as a linear function of speed by choosing a suitable look-ahead time as a slope, with lower and upper bounds. The same methodology is also introduced in [19] and [20], [21] and [22] propose a simplified adaptive method that tunes the look-ahead distance from the commanded speed instead of the measured one to improve a path prediction process. The tuning method parameters are obtained from a number of different experiences. Other works employ the fuzzy logic approach to tune the look-ahead distance [23], [24]. They consider the road curvature and the current vehicle lateral error for the selection of the look-ahead distance.

As an overall, the look-ahead distance may be determined based on at least one of the following: vehicle speed, rotating speed, steering acceleration, steering angle, heading positions. This paper proposes a method to find, in real-time, an optimal look-ahead distance according to the vehicle speed and [25]: 1) A feedforward term which concerns the parameter-varying model describing the vehicle lateral dynamics (taking $\cos(\delta) \approx 1$) with $\rho = v_x$, as:

$$\begin{align*}
G(\rho) &= [A(\rho) x(t) + B u(t)] \\
y(t) &= C x(t)
\end{align*}$$

where:

$$\begin{align*}
x(t) &= \begin{bmatrix} v_y \\ w \end{bmatrix}, \\
u(t) &= \delta, \\
B &= \begin{bmatrix} \frac{1}{2} C_f \rho C_f f \delta \end{bmatrix}, \\
C &= \begin{bmatrix} 0 & 1 \end{bmatrix}, \\
A(\rho) &= \begin{bmatrix} -C_r + C_f \rho v_y - m v_x \frac{1}{C_f f} I_v v_x - \frac{C_f f}{I_v} v_y - \frac{C_f f}{I_v} \delta - \frac{v_x}{v_y} & 0 \\
-C_r f - I_r C_r & \frac{C_f f}{I_v} + \frac{I_r}{I_v} C_r \end{bmatrix}.
\end{align*}$$

The longitudinal speed to be bounded as:

$$v_x \in \left[v_{x_{\min}}, v_{x_{\max}} \right] m/s$$

Fig. 2, $K(\rho)$ represents a parameter-varying lateral control designed using any control concept (pole-placement, PID, H_∞, ...). Notice that this controller can be designed using any of the LPV control approaches; polytopic, grid-based, or LFT approach (see [28]). This paper uses the grid-based LPV control approach to design an LPV/H_∞ output feedback controller $K(\rho)$ [29]. The aim is to track the yaw rate reference w_{ref} and respecting the actuator limitations. A grid-based LPV system is a set of LTI systems linearized at different operating points. It is usually chosen due to its low conservatism compared to the other approaches.
The Look-Ahead System (LAS) block presented in Fig. 2 aims to generate a coherent yaw-rate reference \(w_{ref} \). The LAS uses the current vehicle situation measured by the sensors and the information from the navigation system. The main role of LAS is to improve the lane-tracking accuracy and driving comfort at the same time. From [16], it is shown that \(w_{ref} \) can be approximated as:

\[
 w_{ref} = \frac{2v_x y_L}{L^2}
\]

where \(y_L \) is the predicted lateral error at the look-ahead distance \(L \) (see Fig. 1). The way to find an optimal value of \(L \) is the objective of this paper.

III. ADVANCED LOOK-AHEAD SYSTEM

The role of LAS has been often concerned to adapt the look-ahead distance \(L \) with respect to the longitudinal speed \(v_x \). Although it has provided good performance at normal cases (small lateral errors, low steering noises,...), however, it cannot provide the required performance level for all situations that often face an autonomous vehicle. Indeed, such situations are found when the vehicle starts its autonomous mode with an initial large lateral error, performs sudden lane-changes to avoid obstacles, and when the steering actuator is subjected to high noises/oscillations at high speeds, etc.

This work aims to propose an optimal LAS by considering the steering speed \(\delta \) and the heading error \(\theta_c \) in addition to \(v_x \) as parameters of the look-ahead distance optimization. The new look-ahead distance \(L(v_x, \delta, \theta_c) \) is here computed as:

\[
 L(v_x, \delta, \theta_c) = L_v(v_x) + L_d(\delta, \theta_c)
\]

where \(L_v \) is given from the look-up table which is tuned in terms of \(v_x \) as done in the literature. \(L_d \) represents a corrective term added to \(L_v \) when the vehicle faces high steering speeds \(\delta \), then, the objective of \(L_d \) is to smooth the generated \(w_{ref} \). On the other hand, if \(\theta_c \) is larger than a pre-defined threshold \(T_\theta \) (i.e. \(\theta_c > T_\theta \)), the effect of \(L_d \) is decreased to provide a faster heading error minimization. In this study, \(L_d \) is computed using a controller which minimizes \(\delta \). To do so, a dynamic model is proposed as the sensitivity of the steering speed \(\delta \) with respect to the look-ahead distance. The next section shows the model derivation steps.

A. Model Formulation

According to Fig. 2, a state-space Single-Input-Single-Output (SISO) system between the control input \(\delta \) and the reference trajectory \(w_{ref} \) can be derived as:

\[
 \delta(t) = [1 + G(p)K(p)]^{-1}K(p)w_{ref}(t)
\]

where \(p = v_x \). At each grid point of \(p \), let us transform the SISO system in (8) to a transfer function in Laplace domain, and multiply it by the complex variable \(s \). Then, after performing an inverse Laplace transformation, and using (6), the steering speed \(\delta \) can be written in state-space as:

\[
 \delta(t) = \Gamma(p)w_{ref}(t) = \Gamma(p)\frac{2v_x(t)y_L(t)}{L_d^2(t)}
\]

where \(\Gamma(p) \) represents the inverse Laplace transform of \(\frac{\rho}{1+\rho\Theta(p)} \) (that must be proper), here its state-space matrices are \(\{A_\Gamma, B_\Gamma, C_\Gamma, D_\Gamma\} \). After reformulation, the steering speed \(\delta \) can be written as:

\[
 \delta(t) = \Gamma(p)\frac{2v_x(t)y_L(t)}{L_d(t)} = \Sigma(t)L_d(t)
\]

where \(\Sigma(t) = \Gamma(p)\frac{2v_x y_L}{L_d^2} \) is an LPV model that varies with respect to \(\theta = [v_x, L_d, y_L]^T \), and its corresponding state-space representation is written as:

\[
 \begin{bmatrix}
 2\Sigma(t) = A_\Sigma(t)v_{\Sigma}(t) + B_\Sigma(t)\theta L_d(t) \\
 \delta(t) = C_\Sigma(t)v_{\Sigma}(t) + D_\Sigma(t)L_d(t)
 \end{bmatrix}
\]

where \(A_\Sigma(t) = A_\Gamma, C_\Sigma(t) = C_\Gamma, B_\Sigma(t) = B_\Gamma(2v_x y_L)/L_d^2 \), and \(D_\Sigma(t) = D_\Gamma(2v_x y_L)/L_d^2 \). It is worth mentioning that \(\Sigma(t) \) is written as a grid-based LPV model where \(v_x \) has the same gridded axis as \(k, L_d \) and \(y_L \) are gridded on different axes and bounded in \([0, 0.2] \) and \([0.1, 4] \) respectively.

The grid-based LPV approach can use any kind of interpolation (linear or nonlinear) between the gridded models to compute the LPV model. Suppose that, at an instant,

\[
 \begin{bmatrix}
 v_x \\
 L_d \\
 y_L
 \end{bmatrix}
\]

the linear interpolation of the state-space matrices is done in a cubic region defined by the boundaries of the three parameters as:

\[
 \begin{bmatrix}
 A_\Sigma(t) = \sum_{m=1}^{3} \alpha_m(t) \begin{bmatrix}
 A_m & B_m \\
 C_m & D_m
 \end{bmatrix}
 \end{bmatrix}
\]

where \(\alpha_m(t) \) are the interpolating coefficients such that \(\sum_{m=1}^{3} \alpha_m(t) = 1 \). The following section introduces the control design which aims to find an optimal value of \(L_d \) to minimize the steering speed \(\delta \).

B. Control Design

Fig 3 depicts the control block diagram. \(K_L(t) \) represents the LPV controller to be designed using gridding approach [29] achieving some required performances.

The \(H_\infty \) concept is chosen to minimize robustly the steering speed \(\delta \) which is subjected to high noises. Control performance requirements in \(H_\infty \) control theory are given by frequency domain functions. Two weighting functions \(W_e \) and \(W_s \) are used to achieve \(\delta \) minimization and \(L_d \) limitations performances respectively. The objective is to achieve both performances with a trade-off between minimizing the lateral acceleration (caused by \(\delta \)) and limiting the look-ahead distance rate.
C. Tracking specification (W_e)

The weighting transfer function is designed as:

$$W_e(s) = \frac{s}{M_s} + \frac{w_b}{s + w_b \epsilon}$$ \hspace{1cm} (14)

where the parameters M_s, w_b, and ϵ are tuned as follows:

- $M_s = 2$, to ensure robustness at any frequency.
- $w_b \geq 10$, to choose the rate of minimization.
- $\epsilon \leq 10^{-1}$, to represent the steady-state tracking error.

D. Specification on the control input limitations (W_u)

A filter is used to restrict the look-ahead distance control L. This filter is tuned as:

$$W_u(s) = \frac{s + w_{bu}}{w_u s + w_{bu}}$$ \hspace{1cm} (15)

The parameters M_u, w_{bu}, and ϵ_u are adopted as:

- M_u represents the limitations on the maximum allowed L_d.
- w_{bu}, is related to the bandwidth L_d.
- $\epsilon_u \leq 10^{-2}$, is concerned with the noise rejection from L_d at high frequencies.

E. Generalized Plant

Using the $\Sigma(\theta)$ and the weighting functions W_e and W_u, Fig. 3 is transformed to build a general control configuration as in Fig. 4. The generalized plant $P(\theta)$ includes $\Sigma(\theta)$ in addition to the chosen weights. Thus the state vector of $P(\theta)$ is $x_P = [x_{\Sigma} \ x_{W_e} \ x_{W_u}]^T$, and the controlled output $z = [z_1 \ z_2]^T$ represents the objective function to be optimized. $w_r = [r \ d \ n]^T$ is the exogenous input, where r, d and n are the desired reference, input disturbance and the sensor noises respectively. The state-space representation of $P(\theta)$ (see Fig. 4) has the form:

$$\begin{bmatrix}
\dot{x}_P \\
\ddot{\delta} + n
\end{bmatrix} =
\begin{bmatrix}
A_P(\theta) & B_1(\theta) & B_2(\theta) \\
C_1(\theta) & D_{11}(\theta) & D_{12}(\theta) \\
C_2(\theta) & D_{21}(\theta) & D_{22}(\theta)
\end{bmatrix}
\begin{bmatrix}
x_P \\
w_r
\end{bmatrix}$$ \hspace{1cm} (16)

Here, the varying parameters are chosen to be bounded as follows: $v_x \in [3, 30]$ m/s, $L_d \in [0, 20]$ m, and $y \in [0.1, 4]$ m. The grid-based approach formulates the problem in the context of robust stability [30] by using a parameter-dependent Lyapunov function along the gridded axes. The parameter-varying Lyapunov function $X(\theta)$ is chosen to be linearly dependent (order 1) on θ:

$$X(\theta) = X_0 + \theta X_1,$$ \hspace{1cm} (17)

where X_0 and X_1 are unknown constant matrices to be computed from the Linear Matrix Inequalities (LMIs) shown in [29]. As a result, a set of LTI controllers is obtained where each one corresponds to a frozen value in the gridded space of the varying parameters. The controller $K(\theta)$ can be linearly interpolated as:

$$\begin{bmatrix}
A_k(\theta) & B_k(\theta) \\
C_k(\theta) & D_k(\theta)
\end{bmatrix} = \sum_{m=1}^{2^3} \alpha_m(\theta)
\begin{bmatrix}
A_{k,m} & B_{k,m} \\
C_{k,m} & D_{k,m}
\end{bmatrix},$$ \hspace{1cm} (18)

where $\alpha_m(\theta) \in \mathbb{R}$ are the interpolating coefficients such that

$$\sum_{m=1}^{2^3} \alpha_m(\theta) = 1.$$

IV. SIMULATION RESULTS

The proposed Look-Ahead System (LAS) is implemented according to Fig. 5. The simulations are implemented on a
nonlinear model of a real Renault ZOE vehicle in discrete-time domain with a sampling time $T_s = 10 \text{ ms}$. The nonlinear model includes nonlinear tire dynamics and estimated aerodynamic friction. To evaluate the efficiency of the developed Look-Ahead System (LAS), two tests are done: 1) without activating LAS ($L = L_v$); and 2) activating LAS ($L = L_v + L_d$). Recall that if θ_e is larger than a pre-defined threshold T_{θ} (i.e. $\theta_e > T_{\theta}$), the effect of L_d is decreased to provide a faster heading error minimization. A scenario is chosen with five successive sudden lane changes with different longitudinal speeds. Fig. 6 depicts the planned and the controlled trajectories. The longitudinal speed profile is shown in Fig. 7 and the resultant lateral error in presented in Fig. 8.

Fig. 9 shows two sub-figures corresponding to the generated yaw rate references w_{ref} in case of activating the LAS (Fig. 9b) and without its activation (Fig. 9a). It is worth to mention how the LAS affects the evolution of w_{ref}, where it is adapted suddenly when reaching high values thanks to the fast adaptation of the look-ahead distance L (see Fig. 10). Additionally, the lateral controller $K(\rho)$ couldn’t work on such high frequency which prevents it from aggressive tracking (check when time $\in [30, 40] \text{s}$ in Fig. 9). Fig. 10 presents the variation of the nominal look-ahead distance (in red) accordingly with the evolution of speed, and the adaptive look-ahead distance (in blue) accordingly with the speed and the steering speed together.

Fig. 11 and 12 depicts the steering effort for both cases with/without activating the LAS. It can be shown that the LAS optimizes the steering effort (see Fig. 11). Moreover, Fig. 12 presents the advantage of the LAS in providing smooth transitions of the steering speed $\dot{\delta}$, which provides better driving comfort. Overall, Fig. 8, 11, and 12 show that the tracking and steering performances (when activating the LAS) are almost similar for all the speed range, which clarify the advantage and importance of the proposed LAS.

V. CONCLUSION

This paper has proposed an adaptive Look-Ahead System (LAS) to generate an optimal reference for the lateral control of autonomous vehicle. A grid-based LPV/H_∞ controller is designed to minimize the steering speed $\dot{\delta}$ by finding an optimal look-ahead distance L. The results obtained in simulation shows the advantage of the LAS in improving the driving comfort and avoid lateral oscillations in critical situations. This system will be tested on a real RENAULT vehicle in the future to improve an the performance of an
existing lateral controller. It provides better tracking accuracy simultaneously with actuator effort optimization in various experimental conditions.

ACKNOWLEDGMENT

Authors express their gratitude to RENAULT research department for its support in developing simulations on a nonlinear model of a real Renault ZOE vehicle. This paper reflects solely the views of the authors and not necessarily the views of the company they belong to.

REFERENCES