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Abstract—We propose an event-based framework for set-point
tracking involving three linear time invariant systems, a real, a
reference and an observer system. To be actually event-based
using only the knowledge of the output of the real system, we
show that the two systems (reference and observer) involved in the
event generator have to take into account the output observation
error. The resulting setup is proved to be able to follow a Lipschitz
predefined set-point trajectory with no Zeno phenomenon.

I. INTRODUCTION

Event-based control is an alternative to continuous or
periodic control, that enables to address the control of em-
bedded systems with low resources [3], [7], [14], [15]. In
this paradigm, the infrequent control updates are suitable for
low power systems that spare the energy used in actuators,
or to relax the communication requirements in embedded and
networked systems.

The stabilization problem of continuous-time systems with
event-triggered controllers has been widely studied in the
literature. For example, the case of linear systems is considered
in [6], [7], [10], [20], the case of nonlinear systems is addressed
in [2], [9], [12], [13], [15], and the case of switched linear
systems is studied in [8], [16], [17], [19]. Note that, the event-
triggering conditions of all the aforementioned approaches are
based on the knowledge of the whole state vector of the system
at all times. Thus, to overcome this constraint, event-triggered
stabilizing controllers based on output feedback are proposed
in [1], [4] and on estimated state feedback are introduced in
[6], [11]. In [6] the experiential stability problem of a specific
closed-loop interconnection between a continuous-time linear
system and a continuous-time linear controller via a digital
channel is considered. The global asymptotic stability of the
plant is guaranteed when an estimate of its state is provided by
a continuous-time Luenberger observer. The control is updated
when a Lyapunov function using an extended system involving
both the estimated state and the control error is not sufficiently
decreasing or when the error becomes large with respect to the
estimated state. This type of triggering condition is also found
in the pioneering work [15]. A non-zero dwelling time is also
enforced with a timer. In [11] a combination of a stable scalar
reference system and a classical state observer is used to design
a new event-triggering condition. This condition is based on

a comparison between the Lyapunov function of the reference
system and a quadratic function of the estimated state.

On the other hand, the set-point tracking problem with
event-triggered policy is tackled in [18]. It is shown that, for
continuous-time linear systems, it is possible for the system
outputs to track reference signals even if the control signals
are not updated continuously. Indeed the control values are
updated only when the behavior of the system is no longer
satisfactory. To assess the behavior a condition involving the
full state of the system is used. This is not very realistic for
practical applications and for two reasons: first the full state of
a system is usually not measurable; second, the event generator
is supposed to have access to the state for all times, which
would induce exorbitant communication costs. However, in the
case when the system is observable, it is possible to estimate
the state of a system using a state observer. Thus, in this present
work, we show how to extend the event-triggered algorithm
presented in [18] to the case of estimated state feedback.

II. A SIMPLE OBSERVER IMPLEMENTATION

The aim of this section is to show that a direct extension
of our previous results, on the design of event-triggered con-
trollers, to the case of estimated state feedback is not always
possible. Thus, in the next section, we propose a new structure
of the reference system to overcome this issue.

A. Event-triggering based on measured state feedback

Consider the LTI system{
ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
(1)

for which we want the output vector y(t) ∈ Rm to follow
a predefined reference vector r(t) ∈ Rm. In this system, the
state vector x(t) belongs to Rn for all t ≥ 0, and the control
signal u(t) ∈ Rp. Therefore the state matrix A, input matrix B
and observation matrix C respectively belong to Mn×n(R),
Mn×p(R), and Mm×n(R).

In [18] an event-based tracking strategy is investigated, by
using a piecewise constant control signal ū(t) where for t ∈



[tk, tk+1)

ū(t) = −Kx(tk) +Gr(tk) ≡ ūk,

and the tk, k ∈ N, are the control update times. They
correspond to time instants when an event-triggering condition
is fulfilled. This condition involves the comparison of the state
x(t), at each time instant, to the state of a reference system{

ẋr(t) = (A−BK)xr(t) +BGr(t),

yr(t) = Cxr(t).
(2)

Under the assumption that the pair (A,B) is controllable
and the pair (A,C) is observable, the feedback matrix K ∈
Mp×n(R) is constructed for both systems such that A−BK is
Hurwitz with prescribed eigenvalues. Defining the gain matrix
G ∈Mp×m(R) by

G = −
(
C(A−BK)−1B

)−1
,

we know that
lim
t→∞

‖yr(t)− r(t)‖ = 0.

The strategy defined in [18] is proved to ensure that the track-
ing error x(t)− xr(t) remains small (i.e. ‖x(t)− xr(t)‖ ≤ ε)
so that y(t) is also close to the reference r(t) at order ε as
time goes to infinity.

However, the full state vector is not always available for
measurement, which makes unworkable an event-triggering
condition based on the full state. A possible solution to this
problem is to estimate the value of the state through a state
observer.

B. Construction of a state observer

We therefore first suggest to implement a state observer as{
˙̂x(t) = Ax̂(t) +Bû(t) + L(y(t)− ŷ(t)),

ŷ(t) = Cx̂(t).
(3)

where the observer gain L ∈ Mn×m(R) is chosen such that
A−LC is Hurwitz. In this system, the control is also piecewise
constant and for t ∈ [tk, tk+1), û(t) = −Kx̂(tk) + Gr(tk) is
computed using the observed state. This control is sent and
used by the real system. The tracking error which is used
to define the control update instants tk is now taken as the
difference between the observed state and the reference state

ê(t) = x̂(t)− xr(t).

The event-triggering condition is constructed from this
error ê as it is done in [18] from x − xr. Namely a pseudo-
Lyapunov function is constructed

V (ê(t)) = ê(t)TP ê(t),

where P is a positive definite matrix that satisfies the Lyapunov
equation

(A−BK)TP + P (A−BK) = −Q,

and Q is a positive definite matrix. A new control is computed
and applied when the following event occurs V (ê(t)) = δ.
More precisely for a predefined δ > 0

tk = inf{t ≥ tk−1 such that V (ê(t)) ≥ δ}. (4)

The construction of matrix P and functional V is quite
classical. However we call V only a pseudo-Lyapunov function
because the update condition in (4) only ensures that V
remains below a threshold. This will be later seen in Figure 4
which shows a typical behavior of V for such an event-based
update condition.

Figure 1 summarizes the communications between the
systems (1)–(3), showing clearly that only the output of the
real system is used by the two other systems. The dashed lines
represent communications that only occur at control update
times tk.
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Fig. 1. Communications between the real, reference and observer systems
(1)–(2)–(3). Dashed lines are event-triggered communications.

C. Event-triggering property

The previous tracking implementation is valid if it fulfills
the following conditions

• it manages to track the reference trajectory,

• there is no Zeno phenomenon, i.e. the control updates
are really discrete in time.

To ensure this, it is necessary that when V (ê) reaches the
threshold δ and the control is updated, the function V (ê(t))
is pushed below the threshold, that is its time derivative is
negative. Computing this derivative at time tk we obtain

dV (ê(t))

dt

∣∣∣∣
t=tk

= −ê(tk)TQê(tk)+2ê(tk)TPL(y(tk)−ŷ(tk)).

The output observation error y(t)− ŷ(t) is generally nonzero,
and may be relatively large in transient time. Therefore we
cannot ensure that the time derivative of the Lyapunov function
is non positive at the update time tk. Let us show on an
example that such a situation can occur.

D. Impact of the output observer error on the event-triggering
strategy

To show that the above implementation is not valid as
an event-triggered approach, we use a simple stabilization
example from the literature (see e.g. [15]), i.e. we want to
track the zero function. To this aim we consider the system(

ẋ1

ẋ2

)
=

(
0 1
−2 3

)(
x1

x2

)
+

(
0
1

)
u, (5)



with x(0) = (−1 3)
T . The feedback gain of the controller

is K = (0 6) and the observer gain L = (7.718 27.789)
T .

Matrices P and Q satisfying the Lyapunov equation are

P =

(
2.5 0.5
0.5 2.5

)
and Q =

(
2 0
0 2

)
,

and we take the same initial condition for the observer and the
reference system x̂(0) = xr(0) = (10 cos( 2π

30 ), 10 sin(2π
30 ))T .
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Fig. 2. The control signal (above) and the Lyapunov function for system (5)
and control tracking implementation (1)–(3)

Though the control manages to stabilize the system and
drive the states to zero, it is updated at every sampling instant
in transient time, contrary to the requirements of an event-
based scheme. Figure 2 shows the control signal and the
Lyapunov function. We notice that there is first a transient
part during which the Lyapunov function is much too large
and therefore the update condition is always fulfilled, leading
to a continuous control. This destroys the performance of the
system even if it eventually shows event-based features at
permanent regime.

III. A NEW APPROACH

A. Redefining the reference system

To get around the problem, we would like to simply have

dV (ê(t))

dt

∣∣∣∣
t=tk

= −ê(tk)TQê(tk). (6)

We can perform this without changing the event-triggering
conditions, nor the observer system, but only the reference
system. Indeed we will also feed the reference system with
the output observation error, leading to the modified dynamics{

ẋr(t) = (A−BK)xr(t) +BGr(t) + L(y(t)− ŷ(t)),

yr(t) = Cxr(t).
(7)

We now consider the systems (1), (3), and (7) to track
the reference trajectory r and show that is qualified as an
event-based approach. The modified communication scheme
is pictured in Figure 3.
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Fig. 3. Communications between the real, reference and observer systems
(1)–(7)–(3). Dashed lines are event-triggered communications. The new com-
munication channel is thicker.

B. Tracking property

The observation error e(t) = x(t)− x̂(t) has the following
dynamics

ė(t) = (A− LC)e(t),

and since A − LC is Hurwitz, the observation error tends to
zero as time goes to infinity:

lim
t→∞

(x(t)− x̂(t)) = 0. (8)

Moreover, by construction of the control update events,
V (ê(t)) ≤ δ. Indeed, when this condition is violated, the
control is updated, and the derivative (6) is negative, pushing
V (ê(t)) below the threshold again. This yields an upper bound
for ‖ê‖: if we denote λmin(P ) the lowest (positive) eigenvalue
of P , for all times

‖x̂(t)− xr(t)‖ ≤

√
δ

λmin(P )
≡ ε.

Equation (8) also implies that y(t)− ŷ(t) tends to zero as t
goes to infinity. Therefore the dynamics of equation (7) tends
to that of ẋr(t) = (A − BK)xr(t) + BGr(t) which is well
known to ensure the tracking of r(t).

These three limits ensure that the output of the real system
tracks r(t) with a precision of ε in the limit t → ∞. In the
case of a stability problem, where r ≡ 0, this ensures that the
real system is asymptotically stable with error ε.

C. Intersample delay

For the algorithm to be event-based, we have also to prove
that there exists a minimum delay between two update instants,
more precisely,

there exists τ > 0 such that tk+1 − tk > τ for all k ∈ N.

To study this have to consider the derivative of ê for t ∈
[tk, tk+1):

˙̂e(t) = (A−BK)ê(t) +B (v(t)− v̂(tk)) ,



where v(t) = −Kx̂(t) +Gr(t). This leads to

dV (ê(t))

dt
= −ê(t)TQê(t) + 2ê(t)TPB(v(t)− v(tk)).

The proof follows exactly the same steps as in [18]. A
minimum delay τ exists if r(t) is a Lipschitz function, which
is the case in real systems for which a low pass filter is used
on the reference input to avoid the saturation of actuators.

More precisely, we show that there exists a constant β that
only depends on the threshold δ and on the eigenvalues of
P and Q such that dV (ê(t))/dt ≤ −β over a time interval
[tk, tk + τ1] and τ1 depends on the model parameters and
the Lipschitz constant of the reference vector. Besides the
minimum delay τ1 is smaller than the actual dwelling time,
since do not ask the pseudo-Lyapunov to decrease but allow
it to slightly grow before a new update of the control.

D. Test on a stabilization problem

To test this approach, we first use it for the previous
stabilization problem. Figure 4 shows the control signal and the
time evolution of the Lyapunov function. Here V (ê(t)) remains
below δ = 0.3 up to small numerical overshoots due to the
fact that the numerical discretization does not catch exactly the
event times. Although the controls of Figures 2 and 4 seem
very similar, on Figure 4 there are only 585 control updates
for 300,000 sampling instants (we have set the simulation time
step to ∆t = 10−4).

We have chosen ∆t = 10−4 to satisfy a trade-off between
the preservation of dynamics properties of the continuous-time
system in the performed numerical simulations and a reason-
able computational time. Table I compares both approches for
∆t = 10−4, ∆t = 10−3, and ∆t = 10−2 in terms of the
number of control updates and the maximum of the pseudo-
Lyapunov function.

∆t t ∈ [0, 7.4] t ∈ [7.4, 30] total V max
First approach (1)–(2)–(3)

10−4 73981 411 74392 7328
10−3 7398 235 7633 7342
10−2 739 184 923 7482

Second approach (1)–(7)–(3)
10−4 450 135 585 0.302
10−3 422 204 626 0.33
10−2 234 173 407 0.67

TABLE I. NUMBER OF CONTROL UPDATES AND MAXIMUM VALUES
FOR V FOR BOTH APPROACHES.

We analyze separately two parts in the time evolution of
the systems: a transient part (roughly for t ∈ [0, 7.4]) where
both strategies show different features, and a steady state part
where they are essentially the same. In the transient part,
the first strategy is very bad and the updates occur at each
simulation time, which means that the control is continuous in
time. As can be also seen in Figure 2 the pseudo-Lyapunov
function V takes very large values during this part of the
simulation. On the contrary, for the second approach using
(7) for the reference system, the number of updates during the
transient part is much lower and not directly connected to the
number of simulation steps. Choosing a relatively small value
of ∆t allows to capture the events more precisely. The events
are always captured after they occur, and ∆t represents the
maximum delay in the event detection. This explains that the

maximum value for V in Table I is always greater that δ = 0.3.
Detecting events in time leads to a better approximation of the
dynamics and end up in a lower number of control updates in
the steady state part.
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Fig. 4. The control signal (above) and the Lyapunov function for system (5)
and control tracking implementation (1), (3), and (7)

Figure 5 shows the time evolution of the states of the
real and observed systems. Both systems are stabilized to the
precision induced by the choice of δ.
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Fig. 5. Time evolution of the real (top) and observed (bottom) states

E. A tracking problem

To test tracking we use a control moment gyroscope [5]
which is described by a 5-state system, with

A =


0 0 0 1 0
0 0 0 0 1
0 0 0 0 JDΩ

IC+ID
0 0 0 0 0
0 0 −JDΩ

ID+KA+KB+KC
0 0

 ,

B =


0 0
0 0
0 1

IC+ID
− 1
JB+JC

0
0 0

 , C =

(
1 0 0 0 0
0 1 0 0 0

)
,



and KA = 0.067, IB = 0.012, JB = 0.018, KB = 0.030,
IC = 0.0092, JC = 0.023, KC = 0.022, ID = 0.015, JD =
0.027, Ω = 42. The gain matrix K is chosen in order to solve
the linear quadratic regulator (LQR) problem which minimizes∫ ∞

0

(xTQCx+ uTRu)dt

with QC = 100CTC and

R =

(
3 0
0 0.02

)
,

For this system, the second actuator u2 is more powerful than
the first one u1. For this reason we have chosen unbalanced
entries in matrix R in order to have a relatively smooth
response y. Taking for example R = I would lead to large
ripples on y1.

The observer gain matrix L is chosen allowing the online
estimation of the state vector solving the problem

find x̂(t) minimizing E[(x(t)− x̂(t))T (x(t)− x̂(t))],

where E(·) stands for the mathematical expectation of the
square of the estimation error. To do that, a linear quadratic
minimization problem design method is applied for which
W = BBT and V = 0.1 I are the weighting matrices used to
solve the associated Riccati equation.

Finally Q = 2 I is used to construct the Lyapunov matrix
P and the control update threshold is δ = 10−4.

The target reference trajectory is a circle centered at the
origin and we choose to let the real system depart from an
initial point far off the target, namely from the origin. The
time evolution of the two components of the output of the real
system is plotted on Figure 6. There is a transient part during
which the real system draws near the reference trajectory and
then an almost periodic part during which the real system
remains near the reference, as can be seen both on Figures 6
and 7. The latter Figure displays the trajectories in the output
phase plane (y1, y2).
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Fig. 6. Time evolution of the two outputs of the real and reference systems

The transient part itself can be split into two. Indeed, at the
very beginning, the real system output remains constant. This
is due to the fact that matrix A does not lead to an unstable
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Fig. 7. Trajectory of the outputs in the phase plane

system. It has three zero and two conjugate pure imaginary
eigenvalues, and therefore the free dynamics is a nutation. It
takes time for the system to destabilize and for the pseudo
Lyapunov function to reach δ. This is one of the reasons to
choose a very small δ.

This computation, performed with a time step ∆t = 10−3,
uses 325 control updates, which means updating the control
3.25% of the computation instants. This medium value for the
time step fulfills our needs. A larger time step would mean
missing the event times and therefore letting the system diverge
too much from its prescribed trajectory. A smaller time step
would render the numerical algorithm more stable and would
lead to a longer first part of the transient behavior.

IV. CONCLUSION

We have been able to design an event-based tracking setup
for linear time invariant systems able to follow a Lipschitz
predefined reference trajectory. It also avoids the Zeno phe-
nomenon. Its triggering mechanism only needs the knowledge
of the measured output of the real system. In a further work
we intend to extend this approach to the case when the real
system is also subject to process and measurement noises. Our
approach also makes use of the same matrices in the real
system and the two other computed systems. An interesting
question is the impact of model uncertainties on the control
performances.
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