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Abstract

In this paper, robust mean and covariance matrix estimation are considered in the

context of mixed-effects models. Such models are widely used to analyze repeated mea-

sures data which arise in several signal processing applications that need to incorporate

possible individual variations within a common behavior of individuals. In this context,

most algorithms are based on the assumption that the observations follow a Gaussian

distribution. Nevertheless, in certain situations in which the data set contains outliers,

such assumption is not valid and leads to a dramatic performance loss. To overcome

this drawback, we design an expectation-conditional maximization either algorithm in

which the heterogeneous component is considered as a part of the complete data. Then,

the proposed algorithm is cast into a parallel scheme w.r.t. the individuals in order to

mitigate the computational cost and a possible central processor overload. Finally, the

proposed algorithm is extended to deal with missing data which refers to the situation

where part of the individual responses are unobserved. Numerical simulations are con-

ducted to assess the performance of the proposed algorithm regarding robust regression

estimators, probabilistic principal component analysis and its recent robust version.

Keywords: Maximum likelihood, expectation maximization, robust mean estimation.

1. Introduction

The use of mixed-effects models has become popular in a wide range of signal pro-

cessing applications [1]. Specifically, it is mainly used in applications which require to
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model a common behavior of individuals with possible individual variations. This reads,

yij = Aim + Zitij + nij , ∀j = 1, . . . , q and i = 1, . . . , s, (1)

where yij ∈ Cni denotes the complex vector of the j-th observation at the i-th individual,

tij ∼ CN (0, I) and nij ∼ CN (0, σ2I) characterize the individual errors. Finally, Ai ∈

Cni×p, Zi ∈ Cni×qi and m ∈ Cp denote the known design matrix related to the fixed-

effect m, the unknown design matrix related to the random-effect tij and the common

unknown vector mean, respectively.

As an example in signal processing, we can cite the imaging context of the next

generation of radio-interferometers. Such instruments are composed of several spaced

stations. Each station, which is a collection of low band and/or high band antennas,

represents one individual. In this case, the design matrix Ai is a known linear operator

– related to the antenna geometry – that maps the image from the space domain to

the visibility (observation) domain [2]. The mean m denotes the intensity vector, i.e.

the unknown common image observed by each station. The heterogeneous mixed-effects

come from that each station can be locally affected by different man-made radio frequency

interferences (RFI). An additional application of the model (1) in the case of only one

individual (s = 1) can be found in the so-called probabilistic principal component analysis

literature [3].

In the aforementioned references, the authors considered normally distributed obser-

vations. Nevertheless, such assumption is not realistic in a plethora of signal processing

applications as those related to high resolution sensing systems, non-homogeneous envi-

ronments or in the possible presence of outliers [4, 5].

In this paper, we consider a parametric model that takes into account the possible

presence of outliers by modeling the within-individual error as a mixture of a Gaussian

process and a non-Gaussian distributed noise lying in a low-rank covariance matrix. The

mixed-effects model gives the flexibility to assign outliers to some of the individuals only,

depending on their environment. Consequently, the proposed model becomes

yij = Aim +
√
τijWitij + nij (2)

in which tij ∼ CN (0, I) represents the low-rank heterogeneous random effect error re-

lated to a positive texture parameter τij and a low-rank loading matrix Wi ∈ Cni×ri of
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rank ri ≤ ni. The heterogeneous component,
√
τijWitij , leads to a compound Gaussian

random effect error in the case of a random texture parameter, or its counterpart referred

to as heteroscedastic Gaussian random effect error if the texture parameter is assumed

unknown and deterministic [6]. Such process formulation became popular since it owns a

great flexibility allowing to gather several elliptically symmetric distributions, e.g., Gaus-

sian, K- and t-distributions, Cauchy distributions, etc. Again, considering the examples

given above, the non-Gaussian random effect error can model the clutter (the external

noise),
√
τijWitij , plus thermal noise (the internal noise) nij which exists in several

array/radar processing applications, or the unknown background of power-fluctuating

sources present in the imaging process of the recent radio-interferometers [7, 8, 9].

To accurately tackle the estimation procedure related to model (2), we use the

Expectation-Conditional Maximisation Either (ECME) algorithm. We select in a proper

way the complete data, which is composed of the observed variables yij and the la-

tent variables tij (and the missing observations in the case of missing data) which leads

to closed-form expressions in the E-step and M-step. Then, the proposed estimator is

cast into a parallel scheme to lower the computational cost and avoid a possible central

processor overwhelm.

2. ECME-based estimation under heterogeneous mixed-effects model

Considering model (2), the unknown vector parameter reads, with some abuse of

notation, θ =
[
mT ,

{
ζTi
}
i
, {τij}ij , σ

2
]T

, in which ζi is the concatenation of the non-

redundant elements in Wi (the estimation of Wi is known to display a rotational ambi-

guity which is discussed later in Section 3) and where the texture parameters {τij}ij are

considered deterministic and unknown. The latter assumption ensures more tractability

as the texture distribution is not specified, which avoids any possible model misspecifi-

cation. We consider the maximum likelihood principal, that is

θML = arg max
θ
L({yij}ij |θ) (3)

where L({yij}ij |θ) = −
∑
i

∑
j log |Cij | − (yij −Aim)

H
C−1ij (yij −Aim) with Cij =

τijWiW
H
i + σ2I in which both independence between individuals and between observa-

tions are assumed. It is clear that solving (3) is challenging due to the non-convexity of

3



the objective function. Consequently, we propose hereafter the use of the ECME algo-

rithm, which is known to be an efficient extension of the EM scheme with faster monotone

convergence [10]. The ECME algorithm is an iterative algorithm whose estimates θ(m)

converge, under certain mild conditions, to the maximum likelihood estimate θML (m

denoting the iteration number). The ECME algorithm is decomposed in two steps: the

E-step and the M-step. In the E-step, we derive the surrogate function Q(.|.), which is

the expectation of the log-likelihood of the complete data LC conditioned on the observed

data and the previously computed θ(m−1). The complete data is a combination of the

observed data yij and the missing/latent data tij . While the classical M-step requires

to maximize Q, we also consider maximizing the loglikelihood L of the incomplete data

[10] depending on the ease of derivation w.r.t a block of the unknown vector parameter

θ. This procedure is then repeated until convergence. The E- and the M-step are now

described.

E-step: First, the complete data must be specified in order to simplify the M-step

while maintaining the derivation of the expectation of LC feasible. Based on (2), it

seems natural to choose the complete data as xij = [yTij , t
T
ij ]
T . Consequently,

LC({xij}ij |θ) =
∑
i

∑
j

log p(yij |tij ,θ) + log p(tij |θ)

∝ −
∑
i

∑
j

ni log σ2 − ||rij −
√
τijWitij ||2σ2 − ||tij ||22 (4)

in which rij = yij −Aim and the weighted norm reads ||b||2B = bB−1bH . Thus, the

so-called Q function reads

Q(θ|θ(m)) = E
{xij}ij

∣∣{yij}ij ,θ(m)

{
LC({xij}ij |θ)

}
= E

{tij}ij
∣∣{yij}ij ,θ(m)

{
LC({xij}ij |θ)

}
=
∑
i

∑
j

Qij(θ|θ(m))

where Qij(θ|θ(m)) = Etij |yij ,θ(m) {log p(xij |θ)}. First, let us derive the pdf of the latent

variable tij conditioned on the observation and θ(m). Namely, since p(tij |yij ,θ(m)) ∝

p(yij |tij ,θ(m))p(tij |θ(m)), after some calculus and considering the adequate normaliza-

tion constant, we obtain

p(tij |yij ,θ(m)) ∼ CN
(
V−1

(m)

ij u
(m)
ij ,V−1

(m)

ij

)
(5)
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where

u
(m)
ij =

√
τ
(m)
ij

(σ(m))2
WH(m)

i r
(m)
ij

V
(m)
ij = I +

τ
(m)
ij

(σ(m))2
WH(m)

i W
(m)
i

Consequently, the surrogate function reads

Qij(θ|θ(m)
) = E

tij |yij ,θ(m)

{
−ni log σ2 − Tr

(
tijt

H
ijVij

)
− ||rij ||2σ2 + 2

√
τij

σ2
<(rHijWitij)

}
= −ni log σ2 − Tr

(
T̂

(m)
ij Vij

)
− ||rij ||2σ2 +

2
√
τij

σ2
<
(
r
H
ijWit̂

(m)
ij

)
(6)

in which

t̂
(m)
ij = Etij |yij ,θ(m) {tij} = V−1

(m)

ij u
(m)
ij (7)

and

T̂
(m)
ij = Etij |yij ,θ(m)

{
tijt

H
ij

}
= V−1

(m)

ij + t̂
(m)
ij t̂H

(m)

ij (8)

M-step: This step is carried by block coordinate descent, which has the advantage to

lead to closed-form expressions of the unknown parameter when maximizing Q(θ|θ(m))

w.r.t. θ. We recall that the EM extension used here is the ECME algorithm in which

the estimates of
{
ζTi
}
i
, {τij}ij , σ

2 are obtained by maximizing Q(θ|θ(m)) based on the

complete log-likelihood, whereas the m estimate is obtained by maximizing the log-

likelihood of the incomplete data (i.e. observations only). After some calculus, this leads

to the following updates (for the sake of clarity, the iteration index m is omitted):

√
τij =

<(rHijWit̂ij)

Tr(T̂ijWH
i Wi)

(9)

σ2 =
1∑
i ni

∑
i

∑
j

Tr
{
τijT̂ijW

H
i Wi + rHij rij − 2

√
τij<(rHijWit̂ij)

}
(10)

Wi =
∑
j

√
τijrij t̂

H
ij

(∑
j

T̂ij

)−H
(11)

m =

(∑
i

∑
j

AH
i ΓijAi

)−1∑
i

∑
j

AH
i Γijyij (12)

in which Γij = 1
σ2

(
I−Wi

( τij
σ2 I + WH

i Wi

)−1
WH

i

)
. As a summary, the ECME algo-

rithm operates as described in pseudo-code 1.
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Algorithm 1 ECME algorithm for parameter estimation under mixed-effects model

1: Initialize mean m(m=0) with robust multivariate mean estimate (e.g. [11, 12, 13])

and loading matrix W
(m=0)
i with PPCA algorithm separately for each individual [3].

2: repeat

3: Given current θ(m), compute t̂
(m)
ij and T̂

(m)
ij using (7) and (8)

4: Update θ(m+1) as in (9), (10), (11) followed by (12)

5: m← m+ 1

6: until convergence of ||θ(m+1) − θ(m)||2F is met.

7: return θ̂

3. Discussions and extension

3.1. Parallelization

A parallel scheme naturally appears from (9)–(12). Specifically, one can perform

parallel computations on individuals indexed by i. This can be used to enhance the

computational cost and avoid a central processor overload. Fig. 1 represents the operation

flow and signaling exchange between a local individual’s processor and the fusion center.

The consensus step is enforced for deriving the common mean and homogeneous noise

power. Note that the update of m involves the inversion of a ni × ni matrix in classical

robust multivariate covariance and mean estimators [6]. Conversely, the ECME algorithm

updates m locally by the inversion of a ri × ri matrix followed, at the fusion center, by

an inversion of a p × p matrix. In array processing we commonly have p � ni (e.g.,

less sources than sensors or in radio-interferometry imaging), which makes the proposed

method computationally efficient.

3.2. Rotational ambiguity of the loading matrix

It has been noted in [3] that the estimates of the loading matrix are generally not

orthogonal. It means that if Oi denotes an orthogonal rotational matrix of an adequate

size, then ŴiML
Oi remains the maximum likelihood estimate. Yet, it is common to be

interested in the spanned subspace by the columns of Wi rather than the loading matrix

itself. On the other hand, if needed, a post-processing of Ŵi is proposed in [3], which

consists in computing the SVD of ŴH
i Ŵi = OH

i ΛiOi and rotating according to OiŴi.
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3.3. Extension to the missing data case

The missing data case refers to the situation where part of the individual responses are

unobserved, which is a very common issue when analyzing time series, such as remote

sensing data [14] or biochemical data [15]. In the following, we denote the observed

responses by yoij and the unobserved responses by yuij for the i-th individual at the j-th

observation. Furthermore, the scenario is assumed to be missing at random (i.e. the

missing observations do not depend on their values) [16]. In order to use of the results

obtained in the previous section, we consider the complete data as x = {xij}ij in which

xij =
[
yo

T

ij ,y
uT

ij , t
T
ij

]T
. Consequently,

Q(θ|θ(m)) = E{yuij}ij |{yoij}ij ,θ(m)

{
E{tij}ij |{yoij}ij ,{yuij}ij ,θ(m) {LC(θ|x)}

}
(13)

The inner expectation in (13) is given by (6), the outer expectation can be obtained from

the classical results of Anderson [17]. Namely, it is fairly easy to see that

ŷij , Eyuij |yoij ,θ(m) {yij} =
[
yo

T

ij ŷuij
T
]T

=

 yoij

mu + Σuo
ij Σuo−1

ij

(
yoij −mo

)
 (14)

and

Ŷij , Eyuij |yoij ,θ(m)

{
yijy

H
ij

}
=

yoijy
oH

ij yoijŷ
u
ij

H

ŷuijy
oH

ij Σuu
ij −Σuo

ij Σoo−1

ij Σou
ij + ŷuijŷ

u
ij

H

 (15)

in which the mean and the covariance matrix of yij are decomposed as m =
[
moTmuT

]T
and Σij =

Σoo
ij Σou

ij

Σuo
ij Σuu

ij

 . Then, we deduce the E-step which consists in updating the

following expectations (with regard to {xij}ij |
{
yoij
}
ij
,θ(m)):

r̂ij , E {rij} = ŷij −m (16)

R̂ij , E
{
rijr

H
ij

}
, Ŷij + mmH − 2<

{
ŷijm

H
}

(17)

t̂ij = E {tij} ,
√
τij

σ2
V−1ij WiE {rij} (18)

r̂ijtHij , E
{
rijt

H
ij

}
=

√
τij

σ2
R̂ijWi (19)

T̂ij , E
{
tijt

H
ij

}
= V−1ij +

τij
σ4

V−1ij WH
i RijWiV

−1
ij (20)
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Finally, by plugging (16)–(20) into (13), the M-step of the ECME reads

√
τij =

<
(
Tr
(
t̂ijrHijWi

))
Tr(T̂ijWH

i Wi)
, σ2 = 1∑

i ni

∑
i

∑
j Tr

{
τijT̂ijW

H
i Wi+R̂ij−2

√
τij<

(
Tr
(
t̂ijrHijWi

))}
,

Wi =
∑
j

√
τij r̂ijtHij

(∑
j T̂ij

)−H
, and m =

(∑
i

∑
j AH

i ΓijAi

)−1∑
i

∑
j AH

i Γijŷij .

As in the fully observed case, the missing data case can be cast into a parallel scheme

(see Fig. 1).

4. Numerical simulations

In this section, we aim at evaluating numerically the performance of the proposed al-

gorithm. Specifically, we consider three different scenarios with rank ri = 3, Ai = I and

m ∈ C10×1 following a Gaussian distribution. For the sake of simplicity, [Wi]1:ri;1:ri =

I+K with [K]h,q ∼ CN (0, 1) and [W]ri+1:n;1:ri = 0 such that we still have rank(Wi) =

r. In the first scenario, we focus on the mean estimation, m, by comparing the ECME

proposed algorithm with the minimum covariance determinant [12], the Marona’s or-

thogonalized Gnanadesikan-Kettenring (OGK) [13], the Olive Hawkins estimators [11],

the classical probabilistic PCA [3] and the robust student-based probabilistic PCA [18].

Fig. 2 and Fig. 4 show the mean square error (MSE) of m estimates versus the number

of observations in which we consider a 0 dB signal-to-noise ratio. Only one individual

with m ≥ 2n is considered in order to respect restrictions given by the aforementioned

algorithms [3, 11, 12, 13, 18]. In Fig. 2, the texture parameter is a realization of an

inverse-Gamma distribution (leading to a t-distributed random effect component). Three

strong outliers with a power 103 times higher than the mean amplitude are added, which

represents 3% to 15% of the data. We note that the proposed ECME and the robust

student-based PPCA exhibit comparable performances. Hence, the former algorithm fits

well with the latter which assumes a perfect knowledge of the texture distribution. In

addition, we notice from Fig. 3 that the estimation accuracy of the proposed estimator

does not strongly depend on the parameter of the Student’s t-distribution. It is worth

mentioning that other location and scatter estimators as OGK, Olive Hawkins and the

FMCD are also known to be robust to the variation of the Student’s parameters. In

Fig. 4, in which the texture parameter is taken as a realization of a uniform distribution

over ]0, 500], the proposed ECME outperforms the compared algorithms since it does not
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assume any distribution of texture while taking into account the low-rank structure of

the within-individual error.

In the second scenario, we focus on the normalized MSE of WHW versus the number

of observations. Again, we notice from Fig. 5 that the proposed algorithm surpasses

PPCA and the robust Student’s-based PPCA regarding subspace inference.

Finally, in the third scenario, we consider a multi-individual case and we show the

benefit of considering the extension of the proposed algorithm to the scenario of the

presence of missing data. Specifically, we plot in Fig. 6 the MSE of the mean estimate in

the case of three individuals versus the percentage of missing data (i.e. missing values at

individuals i and observations j). We notice that the proposed ECME extension shows a

good performance since it remains close to the “clairvoyant” ECME which uses the full

original data (i.e. observed and unobserved), whereas the ECME using only the observed

data in all individuals exhibits a notable performance loss when the missing data ratio

exceeds 10% of the total data.

5. Conclusion

In this paper we design an ECME-based algorithm for mean and covariance estima-

tion under heterogeneous mixed-effects model. The random effects were modeled as a

heteroscedastic Gaussian process allowing flexibility of the within-individual error and

robustness against any possible compound Gaussian distribution. In addition, the low-

rank structure of the loading matrix of each individual was taken into account, leading

to a natural parallel scheme enhancing computational cost. Finally, an extension to the

missing data scenario was given and numerical simulations assessing the usefulness of

the proposed scheme have been presented, showing a performance gain with existing

state-of-the-art estimators.
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{yij}j

Local

processor

(i-th in-

dividual)
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center

Wi, {τij}j σ2,m

E-step, update t̂ij , T̂ij , rij

M-step, update τij ,Wi,Γij

κi,
∑
j AH

i ΓijAi,
∑
j AH

i Γijyij

σ2,m
repeat until convergence

Figure 1: Operation flow and signaling exchange between a local individual’s processor and the central

processor, in which κi =
∑

j Tr{τijT̂ijW
H
i Wi + rHijrij − 2

√
τij<(rHijWit̂ij). The consensus step is

enforced for deriving the common mean and homogeneous noise power.
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Figure 2: Mean square error vs. number of observations under t-distributed data (1000 runs mean).
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