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Abstract

In this paper, we propose a new estimator of the covariance matrix pa-
rameters when observations follow a mixture of a deterministic Compound-
Gaussian (CG) and a white Gaussian noise. In particular, the covariance
matrix of the CG contribution is assumed to be expressed as the Kronecker
product of two low-rank matrices, which is a structure often involved in
MIMO array processing. The proposed estimator is then obtained by maxi-
mizing the likelihood of the data with the use of a specifically tailored block
Majorization-Minimization (MM) algorithm. Finally, the method is evalu-
ated in terms of adaptive filtering on a MIMO-STAP radar setting, showing
important improvements over standard processing.

Keywords: Adaptive signal processing, covariance matrix, Robust
estimation, Majorization-Minimization, Kronecker product, low-rank filters.

1. Introduction

Within a statistical approach, the construction of adaptive filters usu-
ally requires the estimation of the interference-plus-noise covariance matrix
as a preliminary step. This step represents a fundamental issue since the
resulting processing performance strongly depends on the covariance matrix
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estimation accuracy. The assumption that the disturbance follows a Gaus-
sian distribution naturally points to the sample covariance matrix (SCM) for
estimating this parameter. In this context it is well known that the corre-
sponding adaptive filter reaches -3dB of expected Signal to Interference plus
Noise Ratio (SINR) Loss (loss compared to the non-adaptive optimal filter)
when the number of training samples (K) is equal to twice the size of the
data (M) [1]. Nevertheless, the Gaussian assumption is not suited to im-
pulsive measurements, e.g., coming from high resolution systems. To model
such observations, the general class of Compound-Gaussian (CG) distribu-
tions [2] (a subfamily of the complex elliptical symmetric distributions) has
been shown to provide an accurate fit to empirical measurements in various
RADAR and SONAR processing applications [3, 4, 5, 6, 7, 8, 9, 10, 11].

Additionally, the mixture of CG plus white Gaussian noise raised some
interest in these applications [12, 13, 14, 15, 16, 17, 18], as it can account
for the contribution of both the interference and the thermal noise through
two separate and independent random processes. Within theses statistical
models it is common to use a robust method to estimate the covariance
matrix, such as M -estimators [19, 20]. These estimators have indeed been
extensively leveraged in the modern detection/estimation literature due to
their desirable robust properties (see [2, 21, 22] and references therein).

A major issue is that the general rule of thumb “K = 2M” is not al-
ways achievable in practice in modern systems (e.g., due to a large number
of sensors/pulses). This problem is even more critical at insufficient sample
support since M -estimators require K > M to be computed. In such cases, it
is often possible to exploit some a priori knowledge on the covariance matrix
structure in order to reduce the dimension of the estimation problem. This
is specially relevant in array processing, where physical considerations on
the system inherently imply that the covariance matrix belongs to a certain
subset of the Positive Definite Hermitian (PDH) matrices manifold involv-
ing a particular structure, e.g., Toeplitz, persymmetric, or low-rank. Robust
estimation procedures for structured covariance matrices have recently been
studied through various approaches, such as geodesic convexity [23], opti-
mization [24] or 2-step approaches [25].

In this paper, we will focus on the matrices expressed as Kronecker prod-
uct (KP) of Low-Rank (LR) matrices, which are of primary interest in Mul-
tiple Input Multiple Output (MIMO) systems [26, 27, 28, 29, 30, 31, 32]. Co-
variance matrix estimation processes for this structure have been proposed
based on least square fitting in [28], and robust costs in [30]. This problem
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has not been addressed within the context of mixture model, which is the
gap we aim to fill. Hence, we formulate a new estimator as the maximum
likelihood estimator (MLE) of a CG process with a structured covariance
matrix (a Kronecker product (KP) of low-rank matrices), plus a white Gaus-
sian noise. Inspired by [16], we derive a Majorization-Minimization (MM)
algorithm [33] that cyclically updates the EigenValue Decomposition (EVD)
parameters of the KP components, in order to evaluate this MLE. The pro-
posed estimation method is then evaluated in terms of adaptive filtering on
a MIMO-STAP radar setting.

The paper is organized as follows: Section 2 presents the general signal
model while Section 3 concerns the derivation of the proposed estimation
algorithm, which constitutes the main contribution. Finally, Section 4 illus-
trates the performance of the proposed approach in terms of adaptive filtering
on a MIMO-STAP setting.

Notations: Vectors (resp. matrices) are denoted by bold-faced lowercase
(resp. uppercase) letters. T and H respectively represent the transpose and
the Hermitian operator. CN denotes the complex normal distributions. ∼
means “distributed as”,

d
= stands for “shares the same distribution as”. The

operator ⊗ denotes the Kronecker product, and vec(.) is the operator which
transforms a m × n matrix into a vector of length mn, using column-wise
concatenation. I is the identity matrix and 0 the matrix of zeroes with
appropriate dimension.

2. MIMO-STAP formulation

2.1. Structure of the target signal

We consider a colocated MIMO radar on an airborne platform with M
transmitting antennas and N receiving antennas [34, 35]. Both antenna
arrays are side-looking and uniformly spaced linearly with the transmitted
interspacing dT and the received interspacing dR, respectively. The radar
transmits a coherent burst of L pulses in a coherent processing interval (CPI),
where the pulse repetition interval (PRI) is T . For m ∈ [[0,M − 1]] and
l ∈ [[0, L− 1]], the transmitted signal of the mth element is expressed as

sm(lT + τ) =
√
E/Mφm(τ)ej2π(lT+τ)f (1)

where τ ∈ [0, T ] represents the time within the pulse (fast time), E denotes
the total transmitted energy, f is the carrier frequency, and φm(τ) is the
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transmitted waveform. The transmitted waveforms satisfy the orthogonality
condition ∫

T

φm(τ)φ∗j(τ)dτ = δmj. (2)

It is assumed that the transmitted waveform is narrow-band. For a target
with relative velocity vt toward the platform, the received echo of the nth

element after time delay τ0 is given by

xn(lT + τ) ≈
M−1∑
m=0

ρtφm(τ)ej
2π
λ
[sin(θ)(mdT+ndR+2vT l)+2vtT l], (3)

where ρt is the complex-valued reflection coefficient of the target and the time
delay τ0 = 2R/c (where R is the distance between the target and the radar,
and c is the speed of light) is absorbed in ρt, v is the velocity of the radar
platform, λ = c/f is the wavelength, and θ is the azimuth angle. Denote
fs = dRsin(θ)/λ the received spatial frequency, fT,s = αfs the transmitted
spatial frequency, and fD = 2(vsin(θ) + vt)T/λ the Doppler frequency, where
α = dT/dR. Note that dR = λ/2 is chosen in order to avoid aliasing the
spatial frequency. Thus, (3) can be rewritten as

xn(lT + τ) ≈
M−1∑
m=0

ρtφm(τ)ej2π(αfsm+fsn)ej2πfDl. (4)

After down-conversion and matched-filtering, the output signal of the nth

element is given by

xm,n,l =

∫
xn(lT + τ)φ∗m(τ)dτ = ρte

j2π(αfsm+fsn)ej2πfDl, (5)

for m ∈ [[0,M−1]], n ∈ [[0, N−1]], and l ∈ [[0, L−1]]. Then, stack the output
signal yields the virtual snapshot of the target signal xs ∈ CMNL×1:

xs = ρtb(fD)⊗ a(fs)⊗ a(fT,s) = ρts(fs, fD), (6)

where

• a(fT,s) = [1, ej2παfs , · · · , ej2πα(M−1)fs ]T is the transmit spatial steering
vector,
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• a(fs) = [1, ej2πfs , · · · , ej2π(N−1)fs ]T is the receive spatial steering vector,

• b(fD) = [1, ej2πfD , · · · , ej2π(L−1)fD ]T is the Doppler steering vector,

• s(fs, fD) = b(fD) ⊗ a(fs) ⊗ a(fT,s) is the MIMO space-time steering
vector.

2.2. Structure and statistical model of the interference

The received target signal xs is embedded in a disturbance xd composed
of the ground response xi, referred to as clutter, and additive white Gaussian
noise xn (WGN, i.e., the thermal noise). Thus, the received signal x is written
as follows:

x = xs + xd = xs + xi + xn, (7)

where the WGN xn is assumed to be distributed as xn ∼ CN (0, σ2IMNL)1.
Before specifying the distribution of the clutter xd, we can notice that

its covariance matrix R = E(xix
H
i ) can be expressed in a Kronecker product

form due to the system structure (cf. previous section). Thus

R = A⊗B. (8)

In addition to this Kronecker product structure, many RADAR applications
allow us to assume that the matrices A and B exhibit a low-rank structure,
with ranks denoted RA and RB respectively. This assumption is generally
related to dimension of the signal subspace implied by the underlying physics
of the measurement system [36, 37]. In this paper, the ranks RA and RB are
assumed to be known and fixed depending on the application (or previously
estimated). This general covariance structure model is, e.g., involved in:

• classic side-looking STAP (see eq.(45) on page 19 in [26]) where A =
IML, B =

∑J
j=1 σ

2
jaja

H
j , where J is the number of interferences (J is

usually smaller than N), σj denotes the interference power of the j th
and aj denotes the corresponding interference steering vector;

• Synthetic Aperture Radar (SAR) STAP [28] where rank(A) = 1;

• MIMO STAP where rank(R) < MNL [38], and where A and B can
be assumed to be LR [29];

1In this paper, we will assume that σ2 is known or previously estimated.
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• and finally, general MIMO RADAR [27] where the rank of A and B
depends on various assumptions on the array geometry [37].

Though it is not the main focus of this work, we also notice that the ranks
can be still be assumed to be full (RA = ML and RB = N) without loss of
generality of the notation.

In conclusion, the covariance matrix of the total interference plus noise is
thus expressed as E

[
xdx

H
d

]
= Σ = R + σ2IMNL = A⊗B + σ2IMNL. Under

standard assumptions, the interference xi could be assumed to be Gaussian,
which would yield xd ∼ CN (0,Σ). However, plugging the clutter covariance
matrix expression in a Gaussian model is not always the most representa-
tive of clutter’s behavior, in particular for high-resolution STAP and MIMO-
STAP systems. In this context, the compound-Gaussian model can better re-
flect the clutter impulsiveness. A zero-mean compound-Gaussian distributed

observation admits the following stochastic representation x
d
=
√
τn, where

n is a zero-mean complex Gaussian vector, and τ is an independent random
positive scaling, referred to as texture2. The choice of the texture probabil-
ity density function can lead to various well-known multivariate heavy-tailed
distributions, such as t- and K- distributions [7]. Notice that this work will
assume that E [τ ] exists, however this property is not always satisfied within
the whole compound-Gaussian family (e.g., the Cauchy does not have finite
second order moment). In this case, conditioning on the texture τ leads to
the following representations

xk|τk ∼ CN (0, τk(A⊗B)),

xd|τd ∼ CN (0, τd(A⊗B) + σ2IMNL),
(9)

where it is recalled that we assume that the matrices A and B possibly have
a low-rank structure (with ranks RA and RB). In the following, this model
will be referred to as Compound Kronecker Product of Low-Rank plus Identity
(CKPLR).

2Notice that the texture from the statistical model is not related to the time within the
pulse of the section 2.1. Still, we kept the standard variable notations for both of these
parameters as there will be no ambiguity in the remaining of the paper.
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2.3. Adaptive MIMO-STAP filters

For the above signal model, the optimal filter (in terms of output SNR)
is given by

w =
Σ−1s(fs, fD)

sH(fs, fD)Σ−1s(fs, fD)
(10)

where Σ = E
[
xdx

H
d

]
= E [τ ] (A⊗B) +σ2IMNL. In practice, the disturbance

covariance matrix is unknown and needs to be estimated from training data,
denoted {xk}Kk=1, which are assumed to be signal-free, as well as independent

and identically distributed (i.i.d.). The obtained estimate Σ̂ is then plugged
in (10) in order to build a so-called adaptive filter.

Of course, the performance of the adaptive filter strongly depends on
the estimation process accuracy. In the classical Gaussian case, the sample
covariance matrix (SCM) Σ̂SCM =

∑K
k=1 xkx

H
k /K is generally used as esti-

mator. In this case, it is well known that the expected SINR Loss is equal
to −3dB when K = 2MNL. Nevertheless, the SCM is not an accurate es-
timate of the covariance matrix when samples are non-Gaussian distributed.
Moreover, this estimator is not particularly suited to our context, as it does
not exploit any prior knowledge on the structure of the covariance matrix.
In order to respond to these two issues, we propose to derive a new robust
estimator of the covariance matrix parameters suited to the CKPLR model
in (9).

3. Robust filters for the CKPLR model

3.1. Problem formulation

The proposed estimator corresponds to the MLE of the CKPLR model
when the textures are assumed to be unknown deterministic. This assump-
tion on the textures parameters is made in order to be robust to any mismatch
on their underlying distribution.

Define the set of structured matrices:

SCKPLR =


Σk ∈ CM2

∣∣∣∣∣∣∣∣∣∣∣∣

Σk = τk(A⊗B) + σ2I,

τk ∈ R+

A ∈ CP 2

, B ∈ CQ2

,

A � 0, B � 0 ,

rank (A) ≤ RA, rank (B) ≤ RB


.
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The evaluation of the MLE of the CKPLR model requires to solve the fol-
lowing problem:

minimize
{Σk}Kk=1∈SCKPLR

L
(
{Σk}Kk=1

)
, (11)

where

L
(
{Σk}Kk=1

)
=

K∑
k=1

log |Σk|+
K∑
k=1

xHk Σ−1k xk, (12)

is the negative Gaussian log-likelihood function (τk’s being unknown but
deterministic and contained in the covariance matrix).

To solve this problem, we parameterize the matrices A and B by their
EVD, i.e. their unitary eigenvectors basis U and diagonal matrix of eigen-
values D: {

A = UADAUH
A , UH

AUA = IP , DA = diag{ap}
B = UBDBUH

B , UH
BUB = IQ , DB = diag{bq}

Note that the LR structure of both A and B impose ap = 0 ∀p ∈ [[RA+1, P ]]
and bq = 0 ∀q ∈ [[RB + 1, Q]]. Substituting A and B in (12), the objective
function becomes:

L(DA,DB,UA,UB, {τk}Kk=1) =
K∑
k=1

P∑
p=1

Q∑
p=1

ln(τkapbq + σ2)

+
K∑
k=1

xHk (UA ⊗UB)(τkDA ⊗DB + σ2I)−1(UA ⊗UB)Hxk.

(13)

This leads to the optimization problem

minimize
{τk}Kk=1,DA,DB ,UA,UB

L(DA,DB,UA,UB, {τk}Kk=1)

subject to Σk = τk (A⊗B) + σ2I
τk ≥ 0, ∀k ∈ [[1, K]]

UH
AUA = IP , UH

BUB = IQ

DA = diag([a1, . . . , aRA , 0, . . . , 0])

DB = diag([b1, . . . , bRB , 0, . . . , 0])

This problem is too complex to be directly tackled. Hence, we propose to
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Algorithm 1 “CKPLR - MM”: Block MM algorithm for Robust estima-
tion of CKPLR structured covariance matrix

1: Form a starting point {At=0,Bt=0, {τk}t=0}.
2: repeat
3: t← t+ 1
4: Update {τ tk} with (17).
5: Update Dt

A with (19).
6: Update Dt

B with (22).
7: Update Ut

A with (28).
8: Update Ut

B with (34).
9: until Some convergence criterion is met.

leverage the block majorization-minimization (MM) framework to address
it in the following sections. The resulting estimation procedure is referred
to as “CKPLR - MM”, which algorithm is summed up in the box Algorithm 1.

3.2. Majorization-Minimization algorithm to evaluate the MLE

At a given iteration step {Dt
A,D

t
B,D

t
A,D

t
B, {τ tk}Kk=1}, the block-MM algo-

rithm consists in updating the variables cyclically, by minimizing surrogates
functions (tight upper-bound of the objective), leading to a monotonic decre-
ment of the objective. For more details on the MM algorithm, the reader is
referred to [33]. These surrogates functions and corresponding updates for
each variables are derived below. Note that, in order to lighten the notation,
we omit the reference on t for variables that are fixed in each step.

3.2.1. Step 1: Update τk when fixed other parameters

From (13), it is easy to show that the objective is separable in τk and
yields for a given index k

L (τk) =
P∑
p=1

Q∑
q=1

[x̃k]
2
(p−1)Q+q

τkapbq + σ2
+

P∑
p=1

Q∑
p=1

ln(τkapbq + σ2), (14)

with x̃k = (UA ⊗UB)Hxk. This function has no closed-form minimizer, but
it is possible to obtain a closed-form update that improves the value of the
objective function thanks to the following propositions.
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Proposition 1. The objective function (14) can be upperbounded by the sur-
rogate function

g(τk|τ tk) = Ak ln(ωkτk + βk)−Kk ln(τk) (15)

with

κkpq =
τ tkapbq [x̃k]

2
pq

τ tkapbq+σ
2 , Kk =

∑
pq κ

k
pq, Ak =

∑
pq(κ

k
pq + 1),

βk = 1
Ak

∑
pq

(κkpq+1)σ2

τ tkapbq+σ
2 , ωk = 1

Ak

∑
pq

(κkpq+1)apbq

τ tkapbq+σ
2 ,

(16)
where we use aggregated indexes “pq” to lighten the summation notation.

Proof. See Appendix A.

Proposition 2. (Proposition 2 of [16]) The surrogate function which upper-
bounds (14) is quasiconvex and has the a unique closed-form minimizer, that
provides the update:

τ t+1
k =

Kkβk
(Ak −Kk)ωk

, ∀k ∈ [[1, K]] (17)

3.2.2. Step 2: Update DA for fixed other parameters

As for the variables τk, the objective is separable in ap and yields for a
given index p

L (ap) =
K∑
k=1

Q∑
q=1

[x̃k]
2
(p−1)Q+q

τkapbq + σ2
+

K∑
k=1

Q∑
q=1

ln(τkapbq + σ2) (18)

with x̃k = (UA⊗UB)Hxk. Notice that the objective function (18) has a form
similar to (14), and only differs from summation indexes. An appropriate
adaptation of Propositions 1 and 2 (omitted for the sake of conciseness)
leads to the following update:

at+1
p =

Kpβp
(Ap −Kp)ωp

, ∀p ∈ [[1, RA]]

ap = 0, ∀p ∈ [[RA + 1, P ]]

(19)
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with

κpqk =
τka

t
pbq [x̃k]

2
pq

τkatpbq+σ
2 , Kp =

∑
qk κ

p
qk, Ap =

∑
qk(κ

p
qk + 1),

βp = 1
Ap

∑
qk

(κpqk+1)σ2

τkatpbq+σ
2 , ωp = 1

Ap

∑
qk

(κpqk+1)atpbq

τkatpbq+σ
2 ,

(20)
where we use aggregated indexes “qk”.

3.2.3. Step 3: Update DB for fixed other parameters

As for the variables τk and ap, the objective is separable in bq and yields,
for a given index q,

L (bq) =
P∑
p=1

K∑
k=1

[x̃k]
2
(p−1)Q+q

τkapbq + σ2
+

P∑
p=1

K∑
k=1

ln(τkapbq + σ2) (21)

with x̃k = (UA⊗UB)Hxk. The same reasoning as previously applies, leading
to the following updates:

bt+1
q =

Kqβq
(Aq −Kq)ωq

, ∀q ∈ [[1, RB]]

bq = 0, ∀q ∈ [[RB + 1, Q]]

(22)

with

κqpk =
τkapb

t
q [x̃k]

2
pq

τkapbtq+σ
2 , Kq =

∑
pk κ

q
pk, Aq =

∑
pk(κqpk + 1),

βq = (1/Aq)
∑
pk

(κq
pk+1)σ2

τkapbtq+σ
2 , ωq = (1/Aq)

∑
pk

(κq
pk+1)apb

t
q

τkapbtq+σ
2 ,

(23)

where we use aggregated indexes “pk”.
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3.2.4. Step 4: Update UA for fixed other parameters

Some matrix manipulations allow to rewrite (13) with respect to UA =[
uA1 , . . . ,u

A
P

]
(with other fixed variables and ignoring constant terms) as

L(UA) =
K∑
k=1

vec
(
UH
BXkUA

)H (
τkDA ⊗DB + σ2I

)−1
vec
(
UH
BXkUA

)
=

K∑
k=1

P∑
p=1

(
(uAp )H(XB

k )HΛ−1p,kX
B
k uAp

)
=

P∑
p=1

(uAp )HMpu
A
p

(24)

with
Xk = unvec(xk) ∈ CQ×P , XB

k = UH
BXk,

Λp,k = τkapDB + σ2I, Mp =
K∑
k=1

(XB
k )HΛ−1p,kX

B
k ,

(25)

unvec(.) being the inverse operator of vec(.).
Again, this function admits no closed-form minimizer under the constraint

UH
AUA = Ip. However, it is possible to obtain a closed-form update that

improves the value of the objective function thanks to the following proposi-
tions.

Proposition 3. The objective function L(UA) can be upperbounded at Ut
A

by the surrogate function

g
(
UA|Ut

A

)
= Tr

[
(Wt

A)HUA

]
+ Tr

[
UH
AWt

A

]
+ const. (26)

with
Wt

A =
[

G1u
A(t)
1 , . . . , GPu

A(t)
P

]
(27)

with Gp = Mp − λ(Mp)
max I. Equality holds at Ut

A.

Proof. See Appendix B.

Proposition 4. (Proposition 7 of [39]) The problem of minimizing the sur-
rogate function g (UA|Ut

A) under orthonormality constraint has an optimal
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solution, that leads to the update

Ut+1
A = VLVH

R (28)

where VL and VH
R respectively the left and right singular vectors of the matrix

−Wt
A, defined in (27).

3.2.5. Step 5: Update UB for fixed other parameters

Some matrix manipulations allow to rewrite (13) with respect to UB =[
uB1 , . . . ,u

B
Q

]
(with other fixed variables and ignoring constant terms) as:

L(UB) =
K∑
k=1

vec
(
UH
BXkUA

)H (
τkDA ⊗DB + σ2I

)−1
vec
(
UH
BXkUA

)
=

K∑
k=1

P∑
p=1

([
XA
k

]H
:,p

UBΛ−1p,kU
H
B

[
XA
k

]
:,p

) (29)

where we used
[
vec
(
UH
BXA

k

)]T
=
[(

UH
B

[
XA
k

]
:,1

)T
. . .

(
UH
B

[
XA
k

]
:,P

)T ]
,

with the notation XA
k = XkUA. Now, recall that Λp,k = τkapDB+σ2I. Since

we have DB = diag([b1, . . . , bRB , 0, . . . , 0]), we can use the matrix inversion
lemma to obtain

UBΛ−1p,kU
H
B = (σ2I + τkapŪBD̄BŪH

B )−1 = σ−2I− ŪBΓp,kŪ
H
B (30)

where we denoted the partition UB = [ŪB|U⊥B], with ŪB ∈ CQ×RB , and
Γp,k = diag({ τkapbq

σ2(σ2+τkapbq)
}). Finally, the objective L(ŪB) can be expressed

L(UB) = L(ŪB) = −
∑
k,p

Tr
{
ZA
p,kŪBΓp,kŪ

H
B

}
+ const. (31)

with ZA
p,k =

[
XA
k

]
:,p

[
XA
k

]H
:,p

. As previously, it is again possible to obtain a

closed-form update that improves the value of the objective function thanks
to the following propositions.

Proposition 5. (Extended from Proposition 5 in [16]) The objective function
L(UB) can be upperbounded at Ūt

B by the surrogate function

g
(
UB|Ūt

B

)
= −Tr{(Ūt

B)HMq} − Tr{MH
q Ūt

B} (32)

13



with
Mq =

∑
k,p

XA
p,kŪ

t
BΓp,k (33)

Proposition 6. (Extended from Proposition 7 of [39]) The problem of min-
imizing the surrogate function g

(
UB|Ūt

B

)
under orthonormality constraint

on has an optimal solution, that leads to the update

Ut+1
B = [Ūt+1

B |U
(t+1)⊥
B ] (34)

with
Ūt+1
B = VLVH

R (35)

where VL and VR are respectively the left and right singular vector of Mq

in (33), and U
(t+1)⊥
B is a orthogonal basis of the subspace spanned by I −

Ūt+1
B Ū

(t+1)H
B

4. Simulations

In this section, we first validate our algorithm by computing the natural
distance [40] between the obtained estimator and the true covariance matrix.
In a second sub-section, we investigate the interest of our approach in a
MIMO application.

4.1. Validation

In this simulation, we set A ∈ CP×P with P = 10 and RA = 4, and B ∈
CQ×Q with Q = 4 and RB = 2. The matrix A (resp. B) is constructed using
the rank RA (resp. RB) truncated EVD of a Toeplitz matrix of correlation
coefficient ρA = 0.90 (resp. ρB = 0.95). The texture τ is generated from a
Gamma distribution τ ∼ Γ(ν, 1

ν
) (thus E[τ ] = 1), yielding a K-distributed

clutter. We will consider three values of ν: 0.75, 1 (two cases of heavy
tailed clutter) and 10 (quasi-Gaussian clutter). The Clutter to Noise Ratio
is defined by the ratio CNR=E[τ ] tr(A⊗B)/(σ2(RARB)), for which we will
test the values 30 dB and 40 dB.

The following estimators are compared: 1) the SCM (MLE for unstruc-
tured Gaussian distributed); 2) Tyler’s estimator [20, 21, 22, 41] (approxi-
mate MLE for unstructured CG distributions); 3) KPGH proposed in [28]
(projection of the SCM on the set of LR Kronecker Product matrices); 4)

14



(a) ν = 10 (b) ν = 1 (c) ν = 0.75

Figure 1: Natural distance between covariance estimators and the true covariance matrix
w.r.t K. The total size is PQ = 40, the ranks are RA = 4, RB = 2 and the CNR is 30dB.

(a) ν = 10 (b) ν = 1 (c) ν = 0.75

Figure 2: Natural distance between covariance estimators and the true covariance matrix
w.r.t K. The total size is PQ = 40, the ranks are RA = 4, RB = 2 and the CNR is 40dB.

KPLR proposed in [30] (Tyler’s estimator with appropriate structure con-
straint); 5) CKPLR, proposed in this paper. The estimation accuracy of
these estimators is measured using Monte-Carlo simulations to evaluate the
expected natural Riemannian distance between two positive definite matrices
(shown to be a more discriminant metric than the standard mean squared
error in [40]):

dnat(Σ, Σ̂) = ‖logm(Σ−1/2Σ̂Σ−1/2)‖22, (36)

where logm is the matrix logarithm.
Figures 1 and 2 display the simulation results under various ν as a func-

tion of K for CNR=30dB and for CNR=40dB respectively. In all cases, we
notice that the proposed estimator reaches the best performance, and can
interestingly be computed in undersampled scenarios (K < PQ). KPLR
also achieves interesting results, but its performance decreases in high CNR
scenarios. This is due to the fact that it is built upon Tyler’s cost function,
which is not well suited to (almost) rank deficient models. KPGH can also
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Figure 3: Comparison of various implementation of CKPLR-MM with model mismatch.
The total size is PQ = 40, the ranks are RA = 4, RB = 2, ν = 1 and the CNR is 30dB.

be computed at low sample support, however it does not benefit from large
sample support settings. This is probably due to its mismatch with the true
model (the same behavior is observed in [28]).

Finally, we test the robustness of the proposed method to mismatches
regarding the assumed known parameters. The samples are generated as
previously, and we test the performance of: 1) CKPLR applied using different
assumed ranks Ra and Rb; 2) CKPLR applied using data weighted by σ̂−1,
where the estimate σ̂2 obtained as the mean of the last PQ−RaRb eigenvalues
of the SCM. Results are displayed in Figure 3. First, we can observe that
the performance of the estimation algorithm is not dramatically impacted
when the rank is slightly overevaluated. A possible explanation would be
that it is more accurate to estimate eigenvalues that are actually zero than
to fit the observations with an underdimensioned model. Such observations
have also been made in [42, 43] (focused on non-Kronecker models and/or
other applications). Second, we can also observe that the adaptive version
(estimating the noise floor) of the algorithm reach performance close to the
non-adaptive one, which illustrates that a slight mis-evaluation of σ2 does
not impact the proposed method.

4.2. MIMO application

In this section, we consider a colocated MIMO radar with M = 2 trans-
mitting uniform antennas, N = 4 receiving uniform antennas, and L = 10
pulses, where dR = λ/2 and dT = 8dR. Thus, the dimension of system is
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MNL = 80. The azimuth of the target is 10◦, and those of the two jammers
are −20◦ and 40◦. The noise floor is set to σ2 = 1 and the Interference
to Noise Ratio (INR) is set to respectively 50dB for the jammer at −20◦,
and 30dB for the one at 40◦. The wavelength is λ = 0.32m and the Pulse
Repetition Frequency (PRF) is 1500 Hz. The platform velocity is set to
120m/s. The clutters follows a K-distribution as in the previous subsection
, i.e. τ ∼ Γ(ν, 1

ν
). We will consider ν = 10 to model a quasi-Gaussian clut-

ter, and ν = 1 for a heavy-tailed one. Let us denote P = ML. We set
A = [IRA ,0RA×(P−RA); 0(P−RA)×RA ,0(P−RA)×(P−Ra)] with RA = 9. Finally B
is set using the steering vector model below (6), and RB = 2 since there are
two jammers.

As in the previous subsection, we compare the following adaptive filters
built from (10) and based on different estimators of the covariance matrix:
SCM, Tyler’s estimator, KPGH, KPLR, CKPLR.

Fig. 4 shows the spatial patterns for two different values of K and ν. It
can be seen that the CKPLR maintains a better beamforming pattern with
lower side lobe than all other methods. The main lobes of both the KPGH
and the KPLR are wider than that of the CKPLR. For the SCM and Tyler’s
estimator, their side lobes are too high due to the effect of the small number
of training samples, especially the main lobe of the SCM has deviated from
the target direction.

Fig. 5 shows the Minimum Variance Distortionless Response (MVDR)
spectrum [26] in the angle-frequency domain for K = 60 and ν = 10. In Fig.
5, the KPLR, CKPLR and KPGH, after beamforming, can obtain better
output power and the target can be distinguished clearly. Since the value of
ν gives a quasi-Gaussian scenario, the KPLR shows a little better response
performance than the CKPLR. Both the SCM and Tyler’s estimator show
the worse response performance since K is smaller than the system dimension
80. As seen in Fig. 3, one can notice that the response performance of the
SCM improves as K increases to 120. In this case, the CKPLR shows the
best response performance by exploiting the LR Kronecker structure.

We now examine the performance of these methods for a heterogeneous
case with ν = 1. Fig. 7 and Fig. 8 show the MVDR spectra in angle-
frequency domain for K = 60 and K = 120 respectively. For KPLR, CK-
PLR and KPGH, the target appears clearly. It is seen that the response
performance of CKPLR significantly outperforms the other methods. This
is as expected, since CKPLR utilizes the LR constrained Kronecker struc-
ture information and estimates the covariance matrix under the compound-
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Figure 4: Spatial pattern for different parameters of K and ν. The total size is MNL = 80
and the ranks are RA = 9, RB = 2.
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(d) KPLR
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(e) CKPLR

Figure 5: Beampattern in angle-frequency domain for K = 60 and ν = 10. The total size
is MNL = 80 and the ranks are RA = 9, RB = 2.
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(d) KPLR
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(e) CKPLR

Figure 6: Beampattern in angle-frequency domain for K = 120 and ν = 10. The total size
is MNL = 80 and the ranks are RA = 9, RB = 2.
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Gaussian model.
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(d) KPLR
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Figure 7: Beampattern in angle-frequency domain for K = 60 and ν = 1. The total size
is MNL = 80 and the ranks are RA = 9, RB = 2.

Figure 9 displays the SINR-Loss of the adaptive MIMO-STAP filters built
with the different covariance matrix estimators (cf. section 2.3). Once again,
we can notice that the proposed method achieves the best performance, as it
is directly derived according to the considered noise model. Interestingly, the
−3dB are even achieved at low sample support, which is due to the fact that
the actual dimension of the estimation problem is greatly reduced compared
to the ambient dimension when Kronecker-product and low rank models are
combined.

5. Conclusion

In this paper, we derived the MLE of the covariance matrix when the
data follow a mixture of a Compound-Gaussian (CG) and a white Gaussian
noise and when the covariance matrix of the CG contribution is assumed
to be the Kronecker product of two low-rank matrices. To solve the corre-
sponding optimization problem, we proposed an algorithm based on the block
Majorization-Minimization framework. The proposed estimation method has
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Figure 8: Beampattern in angle-frequency domain for K = 120 and ν = 1. The total size
is MNL = 80 and the ranks are RA = 9, RB = 2.

(a) ν = 10 (b) ν = 1 (c) ν = 0.75

Figure 9: SINR loss w.r.t K. The total size is MNL = 80, the ranks are RA = 9, RB = 2.
The steering vector corresponds to the target parameters as in Fig. 5-8.
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then been evaluated in terms of adaptive filtering performance on a MIMO-
STAP radar setting. These simulations illustrated the interest of taking into
account both the structure and the noise model in order to improve the
performance of adaptive filters at low sample support.
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Appendix A. Proof of proposition 1

Before going to the formal proof of Proposition 1, we first state the fol-
lowing lemmas

Lemma 1. (lemma 6 of [16]) The identity function can be upperbounded as:

x ≥xt
(
1 + ln(x)− ln(xt)

)
≥xt ln(x) + const.

(A.1)

with equality achieved at x = xt.

Lemma 2. (Jensen’s inequality, example 9 of [33]) The function x 7→
∑Q

q=1 sq ln (fq(x))
can be upperbounded as

Q∑
q=1

sq ln (fq(x)) ≤
Q∑
q=1

sq ln
(
fq(x

t)
)

+

(
Q∑
q=1

sq

)
ln

(∑Q
q=1 sq

fq(x)

fq(xt)∑Q
q=1 sq

)

≤

(
Q∑
q=1

sq

)
ln

(∑Q
q=1 sq

fq(x)

fq(xt)∑Q
q=1 sq

)
+ const.

(A.2)

with equality achieved at x = xt.

We can now turn to the proof of Proposition 1:

Proof. By using 1
1+x

= 1− x
1+x

on the first term in (14), we have

L (τk) = −
∑
pq=1

τkapbq [x̃k]
2
pq

τkapbq + σ2
+
∑
pq=1

ln
(
τkapbq + σ2

)
+ const. (A.3)
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We now use the inequality from lemma 1, with x parameterized as τkapbq
τkapbq+σ2

to obtain the inequality

∑
pq=1

τkapbq [x̃k]
2
pq

τkapbq + σ2
≥
∑
pq=1

τ tkapbq [x̃k]
2
pq

τ tkapbq + σ2
×
(
ln (τkapbq)− ln

(
τkapbq + σ2

))
+ const.

≥
∑
pq=1

τ tkapbq [x̃k]
2
pq

τ tkapbq + σ2
×
(
ln (τk)− ln

(
τkapbq + σ2

))
+ const.

(A.4)
where const. absorbed the terms in ln(apbq) to obtain the second inequality.
Hence we upperbound the first term of the objective as

L (τk) ≤
∑
pq=1

τ tkapbq [x̃pqk ]2

τ tkapbq + σ2

(
ln
(
τkapbq + σ2

)
− ln (τk)

)
+
∑
pq=1

ln
(
τkapbq + σ2

)
+ const.

(A.5)

which is compacted in

L (τk) ≤
∑
pq=1

(
κkpq + 1

)
ln
(
τkapbq + σ2

)
−Kp ln (τk) + const. (A.6)

with constants in (16). The first term in this expression can be once again up-
perbounded using lemma 2, where we identify spq =

(
κkpq + 1

)
and fpq(τk) =

τkapbq + σ2. Hence we have∑
pq=1

(
κkpq + 1

)
ln
(
τkapbq + σ2

)
≤ Ak ln (ωkτk + βk) + const. (A.7)

with constants defined in (16). Finally, conclude with the inequality

L (τk) ≤ Ak ln (ωkτk + βk)−Kk ln (τk) + const. (A.8)

which concludes the proof of the proposition.
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Appendix B. Proof of Proposition 3

First, we recall the following lemma:

Lemma 3. (From proposition 4 of [44]) Let U ∈ CM×R, S ∈ SM×M+ and

Λ ∈ SR×R+ . Denote λ
(S)
max the largest eigenvalue of S. The function

L (U) = Tr
[
SUΛUH

]
(B.1)

can be upperbounded on the set {U ∈ CM×R|UHU = IR} at point Ut by

g
(
U|Ut

)
= Tr

[
GH
t U
]

+ Tr
[
UHGt

]
+ const. (B.2)

with
Gt =

[
Λ
(
S− λ(S)maxI

)
vec
(
Ut
)]
M,R

(B.3)

More specifically, for a vector u and for Λ = 1,

uHSu ≤uHt
(
S− λ(S)maxI

)
u + uH

(
S− λ(S)maxI

)
ut

+ const.
(B.4)

We can now turn to the proof of Proposition 3:

Proof. For each quadratic term in up in (24) we use the previous lemma to
obtain a linear upper bound on the set {U ∈ CM×R|UHU = IR}. This leads
to the following surrogate function:

L (UA) ≤ Tr
[
(Wt

A)HUA

]
+ Tr

[
UH
AWt

A

]
+ const. (B.5)

with Wt
A defined in (27).
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