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A Riemannian Framework for Low-Rank Structured
Elliptical Models

Florent Bouchard, Arnaud Breloy, Member, IEEE, Guillaume Ginolhac, Senior Member, IEEE, Alexandre
Renaux, Member, IEEE, Frédéric Pascal, Senior Member, IEEE

Abstract—This paper proposes an original Riemmanian geom-
etry for low-rank structured elliptical models, i.e., when samples
are elliptically distributed with a covariance matrix that has
a low-rank plus identity structure. The considered geometry is
the one induced by the product of the Stiefel manifold and the
manifold of Hermitian positive definite matrices, quotiented by
the unitary group. One of the main contribution is to consider
an original Riemannian metric, leading to new representations
of tangent spaces and geodesics. From this geometry, we derive a
new Riemannian optimization framework for robust covariance
estimation, which is leveraged to minimize the popular Tyler’s
cost function on the considered quotient manifold. We also
obtain a new divergence function, which is exploited to define a
geometrical error measure on the quotient, and the corresponding
intrinsic Cramér-Rao lower bound is derived. Thanks to the
structure of the chosen parametrization, we further consider
the subspace estimation error on the Grassmann manifold and
provide its intrinsic Cramér-Rao lower bound. Our theoretical
results are illustrated on some numerical experiments, showing
the interest of the proposed optimization framework and that
performance bounds can be reached.

Index Terms—Riemannian geometry, elliptical distributions,
robust estimation, covariance matrix, low-rank structure,
Cramér-Rao bounds,

I. INTRODUCTION

COMPLEX ELLIPTICALLY SYMMETRIC distributions
offer a general family of statistical models that encom-

passes most of standard multivariate distributions, including
the Gaussian one, as well as many heavy-tailed distributions,
such as multivariate Student t-, and K- distributions (cf. [1]
for a review on this topic). These models have been lever-
aged successfully in numerous applications thanks to their
good empirical fit to datasets, e.g., in image processing [2]–
[4] or array processing [5], [6]. On top of that, elliptical
models have also attracted a lot of interest, as they allow
robust estimation processes to be derived. For example, M -
estimators [7], [8], defined as generalized maximum likelihood
estimators of elliptical models, have been shown to be robust to
model mismatches and contaminated data (outliers) [1]. While
alleviating robustness issues, the development of estimation
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algorithms under elliptical models is still challenged by “small
n large p” problems (where n and p respectively stand for the
sample size and the dimension).

In several applications, one can rightfully assume that the
relevant information lies in a low dimensional subspace. This
is reflected by a low-rank structure of the covariance matrix,
often referred to as spiked model [9]. This idea plays a central
role in principal component analysis [10], [11], subspace
recovery [12], and related dimension reduction algorithms.
In array processing, low-rank models are also at the core
of subspace methods [13], low-rank adaptive filters [14] and
detectors [15]. These structures are also involved in financial
time series analysis [16] (where they are also referred to as
factor models). Estimation processes in such low-rank models
have been well studied for Gaussian distributions [10], [17].
Unfortunately, the results obtained in this case cannot be
trivially transposed to elliptical distributions. For example,
low-rank structured counterparts of M -estimators are not
expressed in closed form, nor directly tractable. Additionally,
ultimate statistical performance characterization is not obvious
in this context, due to constraints/ambiguities on the parame-
ters space.

This paper proposes to leverage tools from Riemannian
geometry in order to answer the previous questions with a
unified view. The Riemannian standpoint was adopted in [18]
to derive intrinsic (i.e., manifold oriented) Cramér-Rao lower
bounds, then applied to study both unstructured and low-
rank Gaussian models. This leads to interesting results and
insights, such as performance bounds for various Riemannian
distances, and the characterization of a bias of the sample
covariance matrix at low sample support, not exhibited by the
traditional Euclidean analysis. The Riemannian geometry of
the manifold of Hermitian positive definite matrices has also
been recently used to study unstructured elliptical models. It
notably revealed hidden (geodesic) convexity properties of el-
liptical distribution’s likelihood functions [19], and allowed to
derive new regularization-based estimation algorithms [20]–
[22]. Studying low-rank elliptical models require to turn to the
manifold of Hermitian positive semi-definite matrices of fixed
rank k (k < p), which has, to the best of our knowledge, not
been proposed in this context. The contributions associated to
the proposed framework for low-rank elliptical models follow
three main axes, summed up below.

A. Geometry for low-rank structured elliptical models
The statistical parameter of the considered low-rank model

for complex elliptically symmetric distributions lives in the
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manifold H+
p,k of p × p Hermitian positive semi-definite

matrices of rank k. This manifold has recently attracted much
attention and several geometries have been proposed for it;
see e.g., [23]–[27]. In this work, we consider the geometry
induced by the quotient (Stp,k × H++

k )/Uk, i.e., the product
manifold of the complex Stiefel manifold Stp,k of p × k
orthogonal matrices (with p > k) and the manifold H++

k

of k × k Hermitian positive definite matrices, quotiented
by the unitary group Uk. This geometry has already been
studied in the context of low-rank matrices in [23], [25]. It
is of particular interest in our context because the principal
subspace of the covariance matrix is directly obtained from
this parametrization and a divergence function, which can be
exploited to measure estimation errors, is available in closed
form [23].

Our framework differs from the works [23], [25] as we pro-
pose a new Riemannian metric on the product Stp,k×H++

k : the
part on Stp,k is the so-called canonical metric on Stiefel [28]
while the part on H++

k is a general form of the affine
invariant metric which corresponds to the Fisher information
metric of elliptical distributions on H++

k [29]. As a direct
consequence, the representations of tangent spaces of the
quotient (Stp,k × H++

k )/Uk, geodesics, Riemannian gradient
and Hessian used for optimization are original in this context.
We also introduce a retraction, which corresponds to a second
order approximation of the geodesics. Moreover, we derive a
new divergence function and its associated geometry on the
quotient, which is inspired by the one of [23].

B. Algorithms for robust low-rank covariance matrix estima-
tion

Covariance matrix estimation is a crucial step in many ma-
chine learning and signal processing algorithms. In elliptical
models, M -estimators [7], [8] offer a robust alternative to the
traditional sample covariance matrix. These estimators appear
as generalized maximum likelihood estimators and ensure
good asymptotic properties [1], [30], [31]. Nevertheless, M -
estimators do not account for the low-rank structure. A natural
solution to this issue is to directly derive an estimator as the
minimizer of a robust cost function under a low-rank structure
constraint. This approach has been proposed in [32, Sec. V.A.],
where a majorization-minimization algorithm is proposed to
minimize Tyler’s cost function according to this structure.
However, the tractability of this estimator is an open question
at low sample support (cf. assumption 2 in [32]). Notably, the
majorization-minimization algorithm can present convergence
issues in some practical case where n is close to or smaller
than p.

To address this issue, we propose to use the Riemannian
optimization framework [33]: the proposed geometry for the
the quotient (Stp,k × H++

k )/Uk indeed offers the possibility
to apply a large panel of generic first and second order
optimization algorithms on manifolds, such as gradient de-
scent, conjugate gradient, BFGS, trust region, Newton, etc.
(cf. [33] for details). More specifically for robust covariance
matrix estimation, we propose an estimator formulated as the
minimizer of a counterpart of Tyler’s cost function defined

directly on (Stp,k × H++
k )/Uk. We then focus on two al-

gorithms for solving the introduced problem: one based on
Riemannian gradient descent (first order method), the other
based on Riemannian trust region (second order method). In
terms of estimation accuracy, our numerical experiments show
that the Riemannian trust region based algorithm is similar
to [32, algorithm 5]. Interestingly, these experiments also show
that the Riemannian gradient descent based method can still
reach good performance when the other methods diverge at
insufficient sample support.

C. Statistical performance analysis in low-rank elliptical mod-
els

Cramér-Rao lower bounds are ubiquitous tools to charac-
terize the optimum performances in terms of mean squared
error that can be achieved for a given parametric estimation
problem [34]. In the context of elliptical distributions, Cramér-
Rao lower bounds can be obtained using the general results
of [35], and have been studied for covariance/shape estimation
in [36], [37]. However, the low-rank models involve con-
straints and ambiguities on the parameters space, which does
not allow for simple/practical derivations, even using the so-
called constrained Cramér-Rao lower bounds [38]–[40]. Addi-
tionally, the classical inequality applies on the mean squared
error (Euclidean metric), while this criterion may not be the
most appropriate for characterizing the performance when
parameters are living in a manifold. To overcome these issues,
intrinsic (i.e. Riemannian manifold oriented) versions of the
Cramér-Rao inequality have been established and studied
in [18], [41]. Interestingly, the obtained inequalities are valid
for any chosen Riemannian metric. Thus, these results allows
to derive performance bounds on any Riemannian distance
used as error measure for the estimation of a parameter living
in a manifold1.

Leveraging this framework for covariance matrix estimation
in low-rank elliptical models, we first derive the performance
bound on the Riemannian distance related to the considered
metric on the quotient (Stp,k × H++

k )/Uk (total error mea-
surement). However, this distance does not admit a closed-
form expression, which is why the proposed divergence ap-
pears as a practical alternative. For this divergence, we then
derive an alternative intrinsic Cramér-Rao bound that goes
beyond the standard Riemannian geometry framework in [18],
[41]. Finally, we focus on the Riemannian distance on the
Grassmann manifold Gp,k [28] and derive the corresponding
performance bound for principal subspace estimation. Some
numerical experiments then illustrate that the obtained per-
formance bounds can be reached by the proposed algorithms.
These contributions therefore generalize the ones of [18] on
low-rank Gaussian models to wider classes of distributions
and performance measures, and the results of [29] to low-rank
models.

1In some situations, the standard Euclidean Cramér-Rao bound can be
recovered as a special case: this occurs when the Euclidean distance actually
corresponds to the Riemannian one when the manifold is endowed with the
euclidean metric. However, this is will not be the case for parameter space
considered in this paper.
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II. REVIEW OF RIEMANNIAN GEOMETRY, OPTIMIZATION
AND INTRINSIC CRAMÉR-RAO BOUNDS

Before dealing with low-rank structured elliptical models,
general recalls on Riemannian geometry, optimization and
intrinsic Cramér-Rao bounds are provided. All the tools pre-
sented in this section, which can be found in [18], [33],
[41], [42], are later employed to tackle robust estimation and
performance analysis in the context of low-rank covariance
matrices. Section II-A deals with smooth manifolds while
section II-B focuses on quotient manifolds.

A. Smooth manifold

a) Geometry: A smooth manifold M is a space which
is locally diffeomorphic to a vector space and which admits
a differential structure, i.e., every point θ ∈ M possesses a
tangent space TθM, whose elements are called tangent vectors
and generalize the concept of directional derivatives. SuchM
is turned into a Riemannian manifold by endowing it with a
Riemannian metric 〈·, ·〉·, which is a smoothly varying inner
product on every tangent space TθM.

One often needs to handle vector fields on M, i.e., func-
tions associating one tangent vector in TθM to each point
θ ∈M. Directional derivatives of vector fields are generalized
with affine connections. On a Riemannian manifold M, a
specific affine connection plays a particular role: the Levi-
Civita connection ∇··, which is characterized by Koszul for-
mula. The Levi-Civita connection allows to define geodesics
γ : I ⊆ R → M, which generalize the concept of straight
lines in M. They are indeed curves with zero acceleration,
i.e., ∇γ̇(t)γ̇(t) = 0γ(t), where 0γ(t) is the zero element of
Tγ(t)M. Geodesics γ only depend on the choice of initial point
γ(0) = θ ∈ M and initial direction γ̇(0) = ξ ∈ TθM. Given
θ ∈M, the Riemannian exponential mapping is the mapping
from TθM onto M such that expθ(ξ) = γ(1), where γ is the
geodesic such that γ(0) = θ and γ̇(0) = ξ. Its inverse, the
Riemannian logarithm mapping, can also be defined: Given
θ ∈ M, it is the mapping from M onto TθM such that
logθ(ϑ) = ξ, where expθ(ξ) = ϑ. The Riemannian distance δ
on M is then obtained through

δ2(θ, ϑ) = ‖logθ(ϑ)‖2θ = 〈logθ(ϑ), logθ(ϑ)〉θ.

b) Optimization: Given an objective function f :M→
R, the Riemannian gradient of f at θ ∈M is defined through
the Riemannian metric as the unique tangent vector in TθM
such that, for all ξ ∈ TθM,

〈gradM f(θ), ξ〉θ = D f(θ)[ξ],

where D f(θ)[ξ] is the directional derivative of f at θ in direc-
tion ξ. The Riemannian Hessian of f at θ ∈ M in direction
ξ ∈ TθM is defined as HessM f(θ)[ξ] = ∇ξ grad f(θ).

A descent direction ξ ∈ TθM of f at θ can be obtained from
the Riemannian gradient and Hessian of f . A new point on the
manifold is then achieved by a retraction Rθ : TθM → M,
which is a mapping such that Rθ(0θ) = θ and for all
ξ ∈ TθM, DRθ(0θ)[ξ] = ξ. A Riemannian manifold admits
a natural retraction: the Riemannian exponential mapping.

However, for numerical complexity and stability reasons,
alternative solutions are often prefered [33].

These tools are enough to employ a large panel of first
and second order Riemannian optimization algorithms such as
gradient descent, Newton, trust region, etc. For instance, given
iterate θi, the Riemannian gradient descent algorithm yields

θi+1 = Rθi(−ti gradM f(θi)),

where ti is the stepsize, which can be computed with a line
search.

c) Intrinsic Cramér-Rao bound: Let θ̂ ∈M an unbiased
estimator of the true parameters θ ∈ M of some distribution
with log-likelihood L : M → R. Let {ei} an orthonormal
basis of TθM according to the metric 〈·, ·〉θ. Following the
Riemannian framework of [18], the estimation error associated
to the metric 〈·, ·〉θ is contained in the vector xθ, whose ith

element is (xθ)i = 〈logθ(θ̂), ei〉θ (which reads as the standard
error vector xθ = θ− θ̂ in the Euclidean setting), and the co-
variance matrix of this error is denoted Cθ = xθx

T
θ . The ijth

element of the corresponding Fisher information matrix F θ is
(F θ)ij = gMθ (ei, ej), where gMθ (ξ, η) = −E[D2 L(θ)[ξ, η]] is
the Fisher information metric of the considered distribution.
The intrinsic Cramér-Rao lower bound [18] on M is then
given as

E[Cθ] � F−1θ + curvature terms.

For small errors, the curvature terms can be neglected (this
will be the case in this paper), and taking the trace of the
above inequality yields the lower bound

E[δ2(θ, θ̂)] � tr(F−1θ ),

Where δ is the Riemannian distance associated to 〈·, ·〉θ. Also
notice that this expression reduces to the standard Cramér-Rao
lower bound E[‖θ − θ̂‖2F ] � tr(F−1θ ) in the Euclidean case.

B. Quotient manifold

a) Geometry: A quotient manifold M of a smooth man-
ifold M is quite abstract. Its elements are indeed equivalence
classes on M. To handle elements of M, the usual technique
is to exploit the canonical projection π : M → M, which
associates θ = π(θ) ∈ M to all θ ∈ M. The equivalence
class of θ is obtained on M by π−1(π(θ)). Every element
θ ∈ M can be represented by any element θ ∈ M such that
θ = π(θ). More generally, all geometrical tools of M can be
characterized through such representations.

A Riemannian metric on M is defined through a metric
〈·, ·〉· on M that is invariant along the equivalence classes
π−1(π(θ)). The tangent space TθM at θ = π(θ) ∈ M
can be represented by a well chosen subspace of TθM. The
subspace of TθM inducing a move along the equivalence
class π−1(π(θ)) is the vertical space Vθ = Tθπ

−1(π(θ)). Any
complementary space to Vθ in TθM, called a horizontal space,
provides unique represenatives of tangent vectors in TθM.
One horizontal space is particularly interesting: the orthogonal
complement to Vθ according to 〈·, ·〉·, denoted Hθ. Indeed, it
turns π into a Riemannian submsersion, i.e., it is the adequate
horizontal space to describe the Riemannian geometry of M.
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Fig. 1: Illustration of the quotient manifold M of manifold M. The tangent
space TθM can be decomposed into two complementary subspaces: the
vertical space Vθ = Tθπ

−1(π(θ)) and the horizontal space Hθ , which
provides proper representatives of tangent vectors in TθM at θ = π(θ).
The orthogonal projection map PH

θ
allows to project ξ ∈ TθM onto Hθ .

Further notice that one can define the orthogonal projection
map PH

θ
: TθM→Hθ. An illustration is provided in figure 1.

Let∇ the Levi-Civita connection onM. Let θ = π(θ) ∈M
and ξ, η ∈ TθM represented by ξ, η ∈ Hθ. The represen-
tative in Hθ of the Levi-Civita connection ∇ξ η is ∇ξ η =
PH
θ

(∇ξ η). Finally, geodesics on M can be defined through
those on M. Indeed, if γ is a geodesic in M that stays
horizontal, i.e., its derivative γ̇(t) belongs to Hγ(t), then π ◦γ
is a geodesic on M.

b) Optimization: Let f an objective function onM. The
function f induces a function f on M if it is invariant along
every equivalence class π−1(π(θ)) in M. One then has f =
f ◦ π. It follows that the gradient of f at θ = π(θ) is simply
represented by gradM f(θ), which belongs to Hθ. Moreover,
the representative of the Riemannian Hessian of f at θ = π(θ)
in direction ξ ∈ TθM represented by ξ ∈ Hθ is

HessM f(θ)[ξ] = PH
θ

(HessM f(θ)[ξ]).

Finally, a retraction R onM induces a retraction R onM if it
is invariant along equivalence classes. Let θ, ϑ ∈ π−1(θ) and
ξ ∈ TθM represented by ξ ∈ Hθ and ζ ∈ Hϑ, respectively.
A retraction R is invariant if π(Rθ(ξ)) = π(Rϑ(ζ)).

c) Intrinsic Cramér-Rao bound: Let θ̂ ∈M an unbiased
estimator of parameters θ = π(θ) ∈ M of some distribution
with log-likelihood L : M → R induced by L : M → R.
Let {hi} an orthonormal basis of Hθ. The error matrix
is CH

θ
= xH

θ
(xH
θ

)T with (xH
θ

)i = 〈logθ(θ̂), hi〉θ, where

logθ(θ̂) is the representative of logθ(θ̂) in Hθ. The ijth

element of the corresponding Fisher information matrix is
(FH

θ
)ij = gM

θ
(hi, hj), where gM is the Fisher information

metric on M associated with L. The lower bound is then
E[CH

θ
] � (FH

θ
)−1.

Sometimes, it is easier or more convenient to work on TθM.
Let {ei} an orthonormal basis of TθM. One can define the
error matrix as Cθ = xθx

T
θ

with (xθ)i = 〈logθ(θ̂), ei〉θ.
In this case, the ijth element of the corresponding Fisher
information matrix is (F θ)ij = gM

θ
(ei, ej) and the lower

bound is E[Cθ] � F
†
θ
, where ·† denotes the Moore-Penrose

pseudo-inverse. Taking the traces of both inequalities yield the
same lower bound:

E[δ2(θ, θ̂)] = E[tr(CH
θ

)] = E[tr(Cθ)]

≥ tr((FH
θ

)−1) = tr(F †
θ
).

III. MODEL

A. Complex elliptically symmetric distributions and robust
covariance estimation

Complex elliptically symmetric distributions [43] represent
a large family of multivariate distributions that encompasses,
for example, Gaussian, K-, Student t-, and Weibull distribu-
tions. A detailed review on the topic can be found in [1]. The
probability density function (pdf) associated with the random
variable x ∈ Cp following a centered complex elliptically
symmetric distribution is, up to a normalization factor,

f++
g (x|R) = det(R)−1g(xHR−1x), (1)

where det denotes the determinant operator, R ∈ H++
p is the

covariance matrix2 and g : R+ → R+ is the so-called density
generator of the distribution.

The negative log-likelihood function associated with n
independent and identically distributed samples {xi}ni=1 of
the random variable x is

L++
g (R) = n log det(R)−

n∑
i=1

log(g(xHi R
−1xi)). (2)

Given the density generator g and n observations {xi}, an
estimator R̂ of the true covariance matrix R can be obtained
by solving the maximum likelihood optimization problem

R̂ = argmin
R

L++
g (R).

Unfortunately, the true density generator g is often unknown
in practice. To overcome this issue, a solution provided by the
robust estimation theory is to compute an M -estimator [7].
A popular choice is Tyler’s M -estimator [8], [44], which
is motivated by its “distribution-free” properties among the
whole familly of CES, its good asymptotic performance [44],
and robustness properties. Given {xi}, the corresponding cost
function to be minimized corresponds to g(t) = 1/t and is
defined as

L++
T (R) = p

n∑
i=1

log(xHi R
−1xi) + n log det(R). (3)

On H++
p , this cost function is efficiently minimized with

a fixed-point algorithm [44]. Additional assumptions on the
structure of the covariance R can also be made; see e.g., [32]
for various possibilities. In this work, we are interested in the
low-rank covariance structure (cf. [32, section V.A]).

2We adopt here a slight abuse of denomination. Rigorously, R can be
referred to as the scatter matrix, which is proportional to the covariance matrix
of x, i.e., E[xxH ] ∝ R when this quantity exists.
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B. Low-rank covariance model and parameter space

Following from the probabilistic principal component anal-
ysis framework [10], the low-rank covariance model (also
known as spiked model [9] or factor model [16]) refers to
the structure

R = Ip +H, (4)

where Ip denotes the p-dimensional identity matrix and H is
a p× p Hermitian positive semi-definite matrix of rank k. As
done in many works, we assume the rank k to be known (e.g.,
from prior physical considerations [45]) or pre-estimated (e.g.,
from model order selection techniques [46]).

Remark 1. In general, one can consider a scaling of the
white noise variance3, i.e., R = σ2Ip +H with σ2 ∈ R+. In
the considered framework, this parameter can be absorbed by
the inherent scaling ambiguities of the elliptical distributions.
Indeed a change in the scale of the scatter matrix from R
to R̃ = R/σ2 can be absorbed in the density generator
using g̃(t) = g(σ−2t), which yields an equivalent model.
Hence, from H ∈ H+

p,k and a given pair (g, σ2Ip + H),
it is always possible to recast an equivalent distribution using
(g̃, Ip + H̃) with still H̃ ∈ H+

p,k, meaning that omitting σ2

can be done without loss of generality from a modeling point
of view. However, from the estimation point of view, the density
generator g and/or the scaling σ2 are generally unknown in
practice. This motivates the derivation of robust and scale-free
estimation processes (as discussed in Section V-B).

The parameter H in (4) lives in the manifold H+
p,k of

p× p Hermitian positive semi-definite matrices of rank k. As
explained in the introduction, several geometries have been
proposed for this manifold. In this work, we consider the
geometry resulting from the decomposition

H = UΣUH , with (U ,Σ) ∈Mp,k = (Stp,k ×H++
k ), (5)

which is directly related to the singular value decomposition
of H . This parametrization is particularly interesting when it
comes to the signal subspace estimation as the latter is simply
obtained from the component U .

Let ϕ :Mp,k → H+
p,k be the smooth mapping defined, for

(U ,Σ) ∈Mp,k, as

ϕ(U ,Σ) = UΣUH . (6)

Since everyH ∈ H+
p,k admits a decomposition of the form (5),

the mapping ϕ is surjective. However, it is not injective as the
considered decomposition is not unique: given any O ∈ Uk,
one has H = ϕ(U ,Σ) = ϕ(UO,OHΣO). As done in [23],
[25], to account for the action of the unitary matrices, we
define the quotient manifold

Mp,k = {π(U ,Σ) : (U ,Σ) ∈Mp,k}, (7)

where the equivalence class π(U ,Σ) is

π(U ,Σ) = {(UO,OHΣO) : O ∈ Uk}. (8)

3One might also be interested in the general model R = R0 +H , where
the identity Ip is replaced by any (known) matrix R0 ∈ H++

p , as done
in [18]. It is equivalent to our model as it suffices to whiten the random
variable x with R

−1/2
0 in order to obtain (4).

As shown in [23], [25], it follows that the function ϕ on
Mp,k induced by ϕ on Mp,k, i.e., such that ϕ = ϕ ◦ π, is
an isomorphism fromMp,k onto H+

p,k. Thus, the geometry of
Mp,k can be exploited to treat problems defined on H+

p,k. In
particular, the pdf on Mp,k of a random variable x following
a zero-mean complex elliptically symmetric distribution with
covariance matrix admitting structure (5) is, for all θ =
π(U ,Σ) ∈Mp,k,

fg(x|θ) = f++
g (x|Ip + ϕ(θ)), (9)

where f++
g is defined in (1). Similarly, the cost function on

Mp,k of the Tyler’s M -estimator is defined, for all θ =
π(U ,Σ) ∈Mp,k, as

LT(θ) = L++
T (Ip + ϕ(θ)), (10)

where L++
T is defined in (3).

IV. RIEMANNIAN GEOMETRY OF HERMITIAN POSITIVE
SEMI-DEFINITE MATRICES OF FIXED RANK

As explained in section II, the geometry of the quotient
Mp,k can be described by exploiting π : Mp,k → Mp,k

defined in (8), which allows to work with representatives in
Mp,k of the geometrical objects of Mp,k. For our study,
the following elements are provided: a Riemannian met-
ric on Mp,k, invariant along equivalence classes; the cor-
responding horizontal spaces, properly representing tangent
spaces ofMp,k; the Levi-Civita connection and the associated
geodesics. Unfortunately, the Riemannian logarithm map and
distance remain unknown.

In the following, θ = (U ,Σ), ξ = (ξU , ξΣ), η = (ηU ,ηΣ)
and Z = (ZU ,ZΣ). First recall that

TθMp,k = {ξ ∈ Cp×k ×Hk : UHξU + ξHUU = 0}. (11)

We equip Mp,k with the Riemannian metric of definition 1.
The part of this metric that concerns U is the so-called
canonical metric on Stiefel [28]4, which is obtained by treating
Stp,k as the quotient Up/Up−k. The one that concerns Σ
corresponds to a class of affine invariant metrics on H++

k that
are of interest when dealing with elliptical distributions as they
are related to the Fisher information metric [29]5.

Definition 1 (Riemannian metric). We define the Riemannian
metric 〈·, ·〉· on Mp,k by

〈ξ, η〉θ = Re(tr(ξHU (Ip −
1

2
UUH)ηU ))

+ α tr(Σ−1ξΣΣ−1ηΣ) + β tr(Σ−1ξΣ) tr(Σ−1ηΣ), (12)

where α > 0 and β > −αk .

It is readily checked that the metric (12) is invariant along the
equivalence classes (8), i.e., for all O ∈ Uk

〈ξ, η〉θ = 〈φO(ξ), φO(η)〉φO(θ),

4This metric is advantageous as compared to the Euclidean metric because
resulting geodesics admit simpler formulas [28].

5For example, the Fisher information metric on H++
k for the Gaussian

distribution is obtained with α = 1 and β = 0.
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where φO(Z) = (ZUO,O
HZΣO). Thus, metric (12) in-

duces a Riemannian metric on the quotient Mp,k. Further-
more, the orthogonal projection map according to (12) from
Cp×k × Ck×k onto TθMp,k is

Pθ(Z) = (ZU −U herm(UHZU ),herm(ZΣ)), (13)

where herm returns the Hermitian part of its argument.
In order to obtain the horizontal space at θ, one first needs

to define the vertical space, which, as shown in [23], [25], is
in our case given by

Vθ = {(UΩ,ΣΩ−ΩΣ) : Ω ∈ H⊥k },

where H⊥k denotes the space of skew-Hermitian matrices. The
horizontal space along with the orthogonal projection map
from TθMp,k onto Hθ are given in proposition 1.

Proposition 1. The horizontal space Hθ at θ ∈Mp,k is

Hθ = {ξ ∈ TθMp,k : UHξU = 2α(Σ−1ξΣ − ξΣΣ−1)}.

The orthogonal projection map PH
θ

according to (12) from
TθMp,k onto Hθ is given by

PH
θ

(ξ) = (ξU −UΩ, ξΣ + ΩΣ−ΣΩ),

where Ω ∈ H⊥k is the unique solution to

(1− 4α)Ω + 2α(Σ−1ΩΣ + ΣΩΣ−1) =

UHξU + 2α(ξΣΣ−1 + Σ−1ξΣ).

Proof: By definition, ξ ∈ Hθ if and only if, for all
Ω ∈ H⊥k , 〈ξ, (UΩ,ΣΩ −ΩΣ)〉θ = 0. Since tr(Σ−1(ΣΩ −
ΩΣ)) = 0, we have

〈ξ, (UΩ,ΣΩ−ΩΣ)〉θ
= 1

2Re(tr(ξHUUΩ)) + α tr(Σ−1ξΣΣ−1(ΣΩ−ΩΣ))

= 1
2Re(tr((ξHUU + 2α(Σ−1ξΣ − ξΣΣ−1))Ω)).

We thus need Re(tr((ξHUU+2α(Σ−1ξΣ−ξΣΣ−1))Ω)) = 0.
This is true for all Ω ∈ H⊥k if and only if ξHUU+2α(Σ−1ξΣ−
ξΣΣ−1) is Hermitian. This translates into UHξU − ξ

H
UU =

4α(Σ−1ξΣ−ξΣΣ−1). From (11), we haveUHξU+ξU
HU =

0, leading to the result.
Regarding PH, it has the proposed form by definition. The

matrix Ω ∈ H⊥k must be chosen in order to have PH
θ

(ξ) ∈ Hθ.
Basic calculations yield the proposed equation. It remains to
show that the solution exists and is unique. This equation can
be vectorized as

((1− 4α)Ik2 + 2α(Σ−T ⊗Σ + ΣT ⊗Σ−1)) vec(Ω) =

vec(UHξU + 2α(ξΣΣ−1 + Σ−1ξΣ)).

Showing that (1 − 4α)Ip2 + 2α(Σ−T ⊗ Σ + ΣT ⊗ Σ−1)
is positive definite is enough to conclude. In order to do so,
consider the eigenvalue decomposition Σ = V ΛV H . We have

((1− 4α)Ik2 + 2α(Σ−1 ⊗Σ + Σ⊗Σ−1)) =

(V ⊗V )((1−4α)Ik2 +2α(Λ−1⊗Λ+Λ⊗Λ−1))(V ⊗V )H ,

where V is the conjugate of V . As V is unitary, V and V ⊗V
are also unitary. ((1− 4α)Ip2 + 2α(Λ−1⊗Λ + Λ⊗Λ−1)) is

diagonal and its elements are 1−4α+2α( λiλj +
λj
λi

), where λi
is the ith diagonal element of Λ. The function h(x) = x+ 1

x ,
defined for x > 0, admits 2 as a global minimum for x = 1,
showing that 1− 4α+ 2α( λiλj +

λj
λi

) ≥ 1 > 0. This completes
the proof.

The Levi-Civita connection on Mp,k associated with the
metric induced by (12), which is crucial when it comes
to defining geodesics and Riemannian Hessians, is given in
proposition 2.

Proposition 2. Let θ = π(θ) ∈ Mp,k, ξ = Dπ(θ)[ξ] ∈
TθMp,k and the vector field η = Dπ(θ)[η] evaluated at θ,
where ξ, η ∈ Hθ. The representative ∇ξ η in Hθ of the Levi-
Civita connection ∇ξ η on Mp,k is

∇ξ η = PH
θ

(∇ξ η),

where ∇ξ η is the Levi-Civita connection on Mp,k, given by

∇ξ η = Pθ(D η[ξ]) + ((Ip −UUH) herm(ηUξ
H
U )U ,

− herm(ηΣΣ−1ξΣ))

Proof: Let gθ(ξ, η) = 〈ξ, η〉θ. The Koszul formula [33],
which characterizes the Levi-Civita connection, is in our case

2gθ(∇ξ η, ν)− 2gθ(D η[ξ], ν) =

+ D gθ[ξ](η, ν) + D gθ[η](ξ, ν)−D gθ[ν](ξ, η).

To obtain the three terms on the right side of this equation,
we have to derive the metric gθ with respect to θ. One can
check that

D gθ[ν](ξ, η) = −Re(tr(ξHU herm(UνHU )ηU ))

− β tr(Σ−1ξΣΣ−1νΣ) tr(Σ−1ηΣ)

− β tr(Σ−1ξΣ) tr(Σ−1ηΣΣ−1νΣ)

− 2α tr(Σ−1ξΣΣ−1ηΣΣ−1νΣ).

It follows that the right side of the Koszul formula is

D gθ[ξ](η, ν) + D gθ[η](ξ, ν)−D gθ[ν](ξ, η) =

tr(νHU (2 herm(ηUξ
H
U )U −U herm(ηHUξU )))

− 2α tr(Σ−1ξΣΣ−1ηΣΣ−1νΣ)

− 2β tr(Σ−1ξΣΣ−1ηΣ) tr(Σ−1νΣ).

Moreover,

tr(νHU Z̃U ) = tr(νHU (Ip −
1

2
UUH)(Ip +UUH)Z̃U ).

It follows that

D gθ[ξ](η, ν) + D gθ[η](ξ, ν)−D gθ[ν](ξ, η) = 2gθ(Z, ν),

where

Z = ((Ip +UUH) herm(ηUξ
H
U )U − 1

2
U herm(ηHUξU ),

− ξΣΣ−1ηΣ).
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Since ν ∈ TθMp,k and the projection map (13) is orthogonal
according to (12), projecting Z on TθMp,k does not change
the metric, i.e., gθ(Z, ν) = gθ(Pθ(Z), ν). Thus,

D gθ[ξ](η, ν) + D gθ[η](ξ, ν)−D gθ[ν](ξ, η) =

2gθ((Ip−UU
H) herm(ηUξ

H
U )U ,−herm(ηΣΣ−1ξΣ), ν).

The same way, gθ(D η[ξ], ν) = gθ(Pθ(D η[ξ]), ν). Injecting
these results in the Koszul formula, the Levi-Civita connection
∇ξ η on Mp,k is finally obtained by identification. The Levi-
Civita connection ∇ξ η on Mp,k is then simply given by [33,
proposition 5.3.3].

The geodesics in Mp,k associated with the metric induced
by (12) are given in proposition 3. Unfortunately, an analytical
formula for the geodesic between two points θ and θ̂ in
Mp,k is not known. As a direct consequence, the Riemannian
logarithm map and the Riemannian distance function onMp,k

are not known in closed form.

Proposition 3. Let θ = π(θ) ∈ Mp,k and ξ = Dπ(θ)[ξ] ∈
TθMp,k, where ξ ∈ Hθ. The representative in Mp,k of the
geodesic in Mp,k associated with the metric induced by (12)
starting at θ in the direction ξ is6

γ(t) = (U(t),Σ(t)) =(
[U Q] exp t

(
UHξU −RH

R 0

)[
Ik
0

]
,

Σ
1/2 exp(tΣ

−1/2ξΣΣ
−1/2)Σ

1/2
)
,

where Q and R correspond to the QR decomposition of (Ip−
UUH)ξU .

Proof: A direct proof that γ(t) is a geodesic in Mp,k

consists in verifying that it is solution of the differential
equation ∇γ̇(t) γ̇(t) = 0, where γ̇(t) is the derivative of γ(t).
However, it is enough to argue that U(t) corresponds to the
geodesic in Stp,k equiped with its canonical metric [28] and
Σ(t) is the geodesic in H++

k equiped with the considered
affine invariant metric; see e.g., [29], [47].

To show that γ(t) is a proper representative of the geodesic
inMp,k, as π is a Riemannian submersion, it suffices to show
that γ(t) stays horizontal in Mp,k, i.e., γ̇(t) ∈ Hγ(t) [42,
proposition 2.109]. One can check that U(t)HU̇(t) = UHξU ,
Σ(t)−1Σ̇(t) = Σ−1ξΣ and Σ̇(t)Σ(t)−1 = ξΣΣ−1, which is
enough to conclude.

V. RIEMANNIAN OPTIMIZATION FOR ROBUST COVARIANCE
ESTIMATION

We build a Riemannian optimization framework on Mp,k

for robust estimation of covariance matrices admitting the
structure (4). In section V-A, we provide the objects required
to perform Riemannian optimization (see section II) onMp,k,
i.e., the Riemannian gradient and Hessian and a retraction,
which corresponds to a second-order approximation of the

6The considered geodesic U(t) on Stp,k is optimal (from a dimensionality
point of view) only if k ≤ p/2. If k > p/2, it is more advantageous to
replace Q with U⊥ and R with UH⊥ξU , where U⊥ ∈ Stp,p−k such that
UHU⊥ = 0; see [28].

geodesics of proposition 3. In section V-B, we develop tools
to treat the family of cost functions of interest, which are
originally defined on H++

p . In particular, we deal with Tyler’s
M -estimator cost function defined in (10).

A. Riemannian optimization on Mp,k

Let f : Mp,k → R be an objective function that induces
a function f on the quotient Mp,k, i.e., f is invariant along
the equivalence classes (8): for all θ ∈ Mp,k and O ∈ Uk,
f(θ) = f(φO(θ)), where φO(θ) = (UO,OHΣO), as in
section IV. To perform Riemannian optimization, it remains
to define the Riemannian gradient and Hessian of f along
with a retraction onMp,k. Proposition 4 provides formulas to
compute the Riemannian gradient and Hessian of f on Mp,k

from the Euclidean gradient and Hessian of f on Mp,k.

Proposition 4. Given θ = π(θ) ∈Mp,k, the representative in
Hθ of the Riemannian gradient of f at θ is the Riemannian
gradient of f at θ, which is

gradMp,k
f(θ) =

(
GU −UGH

UU ,

Σ herm(GΣ)Σ

α
− β tr(GΣΣ)

α(α+ kβ)
Σ

)
,

where gradE f(θ) = (GU ,GΣ) is the Euclidean gradient of
f in Cp×k × Ck×k.

Given ξ = Dπ(θ)[ξ] ∈ TθMp,k, the representative in Hθ
of the Riemannian Hessian HessMp,k

f(θ)[ξ] of f at θ in
direction ξ is

HessMp,k
f(θ)[ξ] = PH

θ
(HessMp,k

f(θ)[ξ]),

where HessMp,k
f(θ)[ξ] is the Riemannian Hessian of f at θ

in direction ξ, given by

HessMp,k
f(θ)[ξ] =

(
HU −UHH

UU −U skew(GH
UξU )

− skew(GUξ
H
U )U − 1

2
(Ip −UUH)ξUU

HGU ,

1

α
(Σ herm(HΣ)Σ + herm(Σ herm(GΣ)ξΣ))

−β tr(HΣΣ +GΣξΣ)

α(α+ kβ)
Σ

)
,

where skew returns the skew-Hermitian part of its argument
and HessE f(θ)[ξ] = (HU ,HΣ) is the Euclidean Hessian of
f at θ in direction ξ, i.e., HessE f(θ)[ξ] = D gradE f(θ)[ξ].

Proof: The Riemannian and Euclidean gradients of f at
θ are defined by

D f(θ)[ξ] = 〈gradMp,k
f(θ), ξ〉θ = 〈gradE f(θ), ξ〉E ,

where 〈·, ·〉E is the Euclidean metric on Cp×k ×Ck×k, which
is given by

〈ξ, η〉E = Re(tr(ξHUηU ) + tr(ξHΣηΣ)). (14)

Injecting the proposed formula for the gradient gradMp,k
f(θ)

in the metric (12) shows that 〈gradMp,k
f(θ), ξ〉θ is equal to

〈gradE f(θ), ξ〉E . To show that it is the Riemannian gradient
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of f at θ ∈ Mp,k, we also need to check that it belongs
to TθMp,k defined in (11). It is readily checked that the
component corresponding to Σ is Hermitian and that

UH(GU −UGH
UU) + (GU −UGH

UU)HU = 0,

which is enough to conclude. From section II, we further
know that it belongs to Hθ and is the representative of the
Riemannian gradient of f at θ ∈Mp,k.

Recall that the Riemannian Hessian of f at θ in direction
ξ is defined as HessMp,k

f(θ)[ξ] = ∇ξ gradMp,k
f(θ). The

result is obtained by plugging the formula of the gradient in
the one of the Levi-Civita connection ∇ on Mp,k defined in
proposition 2. Finally, the representative of the Riemannian
Hessian of f at θ = π(θ) in direction ξ = Dπ(θ)[ξ]
is obtained by definition of the Levi-Civita connection ∇
on Mp,k, given in proposition 2.

It only remains to provide a retraction on Mp,k. As ex-
plained in section II, a solution is to take the Riemannian ex-
ponential map defined through the geodesics of proposition 3.
However, for numerical stability reasons (the exponential
function goes quickly towards infinity), we rather choose a
second order approximation of this exponential map, which,
for θ = π(θ) ∈ Mp,k and ξ = Dπ(θ)[ξ] ∈ TθMp,k, is
represented by

Rθ(ξ) =

(
[U Q] uf ◦Γ

(
UHξU −RH

R 0

)[
Ik
0

]
Σ

1/2Γ(Σ
−1/2ξΣΣ

−1/2)Σ
1/2
)
, (15)

where uf returns the orthogonal factor of the polar decom-
position and Γ(X) = I + X + 1

2X
2 is a second order

approximation of the matrix exponential.

B. Robust covariance estimation

In this section, we propose new estimation procedures
that leverage the Riemannian optimization framework of the
previous section. Recall that we aim at estimating covariance
matrices admitting the structure R = Ip+ϕ(θ), where ϕ(θ) =
ϕ(θ) as in (6)), from n samples {xi} drawn from a complex
elliptically symmetric distribution (cf. section III). To that end,
we are interested in objective functions L :Mp,k → R which
have the form

L(θ) = L++(Ip + ϕ(θ)), (16)

where L++ : H++
p → R corresponds to a likelihood function

as in (2). To perform Riemannian optimization of L with the
tools developed in section V-A, we simply need to have the
Euclidean gradient and Hessian of L = L ◦ π. Proposition 5
shows that they can be obtained from those of L++. For the
Hessian, we need the directional derivative of ϕ at θ, which
is given, for all ξ ∈ TθMp,k, by

Dϕ(θ)[ξ] = UΣξHU + ξUΣUH +UξΣU
H . (17)

Proposition 5. The Euclidean gradient of L = L ◦ π at θ ∈
Mp,k is given by

gradE L(θ) = (2G++

θ
UΣ,UHG++

θ
U),

where G++

θ
= gradE L

++(Ip + ϕ(θ)) is the Euclidean
gradient of L++ at Ip + ϕ(θ) ∈ H++

p , with ϕ(θ) defined
in (6).

The Euclidean Hessian of L at θ in direction ξ is

HessE L(θ)[ξ] = (2H++

θ
UΣ + 2G++

θ
(ξUΣ +UξΣ),

UHH++

θ
U +UHG++

θ
ξU + ξHUG

++

θ
U),

where H++

θ
= HessE L

++(Ip + ϕ(θ))[Dϕ(θ)[ξ]] is the
Euclidean Hessian of L++ at Ip + ϕ(θ) ∈ H++

p in direction
Dϕ(θ)[ξ] ∈ Hp, which is defined in (17).

Proof: Let gradE L(θ) = (GU ,GΣ). By definition,

D f(θ)[ξ] = 〈gradE L(θ), ξ〉E ,

where 〈·, ·〉E is defined in (14). We also have

D f(θ)[ξ] = D f++(Ip + ϕ(θ))[Dϕ(θ)[ξ]]

= 〈G++

θ
,Dϕ(θ)[ξ]〉E,

where 〈·, ·〉E is the Euclidean metric on Cp×p, which is

〈ξ,η〉E = Re(tr(ξHη)).

We thus need to show that

Re(tr(GH
UξU ) + tr(GH

ΣξΣ)) = Re(tr(G++H

θ
Dϕ(θ)[ξ])).

It is achieved by plugging the proposed formula for the
Euclidean gradient gradE L(θ) = (GU ,GΣ) and the defi-
nition of Dϕ(θ)[ξ] provided in (17). The Hessian is defined
as HessE L(θ)[ξ] = D gradE L(θ)[ξ]. The proposed formula
follows from basic calculations.

Note that, in practice, the density generator g (or any scaling
ambiguity as discussed in remark 1) is unknown. In order to
propose a robust estimation method, we focus on Tyler’s M -
estimator cost function in (10) due to its “distribution-free”
property [8]. Moreover, this function is scale invariant, i.e.,
L++

T (R) = L++
T (cR), ∀c ∈ R∗. Thus, from the chosen

parameterization’s inherent scale, it is therefore noted that the
proposed algorithms will only produce estimates of the shape
of the covariance matrix. To be able to compute Tyler’s M -
estimator onMp,k from minimizing LT, it remains to give the
Euclidean gradient and Hessian of L++

T defined in (3). To do
so, we define Ψ : H++

p → Hp and its directional derivative as

Ψ(R) =
∑
i

xix
H
i

xHi R
−1xi

,

D Ψ(R)[ξR] =
∑
i
xHi R

−1ξRR
−1xi

(xHi R
−1xi)2

xix
H
i .

It follows that the Euclidean gradient of L++
T at R ∈ H++

p is

gradE L
++
T (R) = R−1(nR− pΨ(R))R−1, (18)

and the Euclidean Hessian of L++
T at R ∈ H++

p in direction
ξR ∈ Hp is

HessE L
++
T (R)[ξR] = 2pR−1 herm(ξRR

−1Ψ(R))R−1

−R−1(pD Ψ(R)[ξR] + nξR)R−1. (19)
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VI. INTRINSIC CRAMÉR-RAO LOWER BOUNDS FOR
LOW-RANK STRUCTURED ELLIPTICAL MODELS

Intrinsic Cramér-Rao bounds on Mp,k for the estimation
problem of low-rank structured complex elliptically symmetric
distributions are studied. First, in section VI-A, the Fisher
information metric of the complex elliptically symmetric dis-
tribution on Mp,k is derived. In section VI-B, the usual
intrinsic Cramér-Rao bound framework associated with the
Riemannian geometry of section IV on Mp,k is investigated.
Since the corresponding estimation error is hard to evaluate in
practice, section VI-C, addresses the issue by developing a new
alternative intrinsic Cramér-Rao bound beyond the Rieman-
nian geometry framework (i.e. on the proposed divergence).
Finally, in section VI-D, an intrinsic Cramér-Rao bound on the
Grassmann manifold Gp,k for subspace recovery is derived.

A. Fisher information metric

Before deriving the Fisher information metric on Mp,k of
complex elliptically symmetric distributions with covariance
matrix of the form (4), we first give the general proposition 6.
The Fisher information metric on Mp,k (which induces the
one on Mp,k) of probability density function (9) is then
obtained from the one of probability density function (1) on
H++
p in corollary 1.

Proposition 6. Let two manifolds M, N and the smooth
mapping ψ : M → N . Consider the probability density
function on M

fM(x|θ) = fN (x|ψ(θ)),

where fN is a probability density function on N whose Fisher
information metric is gN . It follows that the Fisher information
metric gM on M associated with fM is, given θ ∈ M and
ξ, η ∈ TθM,

gMθ (ξ, η) = gNψ(θ)(Dψ(θ)[ξ],Dψ(θ)[η]).

Proof: Let LMx (θ) the log-likelihood onM of fM(x|θ).
By definition, LMx (θ) = LNx (ψ(θ)) and

gMθ (ξ, η) = Ex
[
DLMx (θ)[ξ] DLMx (θ)[η]

]
= Ex

[
DLNx (ψ(θ))[Dψ(θ)[ξ]] DLNx (ψ(θ))[Dψ(θ)[η]]

]
= gNψ(θ)(Dψ(θ)[ξ],Dψ(θ)[η]).

Corollary 1. The Fisher information metric on Mp,k cor-
responding to the probability density function (9) is, for
θ ∈Mp,k and ξ, η ∈ TθMp,k,

g
Mp,k

θ
(ξ, η) = g

H++
p

Ip+ϕ(θ)
(Dϕ(θ)[ξ],Dϕ(θ)[η]),

where ϕ(θ) and Dϕ(θ)[ξ] are defined in (6) and (17), and

g
H++
p

R (ξR,ηR) = nα++ tr(R−1ξRR
−1ηR)

+ n(α++ − 1) tr(R−1ξR) tr(R−1ξR)

is the Fisher information on H++
p associated with the prob-

ability density function (1), where α++ is a scalar that only
depends on the density generator g in (1) [29].

B. Intrinsic Cramér-Rao bound associated to the Riemannian
geometry on Mp,k

In order to employ the intrinsic Cramér-Rao bound frame-
work presented in section II, an orthonormal basis of TθMp,k

is required. Such basis is given in proposition 7.

Proposition 7. Given θ ∈ Mp,k, an orthonormal basis
{eq}1≤q≤2pk of the tangent space TθMp,k is given by{
{(eijU⊥ ,0), (ẽijU⊥ ,0)}1≤i≤p−k

1≤j≤k
, {(eijU ,0)}1≤j<i≤k,

{(ẽijU ,0)}1≤j≤i≤k, {(0, eijΣ)}1≤j≤i≤k, {(0, ẽijΣ)}1≤j<i≤k
}
,

where

• eijU⊥ = U⊥K
ij , ẽijU⊥ = iU⊥K

ij: U⊥ ∈ Stp,p−k,
UHU⊥ = 0; Kij ∈ R(p−k)×k, its ijth element is 1,
zeros elsewhere.

• eijU = UΩij: Ωij ∈ H⊥k , its ijth and jith elements are 1
and −1, zeros elsewhere.

• ẽijU = UΩ̃
ij

: Ω̃
ii
∈ H⊥k , its iith element is

√
2i, zeros

elsewhere; Ω̃
ij
∈ H⊥k , i > j, its ijth and jith elements

are i, zeros elsewhere.
• eijΣ = 1√

α
Σ

1/2HijΣ
1/2 +

√
α−
√
α+kβ

k
√
α
√
α+kβ

tr(Hij)Σ: Hii ∈
Hk, its iith element is 1, zeros elsewhere; Hij ∈ Hk,
i > j, its ijth and jith elements are 1/

√
2, zeros elsewhere.

• ẽijΣ = 1√
α

Σ
1/2H̃

ij
Σ

1/2: H̃
ij
∈ Hk, its ijth and jith

elements are i/
√
2 and −i/√2, zeros elsewhere.

Proof: By definition, it suffices to check that for all 1 ≤
p, ` ≤ 2pk, p 6= `, 〈eq, eq〉θ = 1 and 〈eq, e`〉θ = 0, which is
achieved by basic calculations.

Recall from section II that the q`th element of the Fisher
information matrix F θ on TθMp,k is defined as (F θ)q` =

g
Mp,k

θ
(eq, e`), where {eq} is given in proposition 7 and gMp,k

is defined in corollary 1. Notice that due to the invariance with
respect to the action of unitary matrices in Uk described in
section III-B, F θ, whose size is 2pk×2pk, has rank 2pk−k2.
This Fisher information matrix admits a particular structure,
which is presented in proposition 8.

Proposition 8. The Fisher information matrix F θ on Mp,k

of the pdf (9) admits the structure

F θ =

FU⊥ 0 0
0 FU FU ,Σ
0 FΣ,U FΣ

 ,

where FU⊥ ∈ R2(p−k)k×2(p−k)k is the block obtained from
the elements {(eijU⊥ ,0), (ẽijU⊥ ,0)} of the orthonormal basis of
TθMp,k given in proposition 7; and FU , FU ,Σ, FΣ,U , FΣ ∈
Rk2×k2 are the blocks obtained from the remaining elements
of the basis. Further notice that FU⊥ ∈ R2(p−k)k×2(p−k)k,
FU ∈ Rk2×k2 and FΣ ∈ Rk2×k2 are of full rank, and(

FU FU ,Σ
FΣ,U FΣ

)
∈ R2k2×2k2

has rank k2.
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Proof: Every tangent vector ξU ∈ TUStp,k can be
decomposed as ξU = UΩξ + U⊥Kξ, where U⊥ ∈ Stp,p−k
such that UHU⊥ = 0, Ωξ ∈ H⊥k and Kξ ∈ C(p−k)×k. Thus,
ξ ∈ TθMp,k can be decomposed as

ξ = ξU + ξU⊥ + ξΣ = (UΩξ,0) + (U⊥Kξ,0) + (0, ξΣ).

By linearity of gMp,k

θ
defined in corollary 1, we have

g
Mp,k

θ
(ξ, ξ) = g

Mp,k

θ
(ξU⊥ , ξU⊥) + g

Mp,k

θ
(ξU , ξU )

+g
Mp,k

θ
(ξΣ, ξΣ) + 2g

Mp,k

θ
(ξU , ξΣ)

+2g
Mp,k

θ
(ξU⊥ , ξU ) + 2g

Mp,k

θ
(ξU⊥ , ξΣ).

To show that F θ has the proposed form, it suffices to prove

that gMp,k

θ
(ξU⊥ , ξU ) = g

Mp,k

θ
(ξU⊥ , ξΣ) = 0. From (17), we

obtain

Dϕ(θ)[ξU⊥ ] = UΣKH
ξ U

H
⊥ +U⊥KξΣU

H ,

Dϕ(θ)[ξU ] = UΣΩH
ξ U

H +UΩξΣU
H ,

Dϕ(θ)[ξΣ] = UξΣU
H .

The Woodbury identity ϕ(θ)−1 = Ip −UΞUH , where Ξ =
(Ik + Σ−1)−1, and UHU⊥ = 0 leads to

ϕ(θ)−1 Dϕ(θ)[ξU⊥ ] = UΣKH
ξ U

H
⊥ +U⊥KξΣU

H

−UΞΣKH
ξ U

H
⊥ ,

from which one can check that tr(ϕ(θ)−1 Dϕ(θ)[ξU⊥ ]) = 0.
Furthermore, the previous expression yields

ϕ(θ)−1 Dϕ(θ)[ξU⊥ ]ϕ(θ)−1 = U⊥KξΣ(Ik −Ξ)UH

+U(Ik −Ξ)ΣKH
ξ U

H
⊥ .

From this, it is readily checked that g
Mp,k

θ
(ξU⊥ , ξU ) =

g
Mp,k

θ
(ξU⊥ , ξΣ) = 0. Finally, to show that FU⊥ ∈

R2(p−k)k×2(p−k)k, FU ∈ Rk2×k2 and FΣ ∈ Rk2×k2 are of
full rank, it is enough to verify that ξU⊥ 7→ g

Mp,k

θ
(ξU⊥ , ξU⊥),

ξU 7→ g
Mp,k

θ
(ξU , ξU ) and ξΣ 7→ g

Mp,k

θ
(ξΣ, ξΣ) are positive

definite. The rank of(
FU FU ,Σ
FΣ,U FΣ

)
∈ R2k2×2k2

is given by subtracting the rank of FU⊥ to the one of F θ.
Also recall from section II that, given an unbiased estimator

θ̂ of θ in Mp,k, the error matrix is Cθ = xθx
T
θ

, where

the qth element of xθ is (xθ)q = 〈logθ(θ̂), eq〉θ. However,
as discussed in section IV, the Riemannian logarithm map
(as well as the distance) on Mp,k is not known in closed
form. Hence, the corresponding intrinsic Cramér-Rao bound
inequality only offers a theoretical ideal that cannot easily
be measured in practice. This issue motivates the derivation
of a new estimation error measure on Mp,k, as well as the
associated performance bound.

C. Alternative intrinsic Cramér-Rao bound associated to a
non-Riemannian geometry on Mp,k

As the Riemannian logarithm map and distance are un-
known onMp,k, we need to define new alternative geometrical
objects onMp,k in order to be able to measure the estimation
error and accurately bound it. To do so, inspired by [23], we
consider the alternative horizontal space at θ ∈Mp,k

H̃θ = {ξ ∈ TθMp,k : UHξU = 0}. (20)

H̃θ still provides proper representatives of the elements in
TθMp,k, i.e., there is a one to one correspondance between
elements in H̃θ and vectors in TθMp,k: given ξ ∈ TθMp,k,
there is a unique ξ ∈ H̃θ such that ξ = Dπ(θ)[ξ]. This
horizontal space is advantageous because the geodesics in
Mp,k emanating from it are well characterized: the part of
the geodesics that concerns U coincides with the geodesics of
the Grassmann manifold Gp,k while the part that concerns Σ
does not change. These yield proper curves γ̃ inMp,k, which
allow to join any two points θ = π(U ,Σ) and ϑ = π(V ,Γ).
The curve γ̃ : [0, 1]→Mp,k, with γ̃(0) = θ and γ̃(1) = ϑ, is
γ̃(t) = π(Ũ(t), Σ̃(t)) such that (Ũ(t), Σ̃(t)) is the geodesic
on Mp,k defined as

Ũ(t) = UO cos(tΘ)OH

+(Ip −UUH)V P (sin(Θ))† sin(tΘ)OH ,

Σ̃(t) = Σ
1/2(Σ

−1/2OPHΓPOHΣ
−1/2)tΣ

1/2,
(21)

where O, P and Θ correspond to the singular value decom-
position UHV = O cos(Θ)PH , ·† and ·t = exp(t log(·)) are
Moore-Penrose pseudo-inverse and matrix power functions,
respectively.

However, since H̃θ is not the orthogonal complement to the
vertical space Vθ according to the chosen metric 〈·, ·〉θ, these
curves are not geodesics in Mp,k. Yet, it remains possible
to define the associated “logarithm” map and divergence on
Mp,k, which are given in proposition 9. Given θ and ϑ, the
“logarithm” of ϑ at θ is the tangent vector in TθMp,k repre-
sented by the element in H̃θ corresponding to the curve (21).

Proposition 9. The “logarithm” l̃ogθ(ϑ) of ϑ = π(V ,Γ) at
θ = π(U ,Σ) associated with curve (21) is the tangent vector
in TθMp,k represented in H̃θ by

l̃ogθ(ϑ) = (XΘY H ,

Σ
1/2 log(Σ

−1/2OPHΓPOHΣ
−1/2)Σ

1/2),

where one has the two singular value decompositions
UHV = O cos(Θ)PH and (Ip − UUH)V (UHV )−1 =
X tan(Θ)Y H . Furthermore, measuring the squared length
of the curve (21) yield the divergence function on Mp,k

dMp,k
(θ, ϑ) = α

∥∥∥log(Σ
−1/2OPHΓPOHΣ

−1/2)
∥∥∥2
F

+ β(log det(Σ−1OPHΓPOH))2 + ‖Θ‖2F .

Proof. Concerning the “logarithm” map, curve (21) is com-
posed of a geodesic on Gp,k and one on H++

k . To conclude,
it is thus enough to notice that the proposed “logarithm” is
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defined through the logarithm maps of Gp,k (see e.g. [18],
[48]) and of H++

k (see e.g. [47]).
The divergence is obtained by measuring the squared length

of curve (21), which is the sum of the squared distances on
Gp,k and H++

k . Notice that for α = 1 and β = 0, we obtain
the divergence in [23]. �

Similarly to the usual intrinsic Cramér-Rao bound, an
orthonormal basis of H̃θ is required in order to define the
Fisher information matrix and the estimation error matrix in
our case. From the definition (20) of H̃θ and of the chosen
metric (12), one can check that such basis {ẽq}1≤q≤2pk−k2 is
given by{
{(eijU⊥ ,0), (ẽijU⊥ ,0)}1≤i≤p−k

1≤j≤k
,

{(0, eijΣ)}1≤j≤i≤k, {(0, ẽijΣ)}1≤j<i≤k
}
,

where all these elements are defined in proposition 8. Concern-
ing the Fisher information matrix F̃ θ on H̃θ, its q`th element

is defined as (F̃ θ)q` = g
Mp,k

θ
(ẽq, ẽ`), where gMp,k is defined

in corollary 1. It follows that F̃ θ admits the structure

F̃ θ =

(
FU⊥ 0

0 FΣ

)
, (22)

where FU⊥ and FΣ are defined in proposition 8. Furthermore,
its size is (2pk − k2) × (2pk − k2) and it has full rank.
Interestingly, F̃ θ corresponds to the Fisher information matrix
obtained in [18] from a different reasonning for the Gaussian
case (α++ = 1 in corollary 1) and for α = 1 and β = 0 in
metric (12).

Given an estimator θ̂ of θ ∈ Mp,k, the estimation error
matrix is C̃θ = x̃θx̃

T
θ , such that the qth element of x̃θ is

(x̃θ)q = 〈l̃ogθ(θ̂), ẽq〉θ, where l̃ogθ(θ̂) ∈ H̃θ is defined in
proposition 9. From these alternative Fisher information and
estimation error matrices, it is possible to define an alternative
intrinsic Cramér-Rao bound on Mp,k for complex elliptically
symmetric distributions with covariance matrix of the form (4).
It is achieved in proposition 10.

Proposition 10. The error estimation matrix C̃θ on H̃θ of an
unbiased estimator θ̂ of θ in Mp,k admits the lower bound

E[C̃θ] � F̃
−1
θ + curvature terms,

where, as in [18], curvature terms7 can be neglected at small
errors. Moreover, taking the trace of this inequality yields

E[err
Mp,k

θ (θ̂)] ≥ tr(F̃
−1
θ ) = tr(F−1U⊥) + tr(F−1Σ ),

where err
Mp,k

θ (θ̂) = dMp,k
(θ, θ̂).

Proof. Let x̃θ and s̃θ such that their qth elements are (x̃θ)q =

〈l̃ogθ(θ̃), ẽq〉θ and (s̃θ)q = DLg(θ)[ẽq]. As l̃ogθ(θ̂) is com-

7Notice that these curvature terms are different from those in the intrinsic
Cramér-Rao bound associated with the Riemannian geometry of Mp,k

presented in section IV. Indeed, an alternative horizontal space yielding
different curves on Mp,k is considered.

posed of the Riemannian logarithm maps of Gp,k and H++
k ,

[18, Lemma 1] remains valid in this case and one has

E[x̃θs̃
T
θ ] = I2pk−k2 −

1

3
R̃m(C̃θ) +O(‖x̃θ‖

3),

where R̃m(C̃θ) is related to the curvature ofMp,k associated
with the considered geometry, i.e., the one resulting from
the alternative horizontal space H̃θ. Curvature terms can be
computed by following and adapting the main lines of [18] to
this context. However, as they can be neglected at small errors,
for simplicity and clarity, we do not explicit R̃m more in the
following. From there, [18, Theorem 2] can also be adapted.
Let v = x̃θ − F̃

−1
θ s̃θ. Expanding E[vvT ], noticing that it is

a positive semi-definite matrix and that E[s̃θs̃
T
θ ] = F̃ θ yields

E[C̃θ] � F̃
−1
θ + curvature terms,

which is enough to conclude. �

The new error measure errMp,k of proposition 10 can also
be bounded with the bound of the previous section. Indeed,
the divergence dMp,k

on Mp,k is obtained by measuring the
length according to 〈·, ·〉· of a non-minimal curve in Mp,k.
Hence, we have the inequality dMp,k

(θ, θ̂) ≥ δ2Mp,k
(θ, θ̂),

which yields the lower bound

E[err
Mp,k

θ (θ̂)] ≥ tr(F †
θ
), (23)

However, by construction, one might expect this lower bound
not to be tight.

D. Intrinsic Cramér-Rao bound on Gp,k for subspace recovery

The principal subspace of ϕ(θ) ∈ H+
p,k is given by span(U)

in the Grassmann manifold Gp,k. Thanks to the structure of the
alternative Cramér-Rao bound obtained in the previous section,
we can provide an intrinsic Cramér-Rao bound on Gp,k for a
given estimate of this subspace, denoted span(Û). Indeed,
both C̃θ and F̃ θ are block diagonal matrices. Let CU⊥ be
the block of C̃θ that concerns U . Both CU⊥ and FU⊥ are
by definition on the horizontal space of Gp,k, i.e., they are
constructed with an orthonormal basis on the horizontal space
and the logarithm map on Gp,k. The corresponding intrinsic
Cramér-Rao bound on Gp,k along with a closed form formula
for tr(F−1U⊥) are provided in proposition 11.

Proposition 11. The subspace estimation error CU⊥ admits
the lower bound

E[CU⊥ ] � F−1U⊥ .

Taking the trace of the inequality yields

E[err
Gp,k
θ (θ̂)] ≥ tr(F−1U⊥) =

(p− k)

nα++

k∑
i=1

1 + σi
σ2
i

,

where {σi} are the eigenvalues of Σ and err
Gp,k
θ (θ̂) =

δ2Gp,k(span(U), span(Û)). The Riemannian distance on Gp,k
is δ2Gp,k(span(U), span(Û)) = ‖Θ‖2F , where Θ is defined in
proposition 9.

Proof. The first inequality is straightforward from proposi-
tion 10 and from the fact that C̃θ and F̃ θ are block diagonal.
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Thus, it only remains to show tr(F−1U⊥) = (p−k)
nα++

∑k
i=1

1+σi
σ2
i

.
Given ξU⊥ and ηU⊥ defined as in the proof of proposition 8,
one can check that

g
Mp,k

θ
(ξU⊥ , ηU⊥)

= 2nα++ tr(Σ(I −Ξ)Σ herm(KξKη)),

where Ξ = (Ik + Σ−1)−1 as before. Let us choose the
representative in equivalence class (8) such that Σ is diagonal
(with elements {σi}). It follows that Σ(I − Ξ)Σ is the
diagonal matrix whose elements are { σ2

i

1+σi
}. To compute

FU⊥ , elements Kξ and Kη are taken from matrices Kij

defined in proposition 7. With proper ordering of the basis
elements, one obtains

FU⊥ = 2nα++I2(p−k) ⊗ (Σ(I −Ξ)Σ).

Taking the trace of F−1U⊥ yields the proposed result. To verify
that this remains valid when Σ is not diagonal, it is enough to
notice that both sides of the equality are invariant with respect
to the action of Uk in the equivalence class. �

VII. NUMERICAL EXPERIMENTS

A. Validation simulations

This section illustrates our Riemannian optimization frame-
work and performance analysis for robust covariance estima-
tion. In order to do so, we perform covariance estimation
of simulated data drawn from the multivariate Student t-
distribution with d = 3 (highly non-Gaussian) and d = 100
(almost Gaussian) degrees of freedom; see [1] for details.

To generate a covariance matrix admitting the structure (4),
we compute

R = Ip + σUΣUH ,

where
• U is a random matrix in Stp,k,
• Σ is a diagonal matrix whose minimal and maximal

elements are 1/
√
c and

√
c (c = 20 is the condition

number with respect to inversion of Σ); its other ele-
ments are randomly drawn from the uniform distribution
between 1/

√
c and

√
c; its trace is then normalized as

tr(Σ) = tr(Ik) = k,
• σ = 50 is a free parameter corresponding to the spike to

noise ratio.
In our experiment, we choose p = 16 and k ∈ {4, 8}.
Sets {xi}ni=1 are drawn from the multivariate Student t-
distribution with covariance R and d ∈ {3, 100}, where
n ∈ {12, 14, 15, 17, 20, 40, 70, 100, 200, 300}. For each value
of n, 500 sets {xi}ni=1 are simulated and the aim is to estimate
the structured covariance matrix R in each case.

The considered estimators in this experiment are:
(a) Projected sample covariance matrix Ip + ϕ(θ̂pSCM) ob-

tained by projecting n−1
∑
i xix

H
i on Ip+H+

p,k with [32,
equation (53)].

(b) Structured Tyler’s M -estimator Ip + ϕ(θ̂T-MM) solved
with [32, algorithm 5].

(c) Structured Tyler’s M -estimator Ip + ϕ(θ̂T-RGD) solved
with a Riemannian gradient descent algorithm on Mp,k;
see [33, chapter 4].

(d) Structured Tyler’s M -estimator Ip + ϕ(θ̂T-RTR) solved
with a Riemannian trust region algorithm (second order
optimization method) on Mp,k; see [33, chapter 7].

The three iterative methods are initialized with the principal
subspace of the projected sample covariance matrix estimator,
i.e., (Û pSCM, Ik). Riemannian optimization on Mp,k is per-
formed with manopt toolbox [49] and we choose α = p+d

p+d+1
and β = α− 1 in the Riemannian metric (12).

In figures 2 and 3, we observe that, in all considered cases,
i.e. d ∈ {3, 100} and k ∈ {4, 8}, the lower bound (23)
is not reached by any of the methods for error measure of
proposition 10. This is expected as this bound is suited to the
Riemannian distance on Mp,k and not to the divergence of
proposition 9. However, the bound of proposition 10, which
arises from the Fisher information matrix well suited to our
divergence, is reached by several methods as the number of
samples n grows. Concerning the subspace error, the lower
bound in proposition 11 is reached in all considered cases by
several methods as n grows. Further notice that, for k = 4,
a smaller amount of samples n is needed for the bounds of
propositions 10 and 11 to be attained than for k = 8.

Unlike the other considered estimators, the performance of
pSCM depends on the degree of freedom d of the Student
t-distribution. As expected, when data are close to Gaus-
sianity (d = 100), pSCM provides good results and attains
both bounds of propositions 10 and 11. However, when
they are far from being Gaussian (d = 3), pSCM fails to
give optimal results. We also observe that T-MM and T-
RTR have very similar performance. They both fail when
n is small, especially when it gets close to p (or smaller).
However, they perform well when n is sufficient and reach
both bounds of propositions 10 and 11. Concerning T-RGD,
we notice that it yields good results as compared to other
estimators when n is small. As n grows, even though T-
RGD still provide satisfying subspaces (it reaches the bound of
proposition 11), its performance with respect to error measure
of proposition 10 deteriorates as compared to other estimators.
In conclusion, our optimization framework on Mp,k provides
satisfying results on these simulated data for all considered
cases. Depending on the number of samples at hand, different
optimization algorithms are preferable: the first order method
(T-RGD) is more advantageous when a small amount of
samples is available whereas the second order method (T-RTR)
performs better as the number of samples grows.

B. Application to adaptive filtering

The optimal filter in terms of signal to noise ratio is built as
w = R−1p, where R is the interference covariance matrix,
which is of the form (4), and p is the steering vector. In
practice the interference covariance matrix is unknown and
n signal-free samples {xi}ni=1 are used in order to build a so-
called adaptive filter as ŵ = R̂

−1
p, where R̂ is an estimate of

R. In this case, the performance of the adaptive filter highly
depends on the accuracy of the estimation step. In a classical
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Fig. 2: Mean of error measures in propositions 10 (top) and 11 (bottom) of methods pSCM, T-MM, T-RGD and T-RTR along with corresponding intrinsic
Cramér-Rao bounds in (23) and propositions 10 and 11 as functions of the number of samples n. Means are computed over 500 simulated sets {xi}ni=1
with d = 3 (left) and 100 (right), p = 16 and k = 4.

Gaussian setting, a −3dB of SNRLoss (expected loss in signal
to noise ratio compared to optimal filter), defined as

SNRLoss(R̂) = E

[
(ŵHp)2

(ŵHRŵ)(pHR−1p)

]
(24)

is achieved with the sample covariance matrix for n = 2p.
This performance is generally degraded when the inter-

ference is not Gaussian and/or can also be improved by
taking prior information on the covariance matrix structure
in the estimation step. This is illustrated in Figure 4 where
the SNR-Loss of the adaptive filters built from the previous
estimators is evaluated through Monte-Carlo simulations under
the following setting: p = 16, H is the rank k = 8 truncation
of a Toeplitz matrix (ΣT)i,j = (0.9(i + 1)/

√
2)|i−j|, the

spike to noise ratio is 20dB, samples following a Student t-
distribution with d ∈ {3, 100}, Again, we observe the interest
of the proposed estimation methods, notably at low sample
support.

VIII. CONCLUSIONS AND PERSPECTIVES

This article proposes an original Riemannian geometry to
study low-rank structured elliptical models. The tools devel-
oped within this framework (representations of tangent spaces,
geodesics, Riemannian gradient and Hessian, retraction, diver-
gence function) allow to derive both estimation algorithms and
intrinsic Cramér-Rao lower bounds adapted to these models
with a unified view. Some potential extensions of this work
include: generalization to M -estimators and estimation of the
parameters of the Fisher information metric, integration of
curvature terms and intrinsic bias in the intrinsic Cramér-Rao
lower bounds, generalizations of expectation-maximization
type algorithms [50] to handle multimodal mixture models
[51].
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