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In this paper a constructive method to determine and compute probabilistic reachable and invariant sets for linear discrete-time systems, excited by a stochastic disturbance, is presented. The samples of the disturbance signal are not assumed to be uncorrelated, only bounds on the mean and the covariance matrices are supposed to be known. This allows to consider nonlinear stochastic systems approximations and the effect of nonlinear filters on the disturbance. The correlation bound concept is introduced and employed to determine probabilistic reachable sets and probabilistic invariant sets. Constructive methods for their computation, based on convex optimization, are given.

Introduction

Stochastic reachability analysis, aiming at computing or estimating the state evolution of dynamical systems affected by disturbances, gained importance for stochastic control and prediction. A first class of approaches is based on the estimation of the state distribution through polynomial chaos expansions, [START_REF] Ahbe | Region of attraction analysis of nonlinear stochastic systems using polynomial chaos expansion[END_REF][START_REF] Bergner | The polynomial chaos approach for reachable set propagation with application to chance-constrained nonlinear optimal control under parametric uncertainties[END_REF][START_REF] Li | Probabilistic collocation method for flow in porous media: Comparisons with other stochastic methods[END_REF][START_REF] Zoltan | Distributional uncertainty analysis using power series and polynomial chaos expansions[END_REF][START_REF] Xiu | Fast numerical methods for stochastic computations: a review[END_REF]. The main limitation of these methods is their applicability to low dimensional disturbances, for instance in the case of time-invariant stochastic parametric uncertainties and uncertain initial conditions. A cumulant-based approach is presented in [START_REF] Villanueva | On stochastic linear systems with zonotopic support sets[END_REF] to approximate the state distributions for systems with bounded zonotopic noises. Also methods based on the generalized moment problem [START_REF] Henrion | Moment-SOS Hierarchy, The: Lectures In Probability[END_REF][START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF] have been recently applied to address optimal control problems in presence of stochastic uncertainties in the parameters and the initial conditions, see [START_REF] Moussa | Robust optimal control-based design of combined chemo-and immunotherapy delivery profiles[END_REF][START_REF] Moussa | Robust optimal scheduling of combined chemo-and immunotherapy: Considerations on chemotherapy detrimental effects[END_REF]. Another class of approaches are the sampling-based methods, like Monte Carlo and scenario-based ones, [START_REF] Alamo | Randomized methods for design of uncertain systems: Sample complexity and sequential algorithms[END_REF][START_REF] Caflisch | Monte Carlo and quasi-Monte Carlo methods[END_REF][START_REF] Devonport | Estimating reachable sets with scenario optimization[END_REF][START_REF] Hewing | Scenario-based probabilistic reachable sets for recursively feasible stochastic model predictive control[END_REF][START_REF] Sartipizadeh | Voronoi partition-based scenario reduction for fast sampling-based stochastic reachability computation of linear systems[END_REF], that consist in generating sampled realizations of the possibly correlated uncertainty to infer statistical information of the state evolution or desired property of the trajectories.

The recent interest in the characterization and computation of probabilistic reachable sets and probabilistic invariant sets is also due to the growing popularity of stochastic Model Predictive Control (SMPC), see [START_REF] Mesbah | Stochastic model predictive control: An overview and perspectives for future research[END_REF]. Indeed, as in the case of deterministic and robust predictive techniques, several desirable features can be ensured also in the stochastic context by appropriately employing reachable and invariant sets to ensure probabilistic guarantees, for instance, of constraints satisfaction, recursive feasibility and stability properties. The stochastic tube-based approaches, for example, make a wide use of probabilistic invariant or reachable sets to pose deterministic constraints in the nominal prediction such that chance constraints are satisfied, see [START_REF] Cannon | Stochastic tubes in model predictive control with probabilistic constraints[END_REF][START_REF] Hewing | Stochastic model predictive control for linear systems using probabilistic reachable sets[END_REF]. Also in [START_REF] Cannon | Probabilistic constrained MPC for multiplicative and additive stochastic uncertainty[END_REF], probabilistic invariant sets are employed to handle probabilistic state constraints and a method for computing probabilistic invariant ellipsoids is presented.

Concerning the computation of reachable and invariant sets for deterministic systems and for robust control, i.e. in the worst-case disturbance context, several well-established results are present in the literature, for linear [START_REF] Blanchini | Set-theoretic methods in control[END_REF][START_REF] Kolmanovsky | Theory and computation of disturbance invariant sets for discrete-time linear systems[END_REF] and nonlinear systems [START_REF] Fiacchini | On the computation of convex robust control invariant sets for nonlinear systems[END_REF]. In the recent years, some results have been appearing also on probabilistic reachable and invariant sets. The work [START_REF] Kofman | Probabilistic set invariance and ultimate boundedness[END_REF] is completely devoted to the problem of computing probabilistic invariant sets and ultimate bounds for linear systems affected by additive stochastic disturbances. Also the paper [START_REF] Hewing | On a correspondence between probabilistic and robust invariant sets for linear systems[END_REF] presents a characterization of probabilistic sets based on the invariance property in the robust context, whereas [START_REF] Hewing | Scenario-based probabilistic reachable sets for recursively feasible stochastic model predictive control[END_REF] employs scenario-based methods to design them.

In most of the works concerning probabilistic reachable and invariant sets computation and SMPC, however, the stochastic disturbance is modelled by an independent sequence of random variables. The assumption of independence in time, and thus uncorrelation, between disturbances, though, is often unrealistic, especially when a linear systems with additive perturbations is employed to model a nonlinear system where the disturbance is modelled by the output of a nonlinear filter. The commonly used approach to get rid of the correlation consists in modelling the correlated disturbance as a white noise filtered by a linear system, i.e. the ARMA model for instance. This approach, though, is not always able to remove the noise correlation, unless the disturbance is effectively given by i.i.d. signals feeding linear filters, which might be not the case in reality. More generally, requiring constant mean and constant covariance matrices of the disturbance, and their exact knowledge, is an often too restrictive assumption, in practice, when dealing with real systems and real data.

In this paper, we consider the problem of characterizing and computing, via convex optimization, outer bounds of probabilistic reachable sets and probabilistic invariant ellipsoids for linear systems excited by disturbances whose realizations are correlated in time. Only bounds on the mean and covariance matrices are required to be known, even stationarity is not necessary. Based on these bounds, the called correlation bound is defined and then employed to determine constructive conditions for computing probabilistic reachable and invariant ellipsoidal sets. The method, resulting in convex optimization problems, is then illustrated through a numerical example, for which the covariance matrices cannot be computed, but bounds exist.

Notation: The set of integers and natural numbers are denoted with Z and N, respectively. Given A ∈ R n×n , {λ i (A)} n i=1 denote the n eigenvalues of A; ρ(A) the spectral radius of A; σ min (A) = min i=1,...,n λ i (A A) and

σ max (A) = max i=1,...,n λ i (A A) = A 2 . The set of symmetric matrices in R n×n is denoted S n . With Γ 0 (Γ 0) it is denoted that Γ is a definite (semi-definite) positive matrix. If Γ 0 then Γ 1 2 is the matrix satisfying Γ 1 2 Γ 1 2 = Γ. For all Γ 0 and r ≥ 0 define E (Γ, r) = {x = Γ 1/2 z ∈ R n : z z ≤ r}; if moreover Γ 0, then E (Γ, r) = {x ∈ R n : x Γ -1 x ≤ r}. Given two sets Y, Z ⊆ R n , their Minkowski set addition is Y + Z = {y + z ∈ R n : y ∈ Y, z ∈ Z}, their difference is Y -Z = {x ∈ R n : x + Z ⊆ Y }.
The Gaussian (or normal) distribution with mean µ and covariance Σ is denoted N (µ, Σ), the χ squared cumulative distribution function of order n is denoted χ 2 n (x). Given a random vector x, E{x} denotes its expected value.

Correlation bound

Consider first the nonlinear system x k+1 = f (x k , d k ), where x k ∈ R n is the state and d k represents time-varying uncertain parameters and disturbances. A common way of approximating the nonlinear dynamics is by means of a model of the form x k+1 = Ax k + w k where w k is an additive terms accounting for the cumulative effects of the modelling errors and the past values of d k . In this context it is unrealistic to assume that w k is not correlated with the previous values w j , with j ≤ k, especially if j is close to k. Even an assumption on stationarity of w k is often hardly justifiable since, due to the possibly nonlinear nature of f (•, •), the statistical properties of w k depend also on the current state x k and therefore might be time varying. To better deal with these issues, the case of additive uncertainty w k that is correlated in time and not necessarily stationary is considered.

Consider the discrete-time system

x k+1 = Ax k + w k , (1) 
where x k ∈ R n is the state and w k ∈ R n an additive disturbance given by a sequence of random variables that are supposed to be correlated in time.

In this paper, the only assumptions on the disturbance w k is that its time-dependent mean is bounded, a bound on E{w k w k } exists, and the covariance between w i and w j exponentially vanishes with | j -i|.

Assumption 1 There exist m, b, γ ∈ R, with γ ∈ [0, 1), such that the sequence w k satisfies:

µ k µ k ≤ m, ∀k ∈ N, (2) 
cov(w i , w j ) 2 2 ≤ bγ j-i , ∀i ≤ j,

with E{w k } = µ k and cov(w i , w j ) = E{(w iµ i )(w jµ j ) }.

Note that no assumption on {w k } k∈N is posed other than the existence of bounds on the mean and the covariance matrices. Neither weak stationarity is required, as both the mean and the covariance matrices are allowed to be functions of time. This aspect might be crucial in practice, as no exact knowledge of the matrices nor guarantee of stationarity are often available.

Proposition 1 If Assumption 1 is satisfied, then nonnegative α, β , γ ∈ R and Γ ∈ S n exist, with γ ∈ [0, 1) and Γ 0, such that

Γ k,k Γ, ∀k ∈ N, (4) 
Γ i, j Γ-1 Γ i, j (α + β γ j-i ) Γ, ∀i ≤ j, (5) 
hold, with Γ i, j = E{w i w j }, for all i, j ∈ N.

Proof: From Assumption 1, it follows that cov(w k , w k ) cov(w k , w k ) 2 I √ bI and µ k µ k mI, and then

Γ k,k = E{w k w k } = cov(w k , w k ) + µ k µ k ( √ b + m)I,
which means that (4) holds with Γ = ( √ b + m)I. From Assumption 1, and since ACB + BCA ACA + BCB for every A, B and C of appropriate dimensions and C 0, it follows

Γ i, j Γ-1 Γ i, j = cov(w i , w j ) Γ-1 cov(w i , w j ) + µ i µ j Γ-1 µ j µ i + cov(w i , w j ) Γ-1 µ j µ i + µ i µ j Γ-1 cov(w i , w j ) 2 cov(w i , w j ) Γ-1 cov(w i , w j ) + µ i µ j Γ-1 µ j µ i 2σ max ( Γ-1 ) cov(w i , w j )cov(w i , w j ) + µ i µ j µ j µ i 2σ max ( Γ-1 ) m 2 + bγ j-i I 2 σ max ( Γ-1 ) σ min ( Γ) m 2 + bγ j-i Γ = 2σ 2 max ( Γ-1 ) m 2 + bγ j-i Γ since σ max ( Γ-1 ) = 1/σ min ( Γ) from Γ 0, and then (5) holds with α = 2σ 2 max ( Γ-1 )m 2 and β = 2σ 2 max ( Γ-1 )b.
Note that, although the existence of bounds ( 2) and ( 3) on the mean and covariance matrices is the only posed assumption, it is not necessary to know them. The results of this paper only require, in fact, the knowledge of bounds ( 4) and ( 5), that can be estimated from data.

The following definition of correlation bound encloses the key concept that permits to characterize and compute probabilistic reachable and invariant sets for linear systems affected by correlated disturbance.

Definition 1 (Correlation bound)

The random sequence {w k } k∈Z is said to have a correlation bound Γ w for matrix A if the recursion z k+1 = Az k + w k with z 0 = 0, satisfies

AE{z k w k } + E{w k z k }A + E{w k w k } Γ w , (6) 
or, equivalently

E{z k+1 z k+1 } AE{z k z k }A + Γ w , (7) 
for all k ≥ 0.

It will be proved in the next section that, if the matrix A in (1) is Schur, i.e. ρ(A) < 1, and Assumption 1 holds, then a correlation bound exists.

Computation of a correlation bound

As it will be shown in the subsequent sections, a correlation bound permits to determine sequences of probabilistic reachable sets and probabilistic invariant sets. For this, it is necessary to provide a condition and a method to obtain a correlation bound. Such a condition is presented in the following proposition.

Proposition 2 Given the system (1) with ρ(A) < 1, let {w k } k∈Z ∈ R n be a random sequence such that conditions (4) and ( 5) hold with Γ 0, α ≥ 0, β ≥ 0 and γ ∈ (0, 1).

Given η ∈ [ρ(A) 2 , 1), consider ϕ ≥ 1 and S ∈ S n satisfying S Γ ϕS, ASA ηS. ( 8 
)
Then for every p ∈ (η, 1), the matrix

Γ w = αϕ η p -η + β ϕ γη p -γη + p 1 -p + 1 Γ (9)
is a correlation bound for the sequence {w k } k∈Z and matrix A.

Proof: Note first that ϕ and S satisfying ( 8) exist for every η ∈ [ρ(A) 2 , 1). From the definition of correlation bound and the equality

z k = k-1 ∑ i=0 A k-1-i w i , matrix Γ w must satisfy AE{( k-1 ∑ i=0 A k-1-i w i )w k } + E{w k ( k-1 ∑ i=0 A k-1-i w i ) }A +E{w k w k } Γ w for all k ∈ N. From condition (5) and 0 A j-i Γ i, j Γ-1 2 p j-i 2 -p j-i 2 Γ 1 2 A j-i Γ i, j Γ-1 2 p j-i 2 -p j-i 2 Γ 1 2 = p -( j-i) A j-i Γ i, j Γ-1 Γ i, j (A j-i ) +p j-i Γ-A j-i Γ i, j -Γ i, j (A j-i )
for every i, j ∈ N with i ≤ j and p = 0, it follows that

A j-i Γ i, j + Γ i, j (A j-i ) (α p -( j-i) + β (γ p -1 ) j-i )A j-i Γ(A j-i ) + p j-i Γ.
Therefore, for every k ∈ N it holds

AE{( k-1 ∑ i=0 A k-1-i w i )w k } + E{w k ( k-1 ∑ i=0 A k-1-i w i ) }A + E{w k w k } k-1 ∑ i=0 A k-i E{w i w k } + k-1 ∑ i=0 E{w k w i }(A k-i ) + Γ = k-1 ∑ i=0 A k-i Γ i,k + Γ i,k (A k-i ) + Γ k-1 ∑ i=0 (α p -(k-i) +β (γ p -1 ) k-i )A k-i Γ(A k-i ) +p k-i Γ + Γ.
From [START_REF] Caflisch | Monte Carlo and quasi-Monte Carlo methods[END_REF], it follows that A j Γ(A j ) ϕA j S(A j ) ϕη j S ϕη j Γ [START_REF] Cannon | Probabilistic constrained MPC for multiplicative and additive stochastic uncertainty[END_REF] for all j ∈ N, and then

AE{( k-1 ∑ i=0 A k-1-i w i )w k }+E{w k ( k-1 ∑ i=0 A k-1-i w i ) }A +E{w k w k } k-1 ∑ i=0 αϕ(η p -1 ) k-i Γ+ k-1 ∑ i=0 β ϕ(γη p -1 ) k-i Γ+ k-1 ∑ i=0 p k-i Γ + Γ = k ∑ j=1 αϕ(η p -1 ) j + k ∑ j=1 β ϕ(γη p -1 ) j + k ∑ j=1 p j Γ + Γ = αϕ(η p -1 ) 1 -(η p -1 ) k 1 -η p -1 + β ϕ(γη p -1 ) 1 -(γη p -1 ) k 1 -γη p -1 + p 1 -p k 1 -p Γ + Γ. ( 11 
)
Two possibilities exist, η can be either positive or zero. If η > 0 then 0 < γη < η < p < 1, and all the terms in the summation in [START_REF] Devonport | Estimating reachable sets with scenario optimization[END_REF] are positive and monotonically increasing with k. If η = 0 the first two terms in [START_REF] Devonport | Estimating reachable sets with scenario optimization[END_REF] are null and the third one, i.e. p(1p k )/(1p), is positive and monotonically increasing with k, since 0 = η < p < 1. In both cases the supremum is finite and attained for k → +∞ and then condition [START_REF] Cannon | Stochastic tubes in model predictive control with probabilistic constraints[END_REF] implies that Γ w is a correlation bound for A.

Note that, as formally stated in the following corollary, Propositions 1 and 2 imply that, if ρ(A) < 1, then Assumption 1 ensures the existence of a correlation bound.

Corollary 1 If Assumption 1 holds and matrix A in (1) is such that ρ(A) < 1, then the random sequence {w k } k∈Z has a correlation bound for matrix A.

Proof: The result follows from Propositions 1 and 2.

The result of Proposition 2 is used hereafter to design an optimization-based procedure to compute the tightest correlation bound. To obtain the sharpest bound, the parameter multiplying Γ in [START_REF] Cannon | Stochastic tubes in model predictive control with probabilistic constraints[END_REF] has to be minimized. Note first that such parameter is monotonically increasing with ϕ and η, for ϕ ≥ 1 and η ∈ [ρ(A) 2 , 1). Nevertheless, the minimizing pair ϕ and η is not evident, even for a given p, due to the constraint [START_REF] Caflisch | Monte Carlo and quasi-Monte Carlo methods[END_REF]. One possibility is to grid the interval [ρ(A) 2 , 1) of η and then obtain, for every value of η on the grid, the optimal ϕ and p. To do so, one should first fix η and then solve the semidefinite programming problem

(ϕ * , S * ) = min ϕ,S ϕ s.t. S Γ ϕS ASA ηS.
Note now that the parameter multiplying Γ in ( 9) is a convex function of p. In fact, a/(p-a) is zero if a = 0 and it is finite, convex and decreasing for p ∈ (a, +∞) if a > 0, whereas p/(1p) is finite, convex and increasing for p ∈ (-∞, 1). Then, the minimum of the function multiplying Γ exists and is unique in (η, 1). This means that, once ϕ and η are fixed, the value of p that minimizes the parameter multiplying Γ in (9) can be computed by solving the following convex optimization problem in a scalar variable:

p * (η, ϕ) = min p αϕ η p -η + β ϕ γη p -γη + p 1 -p s.t. η < p < 1.
Finally, Γ w can be computed by using in [START_REF] Cannon | Stochastic tubes in model predictive control with probabilistic constraints[END_REF] the minimal value of the parameter multiplying Γ over the optimal ones obtained for the different η on the grid.

Remark 1 Note that γ could also be bigger than or equal to 1: this would lead to an (although non realistic) increasingly correlated disturbance. The limit would exist provided that η is smaller than the inverse of γ, for all p ∈ (γη, 1). The case of γ = 1 is realistic, for instance for the case of constant disturbances, and can modelled by the constant term α.

The dependence of the bound (9) on the parameter ϕ can be removed by avoiding using the bound S ϕ Γ as in [START_REF] Cannon | Probabilistic constrained MPC for multiplicative and additive stochastic uncertainty[END_REF]. The corollary below, providing a potentially less conservative correlation bound, follows straightforwardly.

Corollary 2 Under the hypothesis of Proposition 2, for every p ∈ (η, 1), the matrix

Γ w = αϕη p -η + β ϕγη p -γη S + p 1 -p + 1 Γ ( 12 
)
is a correlation bound for matrix A.

Condition [START_REF] Fiacchini | On the computation of convex robust control invariant sets for nonlinear systems[END_REF] provides a further degree of freedom, i.e. the matrix S, that can be used to improve the bound.

Probabilistic reachable and invariant sets

Based on the correlation bound, conditions for computing probabilistic reachable and invariant sets are presented. First, two properties are given that are functional to the purpose.

Property 1 For every r > 0 and every Γ, Σ ∈ S n such that Γ 0 and Σ 0, it holds

E (A ΓA + Σ, r) ⊆ AE ( Γ, r) + E (Σ, r). (13) 
Proof: Notice first that A ΓA + Σ 0 and then

E (A ΓA + Σ, r) = {x ∈ R n : x (A ΓA + Σ) -1 x ≤ r} AE ( Γ, r) + E (Σ, r) = {x = A Γ1/2 y + Σ 1/2 w ∈ R n : y y ≤ r, w w ≤ r}. ( 14 
)
For a given x ∈ E (A ΓA + Σ, r), the vectors y and w defined

y = Γ1/2 A (A ΓA + Σ) -1 x, w = Σ 1/2 (A ΓA + Σ) -1 x (15) are such that A Γ1/2 y+Σ 1/2 w=A ΓA (A ΓA +Σ) -1 x+Σ(A ΓA +Σ) -1 x = x.
Moreover,

y y = x (A ΓA + Σ) -1 A ΓA (A ΓA + Σ) -1 x ≤ x (A ΓA + Σ) -1 x ≤ r since A ΓA A ΓA + Σ and x ∈ E (A ΓA + Σ, r). Analo- gously w w = x (A ΓA + Σ) -1 Σ(A ΓA + Σ) -1 x ≤ x (A ΓA + Σ) -1 x ≤ r from Σ A ΓA + Σ.
Hence, given x ∈ E (A ΓA + Σ, r), two vectors y and w exist, as defined in [START_REF] Hewing | Stochastic model predictive control for linear systems using probabilistic reachable sets[END_REF], such that x = A Γ1/2 y + Σ 1/2 w and y y ≤ r and w w ≤ r, which means that x ∈ AE ( Γ, r) + E (Σ, r), from [START_REF] Hewing | On a correspondence between probabilistic and robust invariant sets for linear systems[END_REF]. Thus ( 13) is proven.

The result in Property 1 is used in the following one to characterize bounds on the covariance matrices and probabilities of the system trajectory.

Property 2 Suppose that the random sequence {w k } k∈N has a correlation bound Γ w 0 for matrix A with ρ(A) < 1. Given r > 0, consider the system z k+1 = Az k +w k with z 0 = 0 and the recursion

Γ k+1 = AΓ k A + Γ w ( 16 
)
with

Γ 0 = 0 ∈ R n×n . Then, (i) E{z k z k } Γ k , ∀k ≥ 0, (ii) Pr{z k ∈ E (Γ k , r)} ≥ 1 - n r , ∀k ≥ 1, (iii) E (Γ k , r) ⊆ E (Γ k+1 , r) ⊆ AE (Γ k , r) + E (Γ w , r), ∀k ≥ 1.
Proof: The claims are proved successively.

(i) Suppose that E{z k z k } Γ k with Γ k recursively defined through [START_REF] Hewing | Scenario-based probabilistic reachable sets for recursively feasible stochastic model predictive control[END_REF]. Then

E{z k+1 z k+1 } = E{Az k z k A + Az k w k + w k z k A + w k w k } = AE{z k z k }A + AE{z k w k } + E{w k z k }A + E{w k w k } AE{z k z k }A + Γ w AΓ k A + Γ w = Γ k+1 ,
where the first inequality follows from the definition of correlation bound.

(ii) This result is based on the Chebyshev inequality, [START_REF] Navarro | A very simple proof of the multivariate Chebyshev's inequality[END_REF][START_REF] Stellato | Multivariate Chebyshev inequality with estimated mean and variance[END_REF]. From Markov's inequality, [START_REF] Bertsekas | Introduction to probability[END_REF][START_REF] Billingsley | Probability and measure[END_REF], a nonnegative random variable x with expected value µ, satisfies Pr{x > r} ≤ µ/r for all r > 0. From Γ w 0, it follows that Γ k 0 and Γ -1 k 0 for all k ≥ 1 and then there exists

D k ∈ R n×n such that Γ -1 k = D k D k for all k ≥ 1. Thus E{z k Γ -1 k z k } = E{z k D k D k z k } = E{tr{z k D k D k z k }} = E{tr{D k z k z k D k }} = tr{D k E{z k z k }D k } ≤ tr{D k Γ k D k } = tr{Γ k D k D k } = tr{I} = n
and then, by applying the Markov's inequality, one gets

Pr{z k Γ -1 k z k > r} ≤ n/r and hence Pr{z k Γ -1 k z k ≤ r} ≥ 1 -n/r, for all k ≥ 1. (iii) From the definition of Γ k , it follows Γ k = k-1 ∑ i=0 A i Γ w (A i )
for k ≥ 1 and then

Γ k+1 =A k Γ w (A k ) + k-1 ∑ i=0 A i Γ w (A i ) =A k Γ w (A k ) +Γ k Γ k . This implies Γ -1 k+1 Γ -1 k and hence, E (Γ k , r) ⊆ E (Γ k+1 , r) for all k ≥ 1. The inclusion E (Γ k+1 , r) ⊆ AE (Γ k , r) + E (Γ w ,
r) follows by applying Property 1 with the definition of Γ k+1 as in [START_REF] Hewing | Scenario-based probabilistic reachable sets for recursively feasible stochastic model predictive control[END_REF].

Probabilistic reachable sets

The simplest confidence regions are ellipsoids, that have been widely used in the context of MPC, see, for example, [START_REF] Cannon | Stochastic tubes in model predictive control with probabilistic constraints[END_REF][START_REF] Hewing | Stochastic model predictive control for linear systems using probabilistic reachable sets[END_REF]. The definition of probabilistic reachable sets is recalled.

Definition 2 (Probabilistic reachable set) It is said that Ω k ⊆ R n with k ∈ N is a sequence of probabilistic reachable sets for system (1), with violation level ε ∈

[0, 1], if x 0 ∈ Ω 0 implies Pr{x k ∈ Ω k } ≥ 1 -ε for all k ≥ 1.
A condition for a sequence of sets to be a probabilistic reachable sets is presented, in terms of correlation bound. The analogous result for uncorrelated disturbance can be found in [START_REF] Hewing | On a correspondence between probabilistic and robust invariant sets for linear systems[END_REF].

Proposition 3 Suppose that the random sequence {w k } k∈N has a correlation bound Γ w 0 for matrix A with ρ(A) < 1. Given r > 0, consider the system (1) and the recursion ( 16) with x 0 = 0 ∈ R n , Γ 0 = 0 ∈ R n×n . Then the sets defined as

R k+1 = AR k + E (Γ w , r), ( 17 
)
for all k ∈ N, and R 0 = {0} are probabilistic reachable sets with violation level n/r for every r > 0.

Proof: It will be firstly proved that

E (Γ k , r) ⊆ R k , for all k ≥ 1. Note first that Γ 1 = AΓ 0 A + Γ w = Γ w and R 1 = AR 0 + E (Γ w , r). Thus, E (Γ 1 , r) = E (Γ w , r) = R 1 and hence the claim is satisfied for k = 1. It suffice now to prove that E (Γ k , r) ⊆ R k implies E (Γ k+1 , r) ⊆ R k+1 . Supposing E (Γ k , r) ⊆ R k implies E (Γ k+1 , r)⊆AE (Γ k , r)+ E (Γ w , r)⊆AR k +E (Γ w , r)=R k+1 ,
where the first inclusion follows from (iii) of Property 2. From this and the second claim of Property 2, it follows

Pr{x k ∈ R k } ≥ Pr{x k ∈ E (Γ k , r)} ≥ 1 - n r , (18) 
which implies that R k with k ∈ N is a sequence of probability reachable sets with violation level n/r.

Note that, from [START_REF] Kolmanovsky | Theory and computation of disturbance invariant sets for discrete-time linear systems[END_REF] it follows that also sets E (Γ k , r) are probabilistic reachable sets with violation level n/r, which are less conservative than R k and simply determined by iteration [START_REF] Hewing | Scenario-based probabilistic reachable sets for recursively feasible stochastic model predictive control[END_REF]. If, nonetheless, sets R k and E (Γ k , r) require to be computed for every k ∈ N, a sequence of reachable sets determined by a unique matrix is given below.

Proposition 4 Suppose that the random sequence {w k } k∈Z has a correlation bound

Γ w 0 for matrix A. If W ∈ S n is such that W 0 and AWA λ 2 W, (19) 
Γ w (1 -λ ) 2 W, (20) 
with λ ∈ [0, 1), then

Ω k = E (W, r(1 -λ k ) 2
) is a sequence of probabilistic reachable sets with violation probability n/r. If, moreover, w k is a Gaussian process with null mean, then

E (W, r(1 -λ k ) 2
) is a reachable set with violation probability 1χ 2 n (r).

Proof: It is first proved by induction that

E{x k x k } (1 -λ k ) 2 W ( 21 
)
for all k ∈ N, if x 0 = 0 ∈ Ω 0 . The bound holds for k = 0 since x 0 = 0. Supposing that (21) holds for k ∈ N, and from Definition 1, it follows 20)

E{x k+1 x k+1 } (7) AE{x k x k }A + Γ w (21) (1 -λ k ) 2 AWA + Γ w (19),(
((1 -λ k ) 2 λ 2 + (1 -λ ) 2 )W (1 -λ k+1 ) 2 + 2(1 -λ )λ (λ k -1) W (1 -λ k+1 ) 2 W,
since the last inequality holds for all λ ∈ [0, 1). Note, as a consequence, that

E{x k x k } lim k→∞ E{x k x k } W ( 22 
)
for all k ∈ N. From the Chebyshev inequality (see, for example, proof of claim (ii) of Property 2) and ( 21), it follows

Pr{x k ∈ E (W, r(1 -λ k ) 2 )} = Pr{x k W -1 x k ≤ r(1 -λ k ) 2 } = Pr{x k (1 -λ k ) 2 W -1 x k ≤ r} ≥ 1 - n r . (23) 
The results for w k Gaussian process follow from the definition of the χ squared cumulative distribution, that is Pr{y y ≤ r} = χ 2 n (r) for y ∼ N (0, I) and r > 0, see [START_REF] Bertsekas | Introduction to probability[END_REF][START_REF] Billingsley | Probability and measure[END_REF]. In fact, x k is a Gaussian random variable, being the finite linear combination of terms of a Gaussian process, that is x k ∼ N (0, X k ) with X k 0. Denoting the rank of X k as q, there exist M k ∈ R n×q and a random variable

y k ∈ R q such that M k y k = x k and y k ∼ N (0, I), for all k ∈ N. From X k = E{x k x k } = M k M k (1 -λ k ) 2 W , that is equivalent to M k ((1 -λ k ) 2 W ) -1 M k I from Schur complement, it follows that x k ((1 -λ k ) 2 W ) -1 x k ≤ y k y k . Hence Pr{x k ∈ E (W, r(1 -λ k ) 2 )} = Pr{x k (1 -λ k ) 2 W -1 x k ≤ r} ≥ Pr{y k y k ≤ r} = χ 2 q (r) ≥ χ 2 n (r),
and then Pr{x k ∈ E (W, r(1 -λ k ) 2 )} ≥ 1 -(1 -χ 2 n (r)).
Notice that, for every λ ∈ [ρ(A), 1), the convex conditions ( 19) and ( 20) admit solutions and, for any matrix W satisfying them, the sets E (W, r(1λ k ) 2 ) form a sequence of probabilistic reachable sets with violation probability n/r or (1χ 2 n (r)), in the Gaussian process case. Thus, condition ( 19) and ( 20) can be used in a convex optimization problem aiming at maximizing or minimizing a measure of the reachable sets, their volume for instance.

Probabilistic invariant sets

The concept of probabilistic invariant sets, as defined and used in [START_REF] Hewing | On a correspondence between probabilistic and robust invariant sets for linear systems[END_REF][START_REF] Kofman | Probabilistic set invariance and ultimate boundedness[END_REF], is recalled.

Definition 3 (Probabilistic invariant set) The set Ω ⊆ R n is a probabilistic invariant set for the system (1), with vio- lation level ε ∈ [0, 1], if x 0 ∈ Ω implies Pr{x k ∈ Ω} ≥ 1 -ε for all k ≥ 1.
A first condition for a set to be probabilistic invariant, analogous to that proved in [START_REF] Hewing | On a correspondence between probabilistic and robust invariant sets for linear systems[END_REF] for uncorrelated disturbances, is given below. Property 3 Suppose that the random sequence {w k } k∈N has a correlation bound Γ w 0 for matrix A. If W ∈ S n and r > 0 are such that W 0 and

AE (W, 1) + E (Γ w , r) ⊆ E (W, 1), (24) 
then E (W, 1) is a probabilistic invariant set with violation probability n/r. If, moreover, w k is a Gaussian process with null mean, then E (W, 1) is a probabilistic invariant set with violation probability 1χ 2 n (r).

Proof: By definition, it is sufficient to show that x 0 ∈ E (W, 1) implies Pr{x k ∈ E (W, 1)} ≥ 1n/r, for all k ≥ 0. The state x k can be written as the sum of a nominal term xk and a random vector z k that depends on the past realizations of the uncertainty. That is, x k = xk + z k , where { xk } k≥0 and {z k } k≥0 are given by the recursions

xk+1 = A xk , z k+1 = Az k + w k , (25) 
for all k ≥ 0, with x0 = x 0 and z 0 = 0. Below it is first proved that x 0 ∈ E (W, 1) and [START_REF] Zoltan | Distributional uncertainty analysis using power series and polynomial chaos expansions[END_REF] imply

xk + R k ⊆ E (W, 1), ∀k ≥ 0, (26) 
with R k as in [START_REF] Kofman | Probabilistic set invariance and ultimate boundedness[END_REF]. Since R 0 = {0}, the inclusion is trivially satisfied for k = 0. Supposing that xk + R k ⊆ E (W, 1) yields

xk+1 + R k+1 = A xk + (AR k + E (Γ w , r)) = A ( xk + R k ) + E (Γ w , r) ⊆ AE (W, 1) + E (Γ w , r) ⊆ E (W, 1),
and then (26) holds. Condition [START_REF] Pólik | A survey of the S-lemma[END_REF] implies

Pr{x k ∈ E (W, 1)}=Pr{ xk +z k ∈E (W, 1)}≥Pr{z k ∈R k }≥1- n r
for all k ≥ 0, where the last inequality follows from Proposition 3. The case of Gaussian process follows from the definition of the χ squared cumulative distribution, see also the proof of Proposition 4.

Property 3 implies that the existence of a correlation bound provides a condition for probabilistic invariance that has the same structure as the one corresponding to robust invariance.

In the case of ellipsoidal invariant sets, [START_REF] Zoltan | Distributional uncertainty analysis using power series and polynomial chaos expansions[END_REF] results in a bilinear condition, see [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF], that can be solved, for instance, by gridding the space of the Lagrange multiplier and solving an LMI for every value as illustrated below. Nevertheless, as shown afterward, gridding can be avoided by choosing the multiplier in [ρ(A), 1).

Proposition 5 Suppose that the random sequence {w k } k∈Z has a correlation bound Γ w 0 for matrix A. If W ∈ S n is such that W 0 and

A W -1 A -τW -1 A W -1 W -1 A W -1 -(1 -τ)Γ -1 w /r 0 ( 27 
)
with τ ∈ [0, 1), then E (W, 1) is a probabilistic invariant set with violation probability n/r. If, moreover, w k is a Gaussian process with null mean, then E (W, 1) is a probabilistic invariant set with violation probability 1χ 2 n (r).

Proof: Because of Property 3, it suffices to prove that ( 27) is equivalent to [START_REF] Zoltan | Distributional uncertainty analysis using power series and polynomial chaos expansions[END_REF]. From Theorem 4.2 in [START_REF] Pólik | A survey of the S-lemma[END_REF], see also [START_REF] Hewing | On a correspondence between probabilistic and robust invariant sets for linear systems[END_REF], condition [START_REF] Zoltan | Distributional uncertainty analysis using power series and polynomial chaos expansions[END_REF] is equivalent to the existence of non-negative τ 1 and τ 2 such that

A W -1 A -τ 1 W -1 A W -1 W -1 A W -1 -τ 2 Γ -1 w /r 0 ( 28 
)
and 1τ 1τ 2 ≥ 0 hold, the latter implying τ 1 ∈ [0, 1], τ 2 ∈ [0, 1] and τ 1 + τ 2 ≤ 1. Note first that there is no conservatism in posing τ 2 = 1τ 1 in spite of τ 2 ≤ 1τ 1 since if [START_REF] Stellato | Multivariate Chebyshev inequality with estimated mean and variance[END_REF] holds for τ 2 < 1τ 1 , then it holds also for τ 2 = 1τ 1 . This implies that posing τ 1 = τ and τ 2 = 1τ introduces no conservatism. Moreover, since W 0 then τ cannot be 1. Hence ( 24) is equivalent to [START_REF] Sartipizadeh | Voronoi partition-based scenario reduction for fast sampling-based stochastic reachability computation of linear systems[END_REF] with τ ∈ [0, 1).

Although [START_REF] Sartipizadeh | Voronoi partition-based scenario reduction for fast sampling-based stochastic reachability computation of linear systems[END_REF] is a non-convex condition, that can be solved with respect to W -1 by gridding τ in [0, 1), this can be avoided by choosing τ ∈ [ρ(A), 1), as proved below.

Property 4 Suppose that the random sequence {w k } k∈N has a correlation bound Γ w 0 for matrix A. Condition ( 27) admits a solution W for every τ ∈ [ρ(A), 1).

Proof: From τ ∈ [ρ(A), 1), there exits W ∈ S n such that (1τ) -2 Γ w r W and AWA τ 2 W hold, and then:

(1 -τ)AWA + τΓ w r (1 -τ)τ 2 + τ(1 -τ) 2 W = τ(1 -τ)W.
This implies that τW -AWA 0 and also

W -AWA /τ -1 (1 -τ)Γ -1 w /r
that is equivalent, from the inversion lemma, to

-(1 -τ)Γ -1 w /r + W -1 + (W -1 A(τ W -1 -A W -1 A) -1 A W -1 0
and then also to [START_REF] Sartipizadeh | Voronoi partition-based scenario reduction for fast sampling-based stochastic reachability computation of linear systems[END_REF] from the Schur complement.

From Property 4 it follows that for every τ ∈ [ρ(A), 1), the set of matrices W satisfying condition [START_REF] Sartipizadeh | Voronoi partition-based scenario reduction for fast sampling-based stochastic reachability computation of linear systems[END_REF], convex in W -1 , is non-empty. Moreover, any W in this set provides the probabilistic invariant set E (W, 1) with violation level n/r or 1χ 2 n (r), in the Gaussian process case. The constraint τ ∈ [ρ(A), 1) restricts, though, the set of feasible solutions and then, if one aims at obtaining the minimal probabilistic invariant ellipsoids, gridding τ in [0, 1) might be necessary. To validate the presented results, it is necessary to generate a random sequence satisfying the bounds (4) and [START_REF] Billingsley | Probability and measure[END_REF]. In particular, an example is given for which the value of the covariance matrices cannot be computed, but bounds of the type ( 4) and ( 5) can be determined.

Consider the i.i.d. random sequence v k with Gaussian distribution N (0,V ), for all k ∈ N, and the switched system with m ∈ N modes

w k+1 = H σ k w k + Fv k (29) 
where σ : N → N m is the mode selection signal, assumed arbitrary. Note that {w k } k∈N is a Gaussian process, since every linear combination of its terms has Gaussian distribution, being a linear combination of elements of v k , that are i.i.d. with Gaussian distribution. Moreover {w k } k∈N has null mean since v k has null mean.

Denote with w k the state given by ( 29) with w 0 = 0 and switching sequence σ (the dependence of w k on σ is left implicit); with σ [i, j] the subsequence of modes given by the realization of σ from instants i and j with i < j, and define H σ [i, j] = ∏ j k=i H σ k . Suppose there exist Γ 0 and γ ∈ [0, 1) such that

H i ΓH i + FV F Γ, ∀i ∈ N m , (30) 
H i ΓH i γΓ, ∀i ∈ N m . (31) 
It can be recursively proved that E{w k w k } Γ. In fact, the condition holds for k = 0, from w 0 = 0. Suppose that E{w k w k } Γ holds for a given k ∈ N and since E{v k w k } = 0, then

E{w k+1 w k+1 }= E{H σ k w k w k H σ k + Fv k w k H σ k + H σ k w k v k F + Fv k v k F } = H σ k E{w k w k }H σ k + FE{v k v k }F H σ k ΓH σ k + FV F (30) 
Γ,

for every σ k ∈ N m , which means that E{w k+1 w k+1 } Γ. For every i, j ∈ N with i = j, define Γ

i, j = E{w i w j } and note that

Γ (σ ) k+1,k = E{w k+1 w k } = E{(H σ k w k + Fv k )w k } = E{H σ k w k w k } + E{Fv k w k } = H σ k E{w k w k }
for all k ∈ N, and then, from E{w k w k } Γ, it follows Following analogous considerations it can be proved that

Γ (σ ) k+1,k Γ -1 Γ (σ ) k+1,k = H σ k E{w k w k }Γ -1 E{w k w k }H σ k H σ k E{w k w k }H σ k H σ k ΓH σ k
Γ (σ ) j,i Γ -1 Γ (σ ) j,i
H σ [i, j] ΓH σ [i, j] γ j-i Γ, ∀σ [i, j] ∈ N j-i m for all i, j ∈ N such that i < j. Thus conditions (4) and ( 5) hold with Γ = Γ and γ solution of ( 30)-(31), Γ j,i = Γ (σ ) j,i , α = 0 and β = 1. Note that these bounds hold for every possible realization of the switching sequence σ k . An i.i.d. random sequence with distribution N (0,V ), with V = diag(1.5, 0.26), has been used to feed system [START_REF] Villanueva | On stochastic linear systems with zonotopic support sets[END_REF] with 4) and ( 5) and the correlation bound [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF], with Γ = 0.0098 0.0018 0.0018 0.0343 , Γ w = 0.0113 0.0020 0.0020 0.0397 α = 0, β = 1 and γ = 0.0395, and Γ w computed using [START_REF] Fiacchini | On the computation of convex robust control invariant sets for nonlinear systems[END_REF].

Different values of violation probability p v have been tested, in particular p v = 0.1, 0.2, 0.3, 0.4, 0.5. For every p v , the values of r such that χ 2 2 (r) = 1p v has been determined and the matrix W solving [START_REF] Sartipizadeh | Voronoi partition-based scenario reduction for fast sampling-based stochastic reachability computation of linear systems[END_REF] with minimal trace has been computed to obtain E (W, 1) probabilistic invariant. Then, for every p v , N = 1000 initial states x 0 have been uniformly generated on the boundary of E (W, 1) and assumed independent on w k . For each x 0 , a sequence w k has been generated through [START_REF] Villanueva | On stochastic linear systems with zonotopic support sets[END_REF] and applied. For every k = 1, . . . , 100, the set of states x k and the number of violation d k of the constraint x k ∈ E (W, 1) have been computed. The frequencies of violation d k /N, for every p v and k = 1, . . . , 100, are depicted in Fig. 1, that shows that the bound is always satisfied. 

Conclusions

This paper presented methods, based on convex optimization, to compute probabilistic reachable and invariant sets for linear systems fed by a stochastic disturbance correlated in time. From the knowledge of bounds on the mean and the covariance matrices, the characterization of the correlation bound is given and then employed for obtaining the reachable and invariant sets.

  σ k ∈ N m . Hence Γ (σ k ) k+1,k Γ -1 Γ (σ k ) k+1,k γΓ, ∀σ k ∈ N m .

  and σ k unknown function of time with value in {1, 2}. The switched system generates a Gaussian process w k with null mean satisfying the covariance matrix bounds (

Fig. 1 .

 1 Fig.1. Frequency of violations d k /N of x k ∈ E (W, 1) for k = 1, . . . , 100, with α = 0 and β = 1, obtained for violation probability of: 50% in black; 40% in red; 30% in cyan; 20% in magenta; 10% in blue.
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