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1.  Introduction
Continuous seismograms contain a rich amount of information as a large variety of signals can be observed there-
in. Determining the origin of these different signals is crucial in understanding the physical geological objects. 
For example, faults and plate boundaries accommodate the tectonic loading by releasing energy in different fash-
ions (Ide et al., 2007), the most known and well-understood signals being earthquakes, radiating seismic waves 
visible in most seismograms. Based on their signal characteristics, seismologists developed many tools to detect 
earthquakes in seismograms such as the short time average to long term average STA/LTA (e.g., Allen, 1978). 
Only 20 years ago, a new signal with tectonic origin has been discovered and designated as a non-volcanic tremor 
because of the similarities with volcanic tremors (Obara, 2002). However, non-volcanic tremors are often of weak 
amplitude with poorly defined signal characteristics; their detection is a more challenging task than detecting 
earthquakes. Other than signals with tectonic origin seismometers also record the oceanic microseisms (see e.g., 
Ebeling, 2012, for a recent review), rockfalls and other mass movements (e.g., Deparis et al., 2008; Lacroix & 
Helmstetter, 2011), ground and air traffic (e.g., Meng & Ben-Zion, 2018; Riahi & Gerstoft, 2015) or other kind of 
human-induced sources (such as church bells in Diaz, 2020). The mixing of all these sources renders a complex 

Abstract  Continuous seismograms contain a wealth of information with a large variety of signals with 
different origin. Identifying these signals is a crucial step in understanding physical geological objects. We 
propose a strategy to identify classes of signals in continuous single-station seismograms in an unsupervised 
fashion. Our strategy relies on extracting meaningful waveform features based on a deep scattering network 
combined with an independent component analysis. Based on the extracted features, agglomerative clustering 
then groups these waveforms in a hierarchical fashion and reveals the process of clustering in a dendrogram. 
We use the dendrogram to explore the seismic data and identify different classes of signals. To test our strategy, 
we investigate a two-day-long seismogram collected in the vicinity of the North Anatolian Fault, Turkey. 
We analyze the automatically inferred clusters' occurrence rate, spectral characteristics, cluster size, and 
waveform and envelope characteristics. At a low level in the cluster hierarchy, we obtain three clusters related 
to anthropogenic and ambient seismic noise and one cluster related to earthquake activity. At a high level in the 
cluster hierarchy, we identify a seismic burst that includes around 200 events with similar waveforms and high-
frequent signals with correlating envelopes and an anthropogenic origin. The application shows that the cluster 
hierarchy helps to identify particular families of signals and to extract subclusters for further analysis. This is 
valuable when certain types of signals, such as earthquakes, are under-represented in the data. The proposed 
method may also successfully discover new types of signals since it is entirely data-driven.

Plain Language Summary  Seismic data most likely contain a wealth of crucial information 
about active geological structures such as faults or volcanoes. The growing amount of seismic data collected 
nowadays cannot scale with manual investigation, suggesting automatic algorithms for scanning continuous 
data streams. We develop a strategy based on artificial intelligence to scan continuous seismic data and infer 
patterns automatically. We propose a hierarchical approach to gather similar signals into families since we 
expect the content of seismic data to be complex, dominated mainly by noise and with rare events such as 
explosions or earthquake signals. Our strategy relies on a particular neural network, the scattering network, 
to ease design and training. This paper analyzes two days of continuous seismic data collected in the vicinity 
of the North Anatolian fault. We compare and discuss our results with classical approaches for earthquake 
detection and noise description.
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seismic wavefield that makes the analysis and interpretation of seismic records difficult, especially if seismic data 
are the only data available.

As a response to this problem, seismologists have developed many processing tools for exploring these com-
plex seismic data. Since the 1970s seismology benefits from artificial intelligence developments, bringing ma-
chine-learning-based solutions for exploring seismic data and recognizing patterns (e.g., Allen,  1978). More 
recently an unsupervised learning strategy called clustering was utilized to explore seismic data and find families 
of similar signals (Holtzman et al., 2018; Jenkins et al., 2021; C. W.Johnson et al., 2020; Köhler et al., 2010; 
Mousavi et al., 2019; Seydoux et al., 2020; Snover et al., 2020). In contrast to supervised learning strategies, 
clustering does not rely on a labeled training set and human expert knowledge (Goodfellow et al., 2016). Thus, 
clustering seismograms can help identifying families of signals which are not yet discovered or are poorly defined 
such as non-volcanic tremors.

In the present paper, we introduce a new strategy to use clustering as an exploration tool for continuous seismo-
grams. Our strategy follows the idea that seismic signals are grouped in a hierarchy of classes following a specific 
similarity measurement, as schematized in Figure 1. Note that this illustration aims at sketching the concept rather 
than being complete or accurate. We consider the similarity between classes of signals to be measured on a set 
of signal characteristics that can be human-defined (such as mean frequency and signal duration) or learned with 
machine-learning tools, as we propose in the present paper. In the first place, one can imagine the seismic signal 
classes to split into long-term and short-term signals based on the duration of a signal (Figure 1). In the class of 
long-term signals, one could use a similarity measure based on frequency content to separate the primary from 
secondary microseism. We see that building a tree of classes lets us explore the data on different levels and that 
different signal characteristics may be relevant at each node of the tree.

The sketch presented in Figure 1 also illustrates the problems of designing a class hierarchy by hand. The labels 
used in this sketch are the ones we created as seismologists based on our domain knowledge. That is problematic 
for those classes of signal that do not have a proper definition of signal and source properties, such as non-vol-
canic tremors. Moreover, some splittings, such as between earthquakes and explosions, ask for a more complex 
similarity measure which is hard to design by hand. Hierarchical clustering produces precisely this kind of tree, 
called a dendrogram, based on the exploration of the similarity of signals present in the input data. Therefore, 
we propose to represent continuous seismograms as a dendrogram and utilize it to explore the content of the data 
and identify different types of seismic signals. We want to emphasize that clustering identifies groups of similar 
objects, but it does not provide any meaningful labels, such as the labels in Figure 1. In an extra step, the found 
clusters can be labeled by analyzing the inherent properties of the clusters.

In the following section, we present the workflow to build a dendrogram from continuous single-station data. We 
introduce the concept of hierarchical clustering and how we transform continuous seismograms to a meaningful 
input (features) for the hierarchical clustering. In Section 3, we introduce a data set to apply and test the proposed 
workflow. In Section 4, we show and discuss briefly the resulting dendrogram. Section 5 is about navigating 
through the dendrogram and interpreting the clusters at different levels.

2.  Method
A sketch of the hierarchical clustering workflow is depicted in Figure 2. In the following lines, we start with the 
concept of clustering in general and hierarchical clustering in particular. Then, we explain how we transform 
seismograms into a meaningful input for the cluster analysis.

2.1.  Hierarchical Clustering

In general, cluster analysis groups objects based on their similarity to each other (e.g., Xu & Wunsch, 2008). Ob-
jects in the same cluster are more similar to each other than objects in separated clusters. The similarity between 
objects is measured on a set of certain characteristics called features. Finding the most relevant features for this 
task will be discussed later.

Various algorithms exist to find groups of objects in a data set. This study utilizes hierarchical clustering with 
a bottom up approach, namely agglomerative clustering. Hierarchical clustering relies on a similarity matrix, 
which defines the similarity (e.g., a specific distance in the feature space) between all objects in a data set (S. 
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C. Johnson, 1967). With a bottom-up approach, all objects start in a singleton cluster. The clusters start merging 
based on the similarity matrix until all objects unify in a single global cluster. This process is summarized in a 
dendrogram, revealing the hierarchical structure of the entire data set. Such a strategy fits very well the nature of 
seismic data as depicted in Figure 1.

The agglomerative clustering outcome depends mainly on the applied metric, which drives the merging of 
the cluster. In our approach, we use the Ward's method (Ward Jr, 1963). Given a distance d (here considered 

Figure 1.  Illustration of a possible hierarchy of seismic signals found in seismograms. The different branches represent how 
a signal class splits into different sub-classes depending on a given similarity measure. Here, the different classes of signals 
are thought in a hierarchical way, based on arbitrary properties (e.g., duration, frequency range or signal's structure). This 
scheme aims at illustrating the expected behavior of an optimal clustering algorithm, but does not depict the potential issues 
related to clustering such as overlapping between different classes of signals or imbalance between classes.

Figure 2.  Proposed workflow for hierarchically exploring continuous seismograms. (a) Input continuous three-component seismograms, as detailed in Section 3. (b) 
Deep scattering spectrogram of the seismograms, with a temporal resolution of about 20 s and a high number of dimensions, detailed in Section 2.2. (c) The feature 
matrix extracted from the deep scattering spectrogram with independent component analysis, following the description in Section 2.3. (d) Dendrogram calculated from 
a similarity measurement in the feature space, as explained in Section 2.1.
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Euclidean), the Ward's method aims at grouping objects xi into clusters such that the within-cluster variance re-
mains minimal after merging different clusters. The within-cluster variance σ quantifies the spread of each cluster 
in the feature space (for more details see Appendix A). By minimizing the overall variance, 𝐴𝐴

∑𝐾𝐾
𝑐𝑐=1 𝜎𝜎𝑐𝑐 with K being 

the number of clusters, the Ward's method allows for clusters of variable population sizes and variances. Thus, 
it may highlight clusters of high density located in the vicinity of more spread, low-density clusters. Therefore, 
Ward's method is suitable for the expected seismic data partition, where often ambient seismic noise outweighs 
signals with a tectonic origin.

It is worth mentioning that hierarchical clustering especially with the Ward's method can be computationally 
expensive. However, algorithms have been improved over time and became more efficient. In this study we 
utilize the python package fastcluster, which has a time complexity of 𝐴𝐴 (𝑁𝑁2𝐷𝐷) with N elements in 𝐴𝐴 ℝ𝐷𝐷 and a 
memory complexity of 𝐴𝐴 (𝑁𝑁𝑁𝑁) (Müllner, 2013). More recently, the use of hyperbolic embeddings for preserving 
the hierarchical structure of the data seems to be a promising way to reduce even further the computational costs 
(Chami et al., 2020).

2.2.  Finding an Appropriate Representation of Seismograms: The Deep Scattering Spectrum

In order to detect and identify classes of signals in continuous seismograms with hierarchical clustering, the seis-
mograms have to be transformed into a meaningful input for the cluster analysis. For that purpose, we calculate 
features for fixed windows of the seismogram. Thus, each window will be assigned a cluster based on the features 
for this window. Note that this process simplifies the complexity of seismic data, since multiple types of signals 
can occur simultaneously. Common cluster analysis such as hierarchical clustering neglect this fact and can only 
assign a single cluster to an object. Besides the choice of the applied metric within hierarchical clustering, the 
choice of features is another important factor, which determines the outcome of the cluster analysis. Finding 
the most relevant features should be done according to the task at hand and can be done thanks to prior knowl-
edge on the data or by defining proper algorithms to learn the most relevant features. We distinguish classical 
machine-learning algorithms that rely on human-defined features (Maggi et al., 2017; Malfante et al., 2018) or 
representation-learning algorithms where the features are learned from the data to optimize a given task (LeCun 
et al., 2015; Ross et al., 2018; Rouet-Leduc et al., 2020). While classical machine learning provides less accuracy 
in most cases, it provides interpretability since the features are known, which is an interesting aspect. Most algo-
rithms that rely on representation learning are less easy to interpret since the features are more abstract, but they 
also provide more accurate results. In the present paper, we propose to use a hybrid approach between classical 
and representation learning algorithms that combines the advantages of both.

A time-frequency representation such as the spectrogram is one way to create a set of features for classifying 
seismic signals (Jenkins et al., 2021; C. W. Johnson et al., 2020; Snover et al., 2020). However, Andén and Mal-
lat (2014) showed that a spectrogram generated by the Fourier transform is not ideal for classification purposes 
since it is not stable to time-warping deformations, especially at short periods compared with the duration of 
the analyzing window. They introduce another time-frequency representation called a deep scattering spectrum 
which is computed by a scattering network. This type of network implements a cascade of convolutions with 
wavelet filters, modulus function, and pooling operations (see Figures 2a and 2b). Deep scattering spectra are 
locally translation invariant and preserve transient phenomena such as attack and amplitude modulation. These 
characteristics are beneficial when it comes to classifying any time series data. In Andén and Mallat (2014) and 
Peddinti et al. (2014), the authors have successfully classified audio data based on the deep scattering spectrum. 
The authors of Seydoux et al. (2020) have brought that representation into seismology and showed that small 
precursory signals of a landslide could be detected and classified in an unsupervised fashion. Other success-
ful deep-learning classifiers inspired by deep scattering networks are presented in Balestriero et al. (2018) and 
Cosentino and Aazhang (2020).

We use the strategy presented in Seydoux et al. (2020) for calculating the deep scattering spectrum. Considering 
the continuous input signal 𝐴𝐴 𝐴𝐴(𝑡𝑡) ∈ ℝ𝐶𝐶 (where, C is the number of channels), the scattering coefficients S(ℓ) of 
order ℓ are obtained from the following cascade of wavelet convolutions and modulus operations (i.e., wavelet 
transforms):

𝑆𝑆 (𝓁𝓁) (𝑡𝑡𝑡 𝑡𝑡 (1)
𝑛𝑛1 ,𝑓𝑓

(2)
𝑛𝑛2 ,… ,𝑓𝑓  (𝓁𝓁)

𝑛𝑛𝓁𝓁

)

= max
[𝑡𝑡𝑡𝑡𝑡+𝑑𝑑𝑑𝑑]

|

|

|

𝜙𝜙(𝓁𝓁) (𝑓𝑓 (𝓁𝓁)
𝑛𝑛𝓁𝓁

)

⋆ |

|

|

⋯ ⋆ |

|

|
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where, ⋆ stands for the temporal convolution, |⋅| represents the modulus operator and 𝐴𝐴 𝐴𝐴(𝑖𝑖)(𝑓𝑓 (𝑖𝑖)
𝑛𝑛𝑖𝑖 ) is the wavelet filter 

at the layer i of the scattering network, with center frequency 𝐴𝐴 𝐴𝐴𝑛𝑛𝑖𝑖 . Here, 𝐴𝐴 𝐴𝐴𝑛𝑛𝑖𝑖 refers to one of the center frequencies 
of the layer i indexed by ni = 1 … Ni, where Ni is the total number of wavelets at layer i. In contrast to the Fourier 
transform, the center frequencies of the wavelets are placed logarithmically. In this study, we only consider a scat-
tering network with 2 layers (as depicted in Figure 2) since, Andén and Mallat (2014) argued that more layers do 
not necessarily introduce new valuable information. The first layer in the network creates N1 scalograms per chan-
nel of the seismic station. In the second layer another wavelet transform is applied to each scalogram of the first 
layer. Thus, the second layer contains N1 * N2 scalograms. A maximum pooling operation is then applied over 
each scalogram to retrieve the scattering spectrum. The entries of the scattering spectrum pooled from the first 
layer scalogram are called first-order scattering coefficients. The entries of the scattering spectrum pooled from 
the second layer scalogram are called second-order scattering coefficients, which contain important information 
about the attack and modulation of a signal. While, the scalograms still have the same sampling rate in time as 
the input data, the temporal pooling collapses the time dimension of the scalogram and produces a scattering 
spectrum for each input window. Note that each input channel from the seismic station is treated separately and 
their deep scattering spectrum are concatenated into a deep scattering spectrum vector with the size 3 * N1 + 3 * 
N1 * N2 for a three-component seismogram. For each input window, a deep scattering spectrum vector is created, 
which are then merged into the deep scattering spectrogram. The final sampling rate of the deep scattering spec-
trogram is defined by the size of the input window. In Seydoux et al. (2020), the authors initialize Gabor wavelets 
with amplitudes and derivatives on a certain sets of knots and interpolate then with Hermite cubic splines. With 
respect to the clustering loss, they learn the parameters on these knots governing the shape of the wavelets. In this 
study, we directly use the initialized Gabor wavelets with zero phase shift and do not apply any learning of the 
wavelets. This choice was made principally because we do not perform a fixed cluster analysis in our study, but 
an exploration of the data instead where a loss function is harder to define. For the interested reader we refer to 
Andén and Mallat (2014) and Seydoux et al. (2020).

2.3.  Features Extraction From Deep Scattering Spectrogram

The deep scattering spectrum can have more than 1,000 dimensions and, thus, the conditions for clustering are 
not favorable (Kriegel et al., 2009). Indeed, distances in very high-dimensional spaces give little information 
about the structure of the data (the so-called curse of dimensionality; Bellman, 1966). In addition, the representa-
tion is known to be highly redundant since the wavelet filters of the first layer are often considered with a strong 
frequency overlap in order to provide a dense first-order representation. Therefore, it is recommended to reduce 
the dimensions before clustering. In our case, we use an independent component analysis (ICA) to reduce the 
dimension of the representation. In the following remarks, we explain the basic concept of ICA. For the interested 
reader we refer to Comon (1994).

ICA is introduced as a statistical tool for blind source separation and feature extraction. The generative model of 
the ICA can be described as:

𝐱𝐱 = 𝐬𝐬𝐬𝐬,� (2)

where, 𝐴𝐴 𝐱𝐱 ∈ ℝ𝑁𝑁×𝐹𝐹 are the N observations of dimension F, 𝐴𝐴 𝐀𝐀 ∈ ℝ𝐹𝐹×𝐶𝐶 is the mixing matrix, and 𝐴𝐴 𝐬𝐬 ∈ ℝ𝐶𝐶×𝑁𝑁 are the 
unmixed sources (namely, the C unmixed sources obtained from ICA). The observations x are therefore a linear 
combination of the independent sources s, with the mixing weights gathered in A. A test of statistical independ-
ence is required to solve Equation 2 while ensuring the sources s to be independent. This concept is illustrated in 
Figure 2, where the unmixed sources are considered as features in our workflow (therein called feature matrix). 
These sources are obtained from applying the unmixing matrix, the pseudo inverse of the mixing matrix A, to the 
deep scattering spectrogram. Among the different strategies, we can look for a minimum of mutual information, 
or similarly, a maximization of the non-Gaussianity. In our study, we apply the FastICA algorithm from the scikit-
learn Python library, which uses the negentropy as a measure of non-Gaussianity (Hyvärinen & Oja, 2000). This 
analysis is similar to the principal component analysis, with the difference that the independent components are 
not orthogonal. In addition, there is no information about the variance explained by the different independent 
components, and are therefore delivered unsorted by the algorithm.
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3.  Data
We test our proposed workflow on continuous three-component seismic data from the station DC06 of the DANA 
experiment in Turkey (see for instance Poyraz et al., 2015, and the map shown in Figure 3a). Originally, the ex-
periment was conducted to investigate the crustal structure beneath the western segment of the North Anatolian 
Fault. We choose the data set for mainly two reasons. First of all, the data set contains both seismic and anthro-
pogenic activity, which is a typical situation in most seismological studies. Second of all, an existing template 
matching catalog provides labels for the seismicity in this area. The catalog was built following the methodology 
in Beaucé et al. (2019).

We choose to analyze the seismic data from the 25th to the 27th of July 2012. During the period of these two days, 
a high rate of localized seismicity with 148 cataloged events occurred on and around the northern strand of the 
North Anatolian fault (see Figures 3a and 3b). In this study, we refer to this high rate of seismicity as a seismic 
burst. The catalog explains the series of events with 17 templates having their hypocenters close to each other 
(Figure 3a, red dots). Since the seismic burst causes a repeating pattern in the seismogram with short time-warp-
ing deformations due to slight changes of the hypocenters, it is an interesting study case for our proposed method. 
Station DC06 is close to the seismic burst and records the time period of interest without data gaps. Thus, we 
choose the three-component seismograms of this station. The sampling rate of the data is 50 Hz.

The spectrogram of the east component of station DC06 is presented in Figure 3c. The oceanic microseism is 
visible around 0.2 Hz, where we can observe the dispersive nature of the oceanic gravity waves. At around 1.5 Hz 
we can identify a nonstationary monochromatic noise source, which seems to be more active during the first day. 
At frequencies higher than 3 Hz we can see increased activity during daytime, most likely induced by anthropo-
genic seismic sources. The event with the largest magnitude of the burst is also easy to spot during the evening 
of the 25th in the spectrogram.

Figure 3.  Geological context and seismic data used in the present study. (a) Map of the North Anatolian fault zone showing station DC06 (black triangle), the seismic 
burst (red dots) including the largest event (red star) and other seismic activity (blue dots); all detected with a template matching strategy. The geological faults that 
ruptured after 1,900 (black lines) are adapted from Emre et al. (2011). (b) Cumulative detections of the seismic burst (in red) and other seismic activity (in blue) 
obtained with template matching. (c) Continuous spectrogram of the east-component of station DC06, with a visual identification of (A) oceanic microseism, (B) a non-
stationary monochromatic noise source, and (C) daily high-frequency activity.
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4.  Results
4.1.  Feature Space

First, we use the continuous three-component seismograms to calculate the deep scattering spectrogram with a 
two-layered scattering network (as detailed in Equation 1). The network parameters are physics-driven and can 
be adjusted according to the goal. In this study, the first layer contains 24 Gabor wavelets with center frequencies 
between the Nyquist frequency of the seismogram (25 Hz) and 0.78 Hz with a spacing of 4 wavelets per octave. 
The second layer contains 14 Gabor wavelets with center frequencies between 25 and 0.19 Hz with a spacing of 
2 wavelets per octave. This setup results in 24 wavelet transforms per channel in the first layer and 336 (24 * 14) 
wavelet transforms per channel in the second layer. Because the deep scattering spectrum is a concatenation of 
the first- and second-order scattering coefficient of each input channel, the total number of scattering coefficients 
is 1,080 (dimension F in Figure 2). For the temporal pooling operation, we apply maximum pooling, since we are 
interested in detecting and classifying non-stationary events such as the seismic burst. If the focus of classifica-
tion is the background noise, average pooling might be the better choice (as suggested in Seydoux et al., 2020). 
The moving pooling window is 20.48 s large and does not overlap. Hence, the time resolution of the deep scat-
tering spectrogram is also 20.48 s.

For dimensionality reduction, we apply an independent component analysis using the FastICA algorithm from the 
scikit-learn Python library. In this study, we select the appropriate number of independent components according 
to the reconstruction loss between the original data and the reconstructed data after compression with an ICA 
(detailed in Appendix B). We emphasize that we look for a trade-off between keeping the most significant amount 
of information while using few independent components. From the study of the loss with increasing number of 
components shown in Appendix B and Figure B1 therein, we conclude that keeping 10 independent components 
is a good compromise and constitute our choice in the present study. A visual representation of the 10 unmixed 
sources building the feature space is depicted in Figure B2 in Appendix B.

4.2.  Dendrogram

After transforming the continuous seismic data into a most relevant set of features, we can use this representation 
to explore the data with hierarchical clustering. By controlling the distance threshold, we can extract different 
numbers of clusters. The distance threshold sets the boundaries for the possible distances between points within a 
cluster. While a larger distance threshold allows larger and fewer clusters to form, a smaller distance threshold ex-
tracts smaller but many clusters. Note that the distance threshold is only used to extract different cluster solutions 
based on the similarity matrix; it is not a hyperparameter affecting the similarity matrix. In Figure 4a we selected 
a distance threshold of 0.47 in order to show a truncated dendrogram stopping at 16 clusters. At a distance of 0.9, 
we extract four main clusters labeled as A, B, C, and D. Figure 4b–4e depict random-selected three-component 
seismograms from each of the cluster. Figure 4f shows the averaged first-order scattering coefficients of these 
four clusters. These first-order scattering coefficients describe the frequency characteristics of each cluster. Fig-
ure 4g presents the normalized cumulative detection rate of each cluster, with the seismic burst detection rate 
indicated as a reference. The relative size of each cluster compared to the size of the entire data set is depicted in 
Figure 4h. In the following remarks, we will analyze each of the four main clusters from left to right.

Cluster A contains ca. 27% of the data (Figure 4h) and is the first cluster to split from the whole data set, that 
is, cluster A is the furthest away from the center of the data points (Figure 4a). Compared to the other clusters, 
its scattering coefficients for all frequencies are relatively low except for a local maximum around 1.5 Hz (Fig-
ure 4f). Looking at the corresponding cumulative detection curve (Figure 4g), we see that this cluster is active 
mainly during the first day until the late afternoon, which seems to correlate with the monochromatic signal 
around 1.5 Hz we have already identified in the spectrogram (Figure 3c).

Cluster B contains about 19% of the data samples (Figure 4h) and has relatively large scattering coefficients for 
frequencies above 10 Hz (Figure 4f). The corresponding cumulative detection curve indicates that this cluster 
accumulates less detections during the beginning of a day than with later times of a day (Figure 4g). Combining 
these facts leads to the hypothesis that cluster B might be related to signals with an anthropogenic origin.

Cluster C is the largest cluster with more than 50% of the data points (Figure 4h). Compared to the other clusters, 
it also has the lowest scattering coefficients at all frequencies (Figure 4f). Looking at the cumulative detection 
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curve (Figure 4g), we see this cluster shows an almost linear increase starting at the afternoon of the first day, 
exactly when cluster A becomes almost inactive. The cluster size and frequency content suggest that cluster C 
contains mostly ambient seismic noise data.

Finally, cluster D contains about 4% of data set and is the smallest of the four clusters (Figure 4h). The correspond-
ing first-order scattering coefficients show a local maximum around 5 Hz (Figure 4f). Its cumulative detection curve 
correlates well with the detections of the seismic burst (Figure 4g), with additional detections before the seismic 
burst starts. All these observations indicate that cluster D is probably related to nearby seismic activity in general.

5.  Discussion
In this section, we will discuss and interpret the dendrogram's representation and its clustering solution. While, 
the main focus is on identifying how the seismic burst occurs in the dendrogram, we will also discuss how the 
general seismicity is observed through this representation, and interpret the remaining clusters with anthropogen-

Figure 4.  Dendrogram analysis and statistical characteristics of the different clusters. (a) Dendrogram calculated in the feature space (see Section 2.1 for explanations). 
The dendrogram is here truncated in order to form 16 clusters. The clusters marked with a letter are considered the main clusters, and the subclusters are indicated with 
numbers. The numbers in the parenthesis indicate the number of samples in each cluster. (b, c, d, and e) Depict random examples of waveforms for the four main cluster 
A,B,C, and D, respectively. (f) Averaged first-order scattering coefficients for main clusters A, B, C, and D (g) Normalized cumulative detections of main clusters A, 
B, C, and D, and of the seismic burst obtained from the multi-station template-matching catalog. (h) Relative size of the main clusters compared to the size of the entire 
data set.
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ic activity and ambient seismic noise. To underpin the statement that the deep scattering spectrum is a superior 
representation for the task at hand than the Fourier-transform spectrum, we also create and interpret a dendrogram 
based on the Fourier-transform of the same data set (see Appendix D).

5.1.  Identification of the Seismic Burst Within the Dendrogram

First, we identify all time segments containing onsets of the events of the seismic burst and observe which clusters 
those time segments belong to. The template matching catalog contains 148 detections related to this seismic 
burst. However, we only associate 136 samples in the feature space with the seismic burst, since one sample rep-
resents about 20 s of waveform data and, thus, can contain multiple events. Figure 5a shows that a large majority 
of the samples, which contain arrivals of the seismic burst, fall into cluster D (92.6%). On the other hand, only 
40% of cluster D is related to the seismic burst, underpinning the statement that this cluster is related to general 
seismic activity. Cluster B and C share the remaining 7.4% of the burst. Compared to the large population sizes of 
clusters B and C, the contribution of the burst almost vanishes (0.3 and 0.1%). Cluster A contains no detections 
of the burst. While cluster D contains the majority of the seismic burst, the interesting aspect is to understand 
what the remaining 60% samples of this cluster are related to (earthquakes from the same source region, different 
signals, etc). To answer that question, we investigate the subclusters visible in Figure 4a obtained with a distance 
threshold of 0.47; in particular, we will narrow the focus on the subclusters of cluster D, namely the four sub-
clusters D.1 to D.4.

First, we look at the distribution of the samples containing the seismic burst across the four subclusters in main 
cluster D. From Figure 5a, we know that more than 92% of the burst was found in cluster D. We observe in 
Figure 5b that this amount splits into ca. 71.3% in cluster D.1 and ca. 21.3% in cluster D.4. The subclusters D.2 
and D.3 contain no earthquakes from the seismic burst and will be discussed later. If we look at the cumulative 
detection curve of each subcluster in D (Figure 5c), we see that cluster D.1 and D.4 share a very similar temporal 
pattern. The corresponding averaged first-order scattering coefficients (Figure 5d) explain why the burst got split 
into two clusters: across almost all frequencies the larger subcluster D.1 shows significantly smaller scattering 
coefficients than the smaller subcluster D.4. Hence, the magnitude of the events seems to be the characteristic 
that separates the burst into two clusters. Besides, we observe that 56% of D.1 and 97% of D.4 can be explained 
by the cataloged burst. This observation raises the question: what are the samples in D.1 and D.4 that cannot be 
related to the seismic burst recorded by the catalog? We can answer this question by looking at the waveforms 
representing the corresponding data points of subclusters D.1 and D.4.

Figures 6a–6c show the corresponding waveforms of all 204 data points of the two subclusters D.1 and D.4. For 
presentation purposes we align the waveforms accordingly to their maximum correlation with a template wave-
form from the subcluster. For all waveforms we observe the P and S seismic phase arrivals of the earthquakes. 

Figure 5.  Identification of the seismic burst within the main and subclusters. (a) The distribution of the seismic burst 
across the four main clusters. (b) The distribution of the seismic burst across the four subclusters in the main cluster D. 
(c) Normalized cumulative detection curves for the subclusters in the main cluster D. (d) Averaged first-order scattering 
coefficients for the subclusters in the main cluster D.
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The first 30 waveforms correspond to subcluster D.4. 29 of them are are also in the catalog (marked orange) while 
1 of them is not in the catalog (marked magenta). The following 174 waveforms are from subcluster D.1. 98 of 
them are are also in the catalog (marked light blue) while 76 of them are not in the catalog (marked blue). The 
waveforms are very similar to each other on all three channels. This indicates that these new detections are com-
ing from the same source area. Note also that the first 30 waveforms representing subcluster D.4 have a better sig-
nal-to-noise ratio than the following waveforms of subcluster D.1. This agrees with our assumption that the burst 
is split into two subclusters due to magnitude differences. The magnitude estimations of the template matching 
catalog confirms this assumption (see Figure 6d). While most of the events located in D.1 range between M0.5 
and M1, the events located in D.4 range between M1 and M2.2.

By investigating cluster D and its subclusters D.1 and D.4, we are able to identify two subclusters representing the 
seismic burst. While D.1 contains many events with smaller magnitudes, D.4 contains fewer events with larger 
magnitudes. Together the two subclusters contain 92.6% of the cataloged events and 77 new events, which have 

Figure 6.  (a,b,c) Waveform data from subcluster D.1 and D.4. The color code indicates the according subcluster and if the event is mentioned by the catalog. (d) 
Magnitude estimations of the cataloged events of the seismic burst found in subcluster D.1 and D.4.
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identical P and S wave arrivals as the cataloged ones. The new detections can be explained by the fact that we 
utilize a single station method and compare it to a catalog based on a multi station method. More details and a 
comparison with a single station template matching catalog based on station DC06 can be found in Appendix C.

However, 7.4% of the cataloged detections can not be found in subclusters D.1 or D.4. In the following remarks, 
we want to analyze the misidentified 7.4% of cataloged events, which equal 10 over 136 events. First of all, we 
want to know where these events are located in the feature space. Therefore, we calculate the Euclidean distance 
between the misidentified events and the centroids of each cluster in the feature space (see Figure 7a). In magenta, 
we highlight the distance between the sample and its respective subcluster. In cyan, we highlight the distance 
between the sample and subcluster D.1 containing the low magnitude events of the burst. In gray, we highlight 
the distances to all other remaining clusters as a comparison. We sorted the misidentified 10 events according 
to the distance to the centroid of D.1. We see that for the first six events, the distance to the centroid of D.1 is 
smaller than to the centroid of its respective cluster. The corresponding waveform data also offer explanations for 
the misidentification (Figures 7b–7d). Indeed, the P and S arrivals are noisy but visible for the first five events. 
Thus, some events might be misclassified because samples are grouped with the Ward's method, which solves it-
eratively an objective function considering the Euclidean distance and the within-cluster variance. In other words, 
clusters can agglomerate samples which might be closer to the centroids of other clusters if we consider the pure 
Euclidean distance. After the first five events, when the distance to its respective cluster becomes smaller than the 
distance to D.1., the P and S arrivals are not visible anymore, or other large-amplitude events are present. Here 
the problem is related to assigning a single cluster to 20 s of waveform data, which can contain multiple signals.

5.2.  Neighboring Clusters of the Seismic Burst in the Feature Space

Having identified most of the seismic burst in two neighboring subclusters already shows that the representation 
of the data and the distances between the data points are meaningful. As a next step, we want to analyze the 
neighborhood of these two subclusters to get a better understanding of the data representation. Since D.2 and D.3 
share the same cluster with D.1 and D.4, we know that they are located next to each other in the feature space. 
This indicates that subcluster D.2 and D.3 might contain similar signals, such as seismic activity with a different 
origin than the seismic burst.

Figure 7.  Analysis of the misidentified earthquake waveforms. (a) Distances between misidentified data points containing 
an event from the catalog and the centroids of all clusters. The magenta points show the distance between the data point 
and the centroid of its own respective subcluster. The cyan points show the distance between the data point and the centroid 
of D.1. The gray points show the distance between the data point and the centroids of the other 14 subclusters. (b, c, d) 
Corresponding aligned waveform data sorted according to the distance to the centroid of D.1 (respectively channels E, N, and 
Z). The color coding represents the distance to the centroid of subcluster D.1. A purple color indicates a larger distance than a 
light blue color.
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To verify this assumption, we can compare existing earthquake catalogs with the timestamps of the samples in the 
subclusters. We extend the local template matching catalog with a regional catalog limited to events within a ra-
dius of 5° around station DC06. The regional catalog is downloaded from IRIS. For calculating the seismic phase 
arrivals at the station, we use the TauP module of ObsPy with the velocity model of Kennett and Engdahl (1991). 
We consider a sample related to an event of the catalog if the 20 s window of the sample overlaps with the window 
between the P wave arrival and the decaying coda.

The waveform data of D.2 and D.3 are presented in Figure 8. Figure 8a indicates the samples which can be ex-
plained by arrivals of a regional or local event, and Figure 8b shows the samples which can not be explained by 
arrivals of a regional or local event. Note that one sample in the feature space represents ca. 20 s of waveform 
data and each horizontal waveform displayed in Figure 8 contains multiple consecutive 20 s windows. Subcluster 
D.2 contains only nine samples corresponding to two seismic events indicated in blue in Figure 8a. The first event 
represented by eight consecutive samples at index 0 is a relatively distant M4 event. The other event represented 
by a single sample is a quarry blast from a local mine mentioned by the template matching catalog. At first sight, 
it might seem unexpected that these two events are found in the same subcluster. However, subclusters D.2 shows 
the largest scattering coefficients for frequencies below 5 Hz (see Figure 5d), and its centroid is the furthest 
away from the remaining data set as we can see from the inter-cluster distance matrix presented in Figure A1 in 
Appendix A. Moreover, the within-cluster variance σc in the top panel of Figure A1 indicates that the samples of 
subcluster D.2 are the most spread out compared to the other subclusters, This suggests that both events are seen 
as outliers in the feature space due to their high amplitudes at lower frequencies.

Moreover, we observe that the catalog can explain 67% of all samples of D.3 (a random selection of waveforms 
are shown in Figure 8a). The other 33% are shown in Figure 8b, and some samples also show seismic phase 
arrivals (in particular, the seismograms shown at index six and nine). It is thus likely that the samples shown in 
Figure 8b contain uncataloged events. While subcluster D.1 and D.4 represent similar earthquakes from a similar 

Figure 8.  Seismic waveforms identified in subclusters D.2 and D.3. (a) waveform data of D.2 and D.3 where the phase 
arrivals match the merged catalog. (b) Waveform data of D.3 which do not correspond to phase arrivals from the merged 
catalog.
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source region, subcluster D.3 shows many kinds of signals, such as earthquakes with different magnitudes and 
distances to the station. We can interpret subcluster D.3 as an agglomeration of transient signals with increased 
energy between 1 and 5 Hz (see Figure 5d). Regional and local events also fall into this category. Thus, in the 
vicinity of the subclusters D.1 and D.4, related to the seismic burst, other subclusters containing seismic activity 
can be found.

5.3.  Anthropogenic Signals With High Envelope Correlation

After identifying seismic activity in cluster D, we want to draw attention to the remaining part of the seismic data 
set. Seismic activity induces short-term signals with a characteristic waveform and envelope shape. However, if 
we want to classify other types of signals like tremors, anthropogenic noise, or ambient noise, correlating wave-
forms are unlikely to be suitable for this task. One key feature of the deep scattering spectrum is the representation 
of the waveform's envelope in the second-order scattering coefficients (Andén & Mallat, 2014). Consequently, we 
should find clusters with weakly correlating waveforms but strongly correlating envelopes.

For that reason, we investigate the correlation coefficient of the waveform (CCW) and the envelope (CCE) for all 
subclusters. First, a template is defined by the closest sample to the centroid representing the most typical wave-
form of a cluster. Then, we calculate the correlation coefficient of the waveform data CCW and the correlation 
coefficient of the smoothed envelope CCE between the template and the remaining samples. The envelope is de-
fined by the modulus of the analytic signal, which is a complex-valued representation of the waveform disregard-
ing the negative frequencies from the Fourier transform. A median-filter smoothens the envelope. The averaged 
results are depicted in Figure 9a. We first observe that CCE is more significant than CCW for most subclusters. 
In particular, cluster B.4 shows the most significant discrepancy between CCE and CCW; this subcluster is part 
of cluster B, which we related to high-frequent urban noise. In Figures 9b–9d, we align the envelopes for each 
channel and each sample in B.4 to depict the shared characteristics. We see a very symmetric envelope that lasts 
around 5 s. The envelopes look very similar on all three components. Figure 9e shows a histogram of detections 
over the time of the day. We see that this cluster mostly appears during daytime with a clear peak around 14:00 
local time. Figure 9f shows the averaged first-order scattering coefficients for all three channels. The frequencies 
above 5 Hz are very pronounced and peak between 10 and 15 Hz. In summary, we see that subcluster B.4 is relat-

Figure 9.  Interpretation of subcluster B.4. (a) Averaged correlation coefficient for the waveforms CCW and for the envelopes 
CCE for all 16 subclusters. (b,c,d) Aligned envelopes for the three channels for subcluster B.4. (e) Number of detections per 
hour for subcluster B.4. (f) Averaged first-order scattering coefficients for subcluster B.4.
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ed to non stationary urban noise which produced similar envelopes lasting 5 s. Nearby road traffic could produce 
these kind of signals.

5.4.  Long-Lasting Signals With Low Envelope Correlation

As the last example, we want to draw attention towards clusters A and C. Both clusters show relatively low corre-
lation coefficients for the envelopes (see Figure 9). Cluster C contains more than half of the data, and the average 
scattering coefficients are the lowest for all frequencies compared to the other clusters (see Figures 4f and 4g). 
Moreover, the subclusters of C have a relatively low distance to each other, and their within-cluster variance is 
relatively low (see Figure A1 in Appendix A). This indicates that they contain similar signals. Combining these 
facts, we conclude that this cluster contains ambient noise without any significant activity of transient signals.

Cluster A seems to correlate with the monochromatic noise source around 1.5 Hz (see Figures 3c and 4f). To 
prove that cluster A contains only data with increased activity around 1.5 Hz we depict the occurrence of clus-
ter A and the Fourier amplitude of the three channels filtered between 1.4 and 1.6 Hz as a function of time in 
Figure 10. In general, an increased amplitude around 1.5 Hz correlates well with the appearance of cluster A. 
However, not all samples with an increased monochromatic activity fall into cluster A. As with the misidentified 
events in Figure 7, the problem is related to assigning a single cluster to 20 s of waveform data containing multiple 
types of signals. It is also interesting to note that subcluster A.1 and A.3 show larger correlation coefficients for 
the waveforms than for the envelopes (Figure 9a). This characteristic only applies to these two subclusters and is 
related to the dominance of the monochromatic signal.

Cluster A and C show that the dendrogram representation based on features from the deep scattering spectrum 
also finds cluster of noise sources without strong correlation of the waveforms or envelopes.

6.  Conclusion
In this study, we proposed a new way of exploring the content of continuous seismograms and identifying dif-
ferent types of signals present in the data. Our approach is based on hierarchical clustering, which offers many 
cluster solutions with the dendrogram and, thus, delivers a tool for exploring the data. The hierarchical clustering 
is applied to a low-dimensional feature space extracted from the deep scattering spectrogram of the continuous 
seismogram. A primary advantage of the workflow compared to other machine learning algorithms for classify-
ing continuous seismic data is the interpretability at each step and the deep scattering spectrum, which seems to 
be a promising representation of seismic data for classification purposes.

For an application in this study, we chose a 2-day long three-component seismogram containing a nearby seismic 
burst with 148 cataloged events with similar waveforms. These labels served as a sanity check for the algorithm. 
First, we extracted a cluster solution with four main clusters to get a rough overview of the data. With the cluster 
size, the temporal detection, and averaged first-order scattering coefficients, we delivered an interpretation of 
each cluster and could identify a cluster containing mostly waveforms related to earthquakes. Inside this specific 
cluster, we found two subclusters containing almost all cataloged events of the seismic burst. While the events 
of the seismic burst split into two subclusters due to magnitude differences, 77 uncataloged events with similar 
waveforms were found. The case of the seismic burst shows that we can identify a repeating pattern with slight 

Figure 10.  Fourier amplitude of all three channels calculated over 10 min windows in the frequency range of 1.4–1.6 Hz 
together with the activation of the main cluster A.
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variations of the waveforms and low SNR in an unbalanced data set. The few misidentified events highlight 
the multi-label characteristics of seismograms. Multiple signals can arrive simultaneously and, thus, assigning 
a single label to a part of the seismogram does not reflect the whole truth. Integrating this issue into cluster-
ing seismograms is an interesting aspect for future work. Besides the seismic burst, we also identified signal 
families with anthropogenic origin and a large cluster containing ambient seismic noise. The different types of 
signals show that the strategy is able to group signals with correlating waveforms, envelopes or similar frequency 
characteristics.

We want to emphasize here that hierarchical clustering and the dendrogram itself does not deliver meaningful 
labels for the clusters. Interpreting the different cluster solutions with certain characteristics such as the temporal 
detection curve is a crucial step towards understanding and revealing the content of the data. Until the point of hi-
erarchical clustering, the proposed workflow is an unsupervised and data-driven strategy to find groups of similar 
seismic signals. After that point, we use the output of that strategy to do an interpretation and assign meaningful 
labels to the retrieved clusters.

As most machine learning algorithms, the proposed strategy relies on a few parameters to tune. The hyperpa-
rameters of the deep scattering network are mainly physics-driven and depend on the pre-defined task. As with 
Fourier spectrograms, we can control the window size and frequencies of interest. For example, low frequent 
first-order wavelet filters might not be necessary for finding groups of anthropogenic signals. Maximum pooling 
is more interesting than average pooling if the signals of interest have a transient character such as earthquakes. 
After designing the deep scattering network, the number of components in the independent component analysis 
is an exploratory task. It is a trade-off between keeping crucial information and producing a low-dimensional 
representation to avoid the curse of dimensionality.

In general, the method can be used for various tasks. It is beneficial to get a general overview of an unknown 
data set. If there is a particular target of interest (e.g., earthquakes, urban noise sources, tremors), we can navigate 
the dendrogram and focus the analysis on a specific branch. The temporal detection curves of the clusters can 
be easily correlated with other time series such as GPS displacement or environmental parameters to search for 
signal classes related to certain physical processes. A specific interesting application would be the North Anato-
lian Fault, where seismologists assume the presence of non-volcanic tremors but conventional methods did only 
deliver null results so far (Bocchini et al., 2021; Pfohl et al., 2015). In contrast to conventional tremor detection 
algorithm, our approach could identify signals related to tectonic processes without assuming any signal charac-
teristics. In the same sense, the dendrogram can reveal clusters/classes human expert knowledge could not reveal 
yet and expand the classes of signals we know so far. Moreover, the method can be helpful to extract particular 
types of noise for performing ambient noise cross-correlation potentially enhancing the signal quality.

Appendix A:  Within-Cluster Variance and Inter-Cluster Distance
This section presents the way we calculate the inter-cluster distance dij between clusters i and j and the with-
in-cluster variance σi of cluster i. The inter-cluster distance are defined by the Euclidean distances between the 
centroids of the cluster:

𝑑𝑑𝑖𝑖𝑖𝑖 = ‖𝝁𝝁𝑖𝑖 − 𝝁𝝁𝑗𝑗‖2,� (A1)

where, 𝐴𝐴 𝝁𝝁𝑖𝑖 =
1
𝑁𝑁𝑖𝑖

∑

𝑛𝑛∈𝑖𝑖 𝐲̂𝐲𝑛𝑛 represents the centroid of cluster i with the samples 𝐴𝐴 𝐲̂𝐲𝑛𝑛 ∈ ℝ𝐶𝐶 belonging to cluster i, and 
where ‖ ⋅ ‖2 represents the L2 norm. Similarly, the variance σi of cluster i is defined as:

𝜎𝜎𝑖𝑖 =
1
𝑁𝑁𝑖𝑖

𝑁𝑁𝑖𝑖
∑

𝑛𝑛∈𝑖𝑖

‖𝐲̂𝐲𝑛𝑛 − 𝝁𝝁𝑖𝑖‖
2
2.� (A2)

This analysis is inspired from the silhouette analysis (Rousseeuw, 1987) and helps to understand better the clus-
tering results. The within-cluster variances and the Euclidean distances between the centroids are depicted in 
Figure A1.
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Appendix B:  Number of Relevant Independant Components
Setting the number of dimensions for a dimensionality reduction technique such as the ICA is always an explor-
atory task, and it is appropriate to estimate the information loss as a guideline for that. In this study, we use a 
reconstruction loss ϵ between the original data x and the reconstructed data 𝐴𝐴 𝐱̂𝐱(𝐶𝐶) , obtained from Equation 2 with 
C independent components, as

𝜖𝜖(𝐶𝐶) =
∑𝑁𝑁

𝑖𝑖=0 |𝑥𝑥𝑖𝑖 − 𝑥̂𝑥(𝐶𝐶)
𝑖𝑖 |

𝑁𝑁
.� (B1)

Figure B1 depicts the reconstruction loss ϵ(C) for an increasing number of independent components (sources) C. 
The reconstruction loss decreases rapidly with the first components. With a more significant number of compo-
nents, the rate of error decrease becomes smaller. The choice of the number of components is a trade-off between 
keeping the dimensions low and retaining most of the information. Thus, 10 independent components seem like 
a good compromise to us.

The time series of the 10 unmixed sources calculated from the data set are shown in Figure B2. To see if a single 
source already shows a clear distinction between the seismic burst and the rest of the data, we marked in blue 
the samples containing at least one earthquake from the burst. It appears that the ninth unmixed source seems to 
separate the seismic burst from the rest of the data. This observation raises the question if other trends, such as 
the background noise, can be correlated with specific unmixed sources.

Figure A1.  Inter-cluster distances and within-cluster variances. (a) Within-cluster variance according to Equation A2 for all 
16 subclusters. (b) Inter-cluster distance according to Equation A1 between all 16 subclusters.
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If we compare with the spectrogram of Figure 3c we see that the second unmixed source seems to correlate with 
the variations around 0.2 Hz and the eighth unmixed source seems to correlate with the monochromatic noise 
source around 1.5 Hz. This quick visual inspection shows us that the feature space can already be physically in-
terpreted, and the ICA separates different signals on its different unmixed sources, which is favorable for further 
analysis by clustering algorithms.

Appendix C:  Comparison With Single-Station Template Matching
Station DC06 recorded higher signal-to-noise ratio S waves from the seismicity burst than the more proximal 
stations. Therefore, we are able to detect about twice more events by running the matched-filter search only on 
station DC06, with respect to the multi-station (10 stations) matched-filter search. The single-station template 
matching catalog captures a seismicity pattern similar to clusters D.1 and D.4, but reports about 50% more events 
(see Figure C1). Both the single-station and multi-station template matching catalogs were built with a detection 
threshold of eight times the root-mean-square of the correlation coefficient time series. The 20 s time resolution 
of the clustering method presented in this work sets a hard constraint on revealing the details of low magnitude 
seismicity. Nevertheless, we recall that producing a fine resolution earthquake catalog is not the first goal of our 
method, which instead aims at unraveling signals of different nature with no prior knowledge of the data set.

Figure B1.  Reconstruction loss with independent component analysis from the deep scattering spectrogram. The 
reconstruction loss ϵ(n) is calculated from Equation B1 as a function of the number of independent components n.

Figure B2.  Time series of the 10 unmixed sources of the deep scattering spectrogram. The samples containing one or more 
arrivals of the earthquake from the nearby seismic burst are highlighted with blue dots.
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Appendix D:  Qualitative Comparison With Hierarchical Clustering Based on 
Spectrograms
In our study, we use a deep scattering spectrum instead of a Fourier-transform spectrum, since it is more suitable 
for classification purposes (Andén & Mallat, 2014). In the following lines, we create and interpret a dendrogram 
based on Fourier-transform spectral features to verify this claim for seismograms. For the sake of comparison, 
the window size of the Fourier-transform equals the pooling window of the scattering network, which is 20.48 s. 
Moreover, the considered frequency range of the Fourier-transform is adapted to the frequency range of the first 
order scattering coefficients. The three-component spectrogram with 1,440 spectral coefficients per time step 
is then used to calculate 10 independent components, which resemble the feature space for the dendrogram. 
Thus, we only replaced the scattering coefficients with spectral coefficients of comparable time and frequency 
properties.

To compare the clustering outcome, we retrieve 16 subclusters, which can be grouped into the three main clusters 
A’,B’, and C’ (see Figure D1a). The time evolution curves and the cluster sizes in Figures D1b and D1c show if 
the retrieved main clusters are the same as in Figure 4. Cluster A’ matches very well with cluster A in terms of 
cluster size and temporal detection curve. Thus, Cluster A’ is also related to the monochromatic signal. Cluster 
B’ matches with the detection curve of Cluster C, however, Cluster B’ contains more data than Cluster C. Thus, 
Cluster B’ is also related to ambient signals but possibly contains also additional types of signals. The normalized 
detection curve of Cluster C’ matches with Cluster B, however, Cluster C’ is not even half of the size of cluster 
B. Hence, Cluster C’ is probably related to high-frequent urban signals. Cluster D, which is related to general 
seismicity, does not appear within the main clusters based on spectral coefficients. In fact, most of the seismic 
burst is within cluster B’, which is mainly related to ambient signals (see Figure D1d). Hence, we can assume 
that Cluster C and D are unified here in Cluster B’. Retrieving subclusters at a lower distance threshold than the 
three main clusters could possibly reveal a few subclusters related to the seismic burst. However, 12 out of 16 
subclusters contain events from the seismic burst (see Figure D1e). It is not possible to identify a few clusters 
which are purely related to the seismic burst. Subcluster B’.1 and B’.2 contain ca. 20% of the cataloged seismic 
burst respectively, however, most of the subcluster (𝐴𝐴 𝐴 96%) is not related to the cataloged seismic burst.

Figure C1.  Comparison between the earthquake catalog from clusters D.1 and D.4 (thick brown line), and the single-station 
(DC06) template matching catalog (dashed blue line). (a) Normalized cumulative number of events. (b) Cumulative number 
of events. The single-station template matching catalog documents about 50% more events.
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This example shows that a deep scattering spectrum delivers a better representation for classification purposes 
than a Fourier transform spectrum. This is particularly true for classifying reoccurring transient signals in a rela-
tive large data set such as the events of the seismic burst within the continuous seismogram.

Data Availability Statement
The facilities of IRIS Data Services, and specifically the IRIS Data Management Center, were used for access 
to waveforms, related metadata, and/or derived products used in this study. The data of the DANA array can 
be found at DANA (2012). The scattering network which was used in this study can be found at https://doi.
org/10.5281/zenodo.5518136. The python packages ObsPy, SciPy, and Scikit-learn were heavily used for pro-
cessing the data (Beyreuther et al., 2010; Pedregosa et al., 2011; Virtanen et al., 2020). Maps were created with 
the python package Cartopy (Met Office, 2010 – 2015). We used map tiles by Stamen Design, under CC BY 3.0. 
Data by OpenStreetMap, under ODbL.

Figure D1.  Dendrogram analysis based on spectrogram features and statistical characteristics of the different clusters. (a) 
Dendrogram calculated in the feature space. The dendrogram is here truncated in order to form 16 clusters. The clusters 
marked with a letter are considered the main clusters, and the subclusters are indicated with numbers. The numbers in the 
parenthesis indicate the number of samples in each cluster. (b) Averaged first-order scattering coefficients of main clusters 
A', B' and C' (c) Normalized cumulative detections of main clusters A', B', and C', and of the seismic burst obtained from 
the multi-station template-matching catalog. (d) The distribution of the seismic burst across the three main clusters. (e) The 
distribution of the seismic burst across all subsclusters.

https://doi.org/10.5281/zenodo.5518136
https://doi.org/10.5281/zenodo.5518136
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