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Abstract12

We propose a strategy to identify seismic signal classes in continuous single-station seis-13

mograms in an unsupervised fashion. Our strategy relies on extracting meaningful waveform14

features based on a deep scattering network combined with an independent component anal-15

ysis. We then identify signal classes from these relevant features with agglomerative clus-16

tering, which allows us to explore the data in a hierarchical way. To test our strategy, we17

investigate a two-day long seismogram collected in the vicinity of the North Anatolian fault18

in Turkey. We interpret the automatically inferred clusters by analyzing their occurrence19

rate, spectral characteristics, cluster size, and waveform and envelope characteristics. At20

a low level in the cluster hierarchy, we obtain three clusters related to anthropogenic and21

ambient seismic noise and one cluster related to earthquake activity. At a high level in22

the cluster hierarchy, we identify a seismic crisis with more than 200 repeating events and23

high-frequent signals with correlating envelopes and an anthropogenic origin. The applica-24

tion shows that the cluster hierarchy can be used to draw the focus on a certain class of25

signals and extract subclusters for further analysis. This is interesting, when certain types26

of signals such as earthquakes are under-represented in the data. The proposed method can27

be also used to discover new types of signals since it is entirely data-driven.28

Plain Language Summary29

Seismic data most likely contain a wealth of crucial information about active geological30

structures such as faults or volcanoes. The growing amount of seismic data collected nowa-31

days cannot scale with manual investigation, suggesting automatic algorithms for scanning32

continuous data streams. We develop a strategy based on artificial intelligence to scan con-33

tinuous seismic data and infer patterns automatically. We propose a hierarchical approach34

to gather similar signals into families since we expect the content of seismic data to be35

complex, dominated mainly by noise and with rare events such as explosions or earthquake36

signals. Our strategy relies on a particular neural network, the scattering network, to ease37

design and training. This paper analyzes two days of continuous seismic data collected in38

the vicinity of the North Anatolian fault. We compare and discuss our results with classical39

approaches for earthquake detection and noise description.40

1 Introduction41

When the first seismometers were developed and put in place, their primary purpose was42

to better understand earthquakes since they were a major hazard to human-kind. However,43

with time, seismologists found many kinds of signals on these recordings. It is only two44

decades ago that Obara (2002) discovered a new type of signal with tectonic origins called45

non-volcanic tremors. Other than tectonic signals seismometers also record the oceanic46

microseisms (see e.g. Ebeling, 2012, for a recent review), rockfalls and other mass movements47

(e. g. Lacroix & Helmstetter, 2011; Deparis et al., 2008), ground and air traffic (e. g. Riahi48

& Gerstoft, 2015; Meng & Ben-Zion, 2018) or other kind of human-induced sources (such49

as church bells in Diaz, 2020). The mixing of all these sources renders a complex seismic50

wavefield that makes the analysis and interpretation of seismic records difficult, especially51

if seismic data are the only data available. As a response to this problem, seismologists52

have developed many processing tools for exploring these complex seismic data. Nowadays,53

seismology benefits from artificial intelligence developments, bringing new machine-learning-54

based solutions for exploring seismic data, as we demonstrate in the present paper.55

From a general perspective, machine learning defines a framework to solve tasks (such as56

recognizing patterns in a data set) when rule-based algorithms are not easy to formulate. In57

order to do so, machine-learning algorithms mostly rely on a set of data characteristics with58

which the task is easier to solve, instead of the data itself. These characteristics are called59

features. Finding the most relevant features should be done according to the task at hand60
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and can be done thanks to prior knowledge on the data or by defining proper algorithms to61

learn the most relevant features. We distinguish classical machine-learning algorithms that62

rely on human-defined features (Maggi et al., 2017; Malfante et al., 2018) or representation-63

learning algorithms where the features are learned from the data to optimize a given task64

(LeCun et al., 2015; Ross et al., 2018; Rouet-Leduc et al., 2020). While classical machine65

learning provides less accuracy in most cases, it provides interpretability since the features66

are known, which is an interesting aspect. Most algorithms that rely on representation67

learning are less easy to interpret since the features are more abstract, but they also provide68

more accurate results. In the present paper, we propose to use a hybrid approach between69

classical and representation learning algorithms that combines the advantages of both.70

Once the features are defined, a model is trained to map the features to a certain output.71

In supervised learning the model learns that mapping based on a labeled training data set72

(Goodfellow et al., 2016). For instance, locating earthquakes with a single seismic station is73

a non-trivial task to address with supervised learning. It has been recently shown that deep74

neural networks can infer the position of earthquakes from single-station records (Perol et al.,75

2018; Mousavi & Beroza, 2019). This experiment illustrates the range of applications that76

supervised machine learning can find in the domain of seismology. Still, the limitations of77

supervised learning lie within the ones of our expert knowledge. Indeed, supervised models78

can only automatize a given task and therefore strongly rely on the quality of the labels79

of the training data set. Moreover, supervised learning is limited to the labels we know80

and cannot search for signatures or patterns with unknown properties in a data-exploration81

fashion.82

Unsupervised learning methods such as clustering can overcome this particular problem83

as they provide tools to explore seismic data without labels, thus without any human biases84

(Bergen et al., 2019). In the particular case of waveform clustering, a classic approach con-85

sists of two steps: firstly, the continuous seismic data is projected onto a feature space, and86

then a clustering algorithm performs the identification of classes in this given feature space.87

We here review a few studies that applied this approach for the unsupervised classification88

of seismic signals.89

In Köhler et al. (2010), the authors use self-organizing maps for a data-driven feature90

selection and clustering of seismic waveforms. With that approach they identify different91

long-term variations and short-term seismic events in the continuous data. They also men-92

tion that a human-based inspection should replace the automatic selection of the number of93

clusters based on a validity measure. In Johnson et al. (2020), the authors label continuous94

seismic data by performing a k-means clustering in a reduced spectral representation of the95

input seismic data recorded by a dense seismic array. They identify five clusters that mostly96

describe the weak ground motion but also contain signals from earthquakes. In Seydoux97

et al. (2020), the authors generate features with a deep scattering network and then use a98

Gaussian-mixture model for clustering. They blindly identify a recurrent precursory signal99

before a landslide in a daylong data set with this approach. However, if they increase the100

data set to 17 days, the class population imbalance becomes too large to recover the precur-101

sory signal into a single cluster. Instead, they identify two clusters related to seismic waves102

generated by storm systems in the Atlantic ocean. As a solution, they propose to perform103

a second-order clustering revealing more details in the first-order clusters and retrieving the104

precursory signal. In Kodera and Sakai (2020), the authors introduce an anomaly detector105

before clustering the seismic data in the spectral domain. The anomaly detector erases106

the class imbalance, and the clustering algorithm focuses only on the outliers. Detecting107

anomalies can be interesting if only anomalies are the target of interest, but it does not give108

a complete picture of the seismic data.109

These studies have shown that extracting earthquake clusters from continuous seismic110

data is difficult mainly due to class imbalances, i.e. the large disparities between occurrences111

of different class of signals (He & Garcia, 2009). Indeed, we know that signals such as those112

produced by earthquakes inhabit a tiny part of the data, while seismic noise inhabits most113
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Figure 1. Illustration of possible hierarchy in seismic data. The different branches represent

how a signal class splits into different subclasses depending on a given similarity measure. Here the

different classes of events are thought in a hierarchical way, based on arbitrary signals properties

(e.g. duration, frequency range or signal’s structure). This scheme aims at illustrating the expected

behavior of an optimal clustering algorithm, but does not depict the potential issues related to

clustering such as overlapping between different classes of signals or imbalance between classes.

of the data. Therefore, the clustering algorithms such as k-means are very likely to find114

different classes of noise (Johnson et al., 2020).115

In the present study, we introduce a new strategy that explores seismic data in an116

unsupervised fashion and finds classes with largely imbalanced population sizes. Our strat-117

egy follows the idea that seismic signals cluster in a hierarchy of classes following a specific118

metric, as schematized in Figure 1. Note that this illustration aims at sketching the concept119

rather than being complete or accurate. In the following lines, we consider the similarity120

between signal classes to be measured on a set of signal features that can be human-defined121

(such as mean frequency and signal duration) or learned with machine-learning tools, as122

we propose to do in the present paper. In the first place, one can imagine the seismic sig-123

nal classes to split into long-term and short-term signals based on the duration of a signal124

(Figure 1). In the class of long-term signals, one could use a similarity measure based on125

frequency content to separate the primary from secondary microseism. We see that building126

a tree of classes lets us explore the data on different levels and that different features may127

be relevant at each node of the tree.128

The sketch presented in Figure 1 also illustrates the problems of designing a data129

hierarchy by hand. The labels used in this sketch are the ones we created as seismologists130

based on our domain knowledge. That is problematic for those classes of signal that do131

not have a proper definition of signal and source properties, such as non-volcanic tremors.132

Moreover, some splittings, such as between earthquakes and explosions, ask for a more133

complex similarity measure which will be hard to design by hand. Hierarchical clustering134

produces precisely this kind of tree, called a dendrogram, based on the exploration of the135

similarity between samples in the feature space representation. Therefore, we propose to136

represent seismic data as a dendrogram and utilize it to explore the data in an unsupervised137

and unbiased way.138

In the next section, we present the workflow to build a dendrogram from continuous139

single-station data. In section 3, we introduce a data set to apply and test the proposed140
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Figure 2. Proposed workflow for exploring continuous seismograms in a hierarchical way. (a) In-

put continuous 3-component seismograms, as detailed in Section 3. (b) Deep scattering spectrum

of the seismograms, with a lower temporal resolution and a high number of dimensions, detailed

in Section 2.1. (c) Independent features extracted from the deep scattering spectrum with inde-

pendent component analysis, following the description in Section 2.2. (d) Dendrogram calculated

from a similarity metric in the feature space, as explained in Section 2.3.

workflow. In section 4, we show and discuss briefly the resulting dendrogram. Section 5 is141

about navigating through the dendrogram and interpreting the clusters at different levels.142

2 Method143

A sketch of the hierarchical clustering workflow is depicted in Figure 2. To automatically144

infer classes in seismic data, one needs to project the time-domain data onto a feature space145

with invariant properties towards translation or small deformation (Andén & Mallat, 2014).146

For that purpose, we implement a scattering network (a convolutional neural network with147

wavelet filters) to calculate a deep scattering spectrum of the seismic data (Figure 2b).148

The large-dimensional representation provided by the deep scattering spectrum is not well-149

suited for the commonly used clustering algorithms (Beyer et al., 1999; Kriegel et al., 2009).150

Therefore, we extract the most relevant features out of the deep scattering spectrum with an151

independent component analysis (Comon, 1994), hereafter mentioned as the feature space152

(Figure 2c). Finally, we perform hierarchical clustering within the feature space and utilize153

the dendrogram for exploring the data and extracting clusters (Figure 2d).154

2.1 Deep scattering spectrum155

In this study, we aim to explore the data in an unsupervised and unbiased way, i.e.,156

we want to assume as little as possible about the data themselves. For that purpose, it is157

crucial to find a representation that is not a human-based selection of features. A time-158

frequency representation such as the spectrogram is one way to create a set of features159

without favoring any data characteristics. However, Andén and Mallat (2014) showed that160

a spectrogram generated by the Fourier transform is not ideal for classification purposes since161

it is not stable to time-warping deformations, especially at short periods compared with the162
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duration of the analyzing window. They introduce another time-frequency representation163

called a deep scattering spectrum which is computed by a scattering network. This type of164

network implements a cascade of convolutions with wavelet filters, modulus function, and165

pooling operations. Deep scattering spectra are locally translation invariant and preserve166

transient phenomena such as attack and amplitude modulation. These characteristics are167

beneficial when it comes to classifying any time series data. In Andén and Mallat (2014) and168

Peddinti et al. (2014), the authors have successfully classified audio data based on the deep169

scattering spectrum. Seydoux et al. (2020) have brought that representation into seismology170

and showed that small precursory signals of a landslide could be detected and classified in an171

unsupervised fashion. Other successful deep-learning classifiers inspired by deep scattering172

networks are presented in Balestriero et al. (2018) and Cosentino and Aazhang (2020).173

We here use the strategy presented in Seydoux et al. (2020) for calculating the deep174

scattering spectrum. Considering the continuous input signal x(t) ∈ RC (where C is the175

number of channels), the scattering coefficients S(`) of order ` are obtained from the following176

cascade of wavelet convolutions and modulus operations:177

S(`)
(
t, f (1)n1

, f (2)n2
, . . . , f (`)n`

)
= max

[t,t+dt]

∣∣∣φ(`) (f (`)n`

)
?
∣∣∣. . . ? ∣∣∣φ(2) (f (2)n2

)
?
∣∣∣φ(1) (f (1)n1

)
? x
∣∣∣∣∣∣∣∣∣∣∣∣,

(1)178

where ? stands for the temporal convolution, | · | represents the modulus operator and179

φ(i)(f
(i)
ni ) is the wavelet filter at the layer i of the scattering network, with center frequency180

fni . Here fni refers to one of the center frequencies of the layer i indexed by ni = 1 . . . Ni,181

where Ni is the total number of wavelets at layer i; the number of wavelets per layer and182

frequency range of each layer is discussed later. While the authors in Seydoux et al. (2020)183

implement a learnable wavelet filter φ(i)(f
(i)
ni ) with respect to the clustering loss, we directly184

use a (non-learnable) Gabor filter, as originally presented in Andén and Mallat (2014).185

This choice was made principally because we do not perform a fixed cluster analysis in our186

study, but an exploration of the data instead where a loss function is harder to define. The187

maximum-pooling operation is performed over a time interval [t, t+dt] of duration dt over the188

continuous data; the data sampling rate and the pooling operation control the final sampling189

rate of the deep scattering spectrum. While the first-order scattering coefficients resemble a190

spectrogram based on a wavelet transform, the second-order scattering coefficients contain191

information about the attack and modulation. For the interested reader we refer to Andén192

and Mallat (2014) and Seydoux et al. (2020).193

2.2 Features extraction from deep scattering spectrum194

The data in the scattering domain can have more than 1,000 dimensions and, thus, the195

conditions for clustering are not favorable (Kriegel et al., 2009). Indeed, distances in very196

high-dimensional spaces give little information about the structure of the data (the so-called197

curse of dimensionality Bellman, 1966). In addition, the representation is known to be highly198

redundant since the wavelet filters of the first scattering layer are often considered with a199

strong frequency overlap in order to provide a dense first-order representation. Therefore,200

it is recommended to reduce the dimensions before clustering. In our case, we use an201

independent component analysis (ICA) to reduce the dimension of the representation. In202

the following remarks, we explain the basic concept of ICA. For the interested reader we203

refer to (Comon, 1994).204

ICA is introduced as a statistical tool for blind source separation and feature extraction.205

The generative model of the ICA can be described as:206

x = As, (2)207

where x ∈ RN×F are the N observations of dimension F , s ∈ RF×C are the C inde-208

pendent components of the same dimension F as the observations and A ∈ RC×N is the209
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mixing matrix (that is, the mixing of the C independent components for every observation).210

The observations are therefore a linear combination of the independent components. A test211

of statistical independence is required to solve Equation 2 while ensuring the components s212

to be independent. Among the different strategies, we can look for a minimum of mutual213

information, or similarly, a maximization of the non-Gaussianity. In our study, we apply214

the FastICA algorithm from the scikit-learn Python library, which uses the negentropy215

as a measure of non-Gaussianity (Hyvärinen & Oja, 2000). This analysis is similar to the216

principal component analysis, with the difference that the independent components are not217

orthogonal. In addition, there is no information about the variance explained by the different218

independent components, and are therefore delivered unsorted by the algorithm.219

2.3 Hierarchical clustering220

Cluster analysis is one way to assign labels to data samples in a given feature represen-221

tation with unsupervised learning. The choice of the clustering algorithm depends mainly222

on the statistical characteristics of the data set. Seismometers are highly sensitive sensors223

over a wide range of frequencies. Most seismic records are dominated by ambient seismic224

noise, while seismic activity only inhabits a small part. In that sense, we expect classes of225

signals (or types of noises, as depicted in Figure 1) to be largely imbalanced; that is, most226

samples may belong to the background noise class while only a few data samples can relate227

to different classes of seismic events. Therefore, the k-means algorithm, which tends to228

identify clusters with similar population sizes and variances, can have difficulties detecting229

a repeating waveform pattern, with only a few occurrences, in a relatively large data set230

(Lin et al., 2017).231

This study investigates how the data cluster in a hierarchical way with a bottom-up232

approach, namely agglomerative clustering. At first, we briefly introduce the methodology.233

Hierarchical clustering relies on a similarity matrix, which defines the similarity (e.g., a234

specific distance) between all data points in the data set. With a bottom-up approach, all235

data points start in a singleton cluster. The clusters start merging based on the similarity236

matrix until all data points unify in a single global cluster. This process is summarized in237

a dendrogram, revealing the hierarchical structure of the entire data set. Such a strategy238

fits very well the nature of seismic data, which records wavefields from different sources239

(Figure 1).240

The agglomerative clustering outcome depends mainly on the applied metric, which241

drives the merging of the cluster. In our approach, we use the Ward’s method (Ward Jr,242

1963). Given a distance d (here considered Euclidean), the Ward’s method aims at grouping243

data samples xi into clusters such as the within-cluster variance remains minimal after244

merging different clusters. The within-cluster variance quantifies the spread σ of each within-245

cluster data samples defined in Appendix B. By minimizing the overall variance,
∑K

c=1 σc,246

the Ward’s method allows for data clusters of variable population sizes and variances and247

may highlight clusters of high density located in the vicinity of more spread, low-density248

clusters. Therefore, Ward’s method is suitable for the expected seismic data partition.249

3 Data250

We test our proposed workflow on continuous three-component seismic data from the251

station DC06 of the DANA experiment in Turkey (see for instance Poyraz et al., 2015, and252

the map shown in Figure 3a). The sampling rate of the data is 50 Hz. We choose the data253

set for mainly two reasons. First of all, the data set contains both seismic and anthropogenic254

activity, which is a typical situation in most seismological studies. Second of all, an existing255

template matching catalog provides labels for the seismicity in this area. The catalog was256

built following the methodology in Beaucé et al. (2019).257
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Figure 3. Geological context and seismic data used in the present study. (a) Map of the

North Anatolian fault zone showing station DC06 (black triangle), the seismic crisis (red dots)

including the identified mainshock (red star) and other seismic activity (blue dots); all detected

with a template matching strategy. The geological faults that ruptured after 1900 (black lines)

are adapted from Emre et al. (2011). (b) Cumulative detections of the seismic crisis (in red) and

other seismic activity (in blue) obtained with template matching. (c) Continuous spectrogram of

the east-component of station DC06, with a visual identification of (A) oceanic microseism, (B) a

non-stationary monochromatic noise source, and (C) daily high-frequency activity.
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We choose to analyze the seismic data from the 25th to the 27th of July 2012. During258

that period, a seismic crisis with 148 events occurred on and around the northern strand of259

the North Anatolian fault (see Figure 3a and b). The catalog explains the series of events260

with 17 templates having their hypocenters close to each other (Figure 3a, red dots). Since261

the seismic crisis resembles a repeating pattern with short time-warping deformations due262

to slight changes of the hypocenters, it is an interesting study case for our proposed method.263

The spectrogram of the east component of station DC06 is presented in Figure 3c. The264

oceanic microseism is visible around 0.2 Hz, where we can observe the dispersive nature of265

the oceanic gravity waves. At around 1.5 Hz we can identify a nonstationary monochromatic266

noise source, which seems to be more active during the first day. At frequencies higher than267

3 Hz we can see increased activity during daytime, most likely induced by anthropogenic268

noise sources. The main shock of the crisis during the evening of the 25th is also easy to269

spot in the spectrogram.270

4 Results271

4.1 Feature space272

Firstly, we use the continuous three-component seismograms to calculate the deep scat-273

tering spectrum with the scattering network (as detailed in Equation 1). The network274

parameters are physics-driven and can be adjusted according to the goal. We use a two-275

layer network since Andén and Mallat (2014) argued that more layers do not necessarily276

introduce new valuable information. The first layer performs 24 wavelet transforms per277

channel starting at the Nyquist frequency (25 Hz) and going down to a frequency of 0.78 Hz.278

The second layer performs 15 wavelet transforms on each of the first-order wavelets trans-279

forms, from the Nyquist frequency down to a frequency of 0.19 Hz. With three channels as280

an input, 24 wavelet transforms at the first layer, and 15 wavelet transforms at the second281

layer, we have 1080 wavelet transforms. Since we are interested in detecting and classifying282

non-stationary events such as the seismic crisis, we use maximum pooling to downsample283

the scattering coefficients. If the focus of classification is the background noise, average284

pooling might be the better choice (as suggested in Seydoux et al., 2020). The scattering285

network transforms the three-channel continuous seismic data (3 x 8646001 data points) into286

the scattering coefficients (1080 x 8384 data points), i.e., we highly decreased the number287

of samples in time and highly increased the number of dimensions. The time resolution of288

the scattering coefficients is around 20.48 s.289

For dimensionality reduction, we apply an independent component analysis using the290

FastICA algorithm from the scikit-learn Python library. In this study, we select the291

appropriate number of independent components according to the reconstruction loss between292

the original data and the reconstructed data after compression with an ICA (detailed in293

Appendix A). We emphasize that we look for a trade-off between keeping the most significant294

amount of information while using few independent components. From the study of the loss295

with increasing number of components shown in Appendix A and Figure A1 therein, we296

conclude that keeping ten independent components is a good compromise and constitute297

our choice in the present study. A visual representation of the ten independent components298

building the feature space is depicted in Figure A2 in Appendix A.299

4.2 Dendrogram300

After transforming the continuous seismic data into a most relevant set of features, we301

can use this representation to explore the data with hierarchical clustering. By controlling302

the distance threshold, we can extract different numbers of clusters. In Figure 4a we selected303

a distance threshold of 0.47 in order to show a truncated dendrogram stopping at 16 clusters.304

At a distance of 0.9, we extract four main clusters labeled as A, B, C, and D. Figure 4b305

shows the averaged first-order scattering coefficients of these four clusters. These first-306
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Figure 4. Dendrogram analysis and statistical characteristics of the different clusters. (a) Den-

drogram calculated in the feature space (see Sec. 2.3 for explanations). The dendrogram is here

truncated in order to form 16 clusters. The clusters marked with a letter are considered the main

clusters, and the subclusters are indicated with numbers. The number of samples in each cluster

indicates the numbers in the parenthesis. (b) Centroidal first-order scattering coefficients for main

clusters A, B, C and D. (c) Normalized cumulative detections of main clusters A, B, C and D, and

of the seismic crisis obtained from the multi-station template-matching catalog. (d) Relative size

of the main clusters compared to the size of the entire data set.

order scattering coefficients describe the frequency characteristics of each cluster. Figure 4c307

presents the normalized cumulative detection rate of each cluster, with the seismic crisis308

detection rate indicated as a reference. The relative size of each cluster compared to the309

size of the entire data set is depicted in Figure 4d. In the following remarks, we will analyze310

each of the four main clusters from left to right.311

Cluster A contains ca. 27 % of the data (Figure 4d) and is the first cluster to split from312

the whole data set, i.e., cluster A is the furthest away from the center of the data points313

(Figure 4a). Compared to the other clusters, its scattering coefficients for all frequencies are314

relatively low except for a local maximum around 1.5 Hz (Figure 4b). Looking at the cor-315

responding cumulative detection curve (Figure 4c), we see that this cluster is active mainly316

during the first day until the late afternoon, which seems to correlate with the monochro-317

matic signal around 1.5 Hz we have already identified in the spectrogram (Figure 3c).318

Cluster B contains about 19 % of the data samples (Figure 4d) and has relatively319

large scattering coefficients for frequencies above 10 Hz (Figure 4b). The corresponding320

cumulative detection curve indicates that this cluster accumulates less detections during321

the beginning of a day than with later times of a day (Figure 4c). Combining these facts322

leads to the hypothesis that cluster B might be related to signals with an anthropogenic323

origin.324

Cluster C is the largest cluster with more than 50 % of the data points (Figure 4d).325

Compared to the other clusters, it also has the lowest scattering coefficients at all frequencies326

(Figure 4b). Looking at the cumulative detection curve (Figure 4c), we see this cluster shows327
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an almost linear increase starting at the afternoon of the first day, exactly when cluster A328

becomes almost inactive. The cluster size and frequency content suggest that cluster C is329

related to samples containing only ambient noise.330

Finally, cluster D contains about 4 % of data set (Figure 4d) and is the smallest of the331

four clusters (Figure 4d). The corresponding first-order scattering coefficients show a local332

maximum around 5 Hz (Figure 4b). Its cumulative detection curve correlates well with the333

detections of the seismic crisis (Figure 4c), with additional detections before the seismic334

crisis starts. All these observations indicate that cluster D is probably related to nearby335

seismic activity in general.336

5 Discussion337

In this section, we will discuss and interpret the dendrogram’s representation and its338

clustering solution. While the main focus is on identifying how the seismic crisis occurs339

in the dendrogram, we will also discuss how the general seismicity is observed through340

this representation, and interpret the remaining clusters with anthropogenic activity and341

ambient seismic noise properties. ‘342

5.1 Identification of the seismic crisis within the dendrogram343

Firstly, we identify all time segments containing onsets of the events of the seismic344

crisis and observe which clusters those time segments belong to. The template matching345

catalog contains 148 detections related to this seismic crisis. However, we only associate 136346

samples in the feature space with the seismic crisis, since one sample represents about 20 s of347

waveform data and, thus, can contain multiple events. Figure 5a shows that a large majority348

of the samples, which contain arrivals of the seismic crisis, fall into cluster D (92.6 %). On349

the other hand, only 40 % of cluster D is related to the seismic crisis, underpinning the350

statement that this cluster is related to general seismic activity. Cluster B and C share the351

remaining 7.4 % of the crisis. Compared to the large population sizes of clusters B and C, the352

contribution of the crisis almost vanishes (0.3 and 0.1 %). Cluster A contains no detections of353

the crisis. While cluster D contains the majority of the seismic crisis, the interesting aspect354

is to understand what the remaining 60 % samples of this cluster are related to (earthquakes355

from the same source region, different signals, etc). To answer that question, we investigate356

the subclusters visible in Figure 4a obtained with a distance threshold of 0.47; in particular,357

we will narrow the focus on the subclusters of cluster D, namely the four subclusters D.1 to358

D.4.359

Firstly, we look at the distribution of the samples containing the seismic crisis across360

the four subclusters in main cluster D. From Figure 5a, we know that more than 92 % of361

the crisis was found in cluster D. We observe in Figure 5b that this amount splits into ca.362

71.3 % in cluster D.1 and ca. 21.3 % in cluster D.4. The subclusters D.2 and D.3 contain363

no earthquakes from the seismic crisis and will be discussed later. If we look at the cumu-364

lative detection curve of each subcluster in D (Figure 5c), we see that cluster D.1 and D.4365

share a very similar temporal pattern. The corresponding centroidal first-order scattering366

coefficients (Figure 5d) explain why the crisis got split into two clusters: across almost all367

frequencies the larger subcluster D.1 shows significantly smaller scattering coefficients than368

the smaller subcluster D.4. Hence, the magnitudes of the events seem to be the character-369

istics that separates the crisis into two clusters. Besides, we observe that 56 % of D.1 and370

97 % of D.4 can be explained by the cataloged crisis. This observation raises the question:371

what are the samples in D.1 and D.4 that cannot be related to the seismic crisis recorded372

by the catalog? We can answer this question by looking at the waveforms representing the373

corresponding data points of subclusters D.1 and D.4.374

Figure 6a, b and c show the corresponding waveforms of all 204 data points of the375

two subclusters D.1 and D.4. For all waveforms we observe the P and S seismic phase376
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Figure 5. Identification of the seismic crisis within the main and subclusters. (a) The dis-

tribution of the seismic crisis across the four main clusters. (b) The distribution of the seismic

crisis across the four subclusters in the main cluster D. (c) Normalized cumulative detection curves

for the subclusters in the main cluster D. (d) Centroidal first-order scattering coefficients for the

subclusters in the main cluster D.

arrivals of the earthquakes. The first 30 waveforms correspond to subcluster D.4. 29 of377

them are are also in the catalog (marked orange) while 1 of them is not in the catalog378

(marked magenta). The following 174 waveforms are from subcluster D.1. 98 of them are379

are also in the catalog (marked light blue) while 76 of them are not in the catalog (marked380

blue). The waveforms are very similar to each other on all three channels. This indicates381

that these new detections are coming from the same source area. Note also that the first 30382

waveforms representing subcluster D.4 have a better signal-to-noise ratio than the following383

waveforms of subcluster D.1. This agrees with our assumption that the crisis is split into384

two subclusters due to magnitude differences. The magnitude estimations of the template385

matching catalog confirms this assumption (see Figure 6d). While most of the events located386

in D.1 range between M0.5 and M1, the events located in D.4 range between M1 and M2.2.387

By investigating cluster D and its subclusters D.1 and D.4, we are able to identify two388

subclusters representing the seismic crisis. While D.1 contains many events with smaller389

magnitudes, D.4 contains fewer events with larger magnitudes. Together the two subclusters390

contain 92.6 % of the cataloged events and 77 new events, which have identical P and S391

wave arrivals as the cataloged ones. The new detections can be explained by the fact that392

we utilize a single station method and compare it to a catalog based on a multi station393

method. More details and a comparison with a single station template matching catalog394

based on station DC06 can be found in Appendix C.395

However, 7.4 % of the cataloged detections can not be found in subclusters D.1 or D.4.396

In the following remarks, we want to analyze the misidentified 7.4 % of cataloged events,397

which equal ten over 135 events. First of all, we want to know where these events are398

located in the feature space. Therefore, we calculate the Euclidean distance between the399

misidentified events and the centroids of each cluster in the feature space (see Figure 7a).400

In magenta, we highlight the distance between the sample and its respective subcluster. In401
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Figure 6. (a,b,c) Waveform data from subcluster D.1 and D.4. The color code indicates the

according subcluster and if the event is mentioned by the catalog. (d) Magnitude estimations of

the cataloged events of the seismic crisis found in subcluster D.1 and D.4.
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Figure 7. Analysis of the misidentified earthquake waveforms. (a) Distances between misidenti-

fied data points containing an event from the catalog and the centroids of all clusters. The magenta

points show the distance between the data point and the centroid of its own respective subcluster.

The cyan points show the distance between the data point and the centroid of D.1. The gray points

show the distance between the data point and the centroids of the other 14 subclusters. (b, c,

d) Corresponding aligned waveform data sorted according to the distance to the centroid of D.1

(respectively channels E, N, and Z). The color coding represents the distance to the centroid of

subcluster D.1. A purple color indicates a larger distance than a light blue color.

cyan, we highlight the distance between the sample and subcluster D.1 containing the low402

magnitude events of the crisis. In gray, we highlight the distances to all other remaining403

clusters as a comparison. We sorted the misidentified ten events according to the distance to404

the centroid of D.1. We see that for the first six events, the distance to the centroid of D.1 is405

smaller than to the centroid of its respective cluster. The corresponding waveform data also406

offer explanations for the misidentification (Figure 7b to d). Indeed, the P and S arrivals407

are noisy but visible for the first five events. Thus, some events might be misclassified408

because samples are grouped with the Ward’s method, which solves iteratively an objective409

function considering the Euclidean distance and the within-cluster variance. In other words,410

clusters can agglomerate samples which might be closer to the centroids of other clusters411

if we consider the pure Euclidean distance. After the first five events, when the distance412

to its respective cluster becomes smaller than the distance to D.1., the P and S arrivals413

are not visible anymore, or other large-amplitude events are present. Here the problem is414

related to the representation of the data as a deep scattering spectrum or in the feature415

space. Other large-amplitude transients can corrupt the representation since we perform a416

maximum pooling to extract the scattering coefficients. This is not a specific problem of417

maximum pooling but pooling in general since this operation reduces information in the418

data.419
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5.2 Neighboring clusters of the seismic crisis in the feature space420

Having identified most of the seismic crisis in two neighboring subclusters already shows421

that the representation of the data and the distances between the data points are meaningful.422

As a next step, we want to analyze the neighborhood of these two subclusters to get a better423

understanding of the data representation. Since D.2 and D.3 share the same cluster with424

D.1 and D.4, we know that they are located next to each other in the feature space. This425

indicates that subcluster D.2 and D.3 might contain similar signals, such as seismic activity426

with a different origin than the seismic crisis.427

To verify this assumption, we can compare existing earthquake catalogs with the times-428

tamps of the samples in the subclusters. We extend the local template matching catalog429

with a regional catalog limited to events within a radius of 5° around station DC06. The430

regional catalog is downloaded from IRIS. For calculating the seismic phase arrivals at the431

station, we use the TauP module of ObsPy with the velocity model of Kennett and Engdahl432

(1991). We consider a sample related to an event of the catalog if the 20 s window of the433

sample overlaps with the window between the P wave arrival and the decaying coda.434

The waveform data of D.2 and D.3 are presented in Figure 8. Figure 8a indicates the435

samples which can be explained by arrivals of a regional or local event, and Figure 8b shows436

the samples which can not be explained by arrivals of a regional or local event. Note that one437

sample represents ca. 20 s of waveform data and that consecutive samples are represented by438

one index. Subcluster D.2 contains only nine samples corresponding to two seismic events439

indicated in blue in Figure 8a. The first event represented by eight consecutive samples at440

index 0 is a relatively distant M4 event. The other event represented by a single sample441

is a quarry blast from a local mine mentioned by the template matching catalog. At first442

sight, it might seem unexpected that these two events are found in the same subcluster.443

However, subclusters D.2 shows the largest scattering coefficients for frequencies below 5 Hz444

(see Figure 5d), and its centroid is the furthest away from the remaining data set as we can445

see from the inter-cluster distance matrix presented in Figure B1 in Appendix B. Moreover,446

the within-cluster variance σc in the top panel of Figure B1 indicates that the samples of447

subcluster D.2 are the most spread out compared to the other subclusters, This suggests448

that both events are seen as outliers in the data space due to their high amplitudes at lower449

frequencies.450

Moreover, we observe that the catalog can explain 67 % of all samples of D.3. However,451

we only show some waveforms in black in Figure 8a. The other 33 % are shown in Figure 8b,452

and some samples also show seismic phase arrivals (in particular, the seismograms shown453

at index six and nine). It is thus likely that the samples shown in Figure 8b contain454

uncataloged events. While subcluster D.1 and D.4 represent similar earthquakes from a455

similar source region, subcluster D.3 shows many kinds of signals, such as earthquakes with456

different magnitudes and distances to the station. We can interpret subcluster D.3 as an457

agglomeration of transient signals with increased energy between 1 and 5 Hz (see Figure 5d).458

Regional and local events also fall into this category. Thus, in the vicinity of the subclusters459

D.1 and D.4, related to the seismic crisis, other subclusters containing seismic activity can460

be found.461

5.3 Anthropogenic signals with high envelope correlation462

After identifying seismic activity in cluster D, we want to draw attention to the re-463

maining part of the seismic data set. Seismic activity induces short-term signals with a464

characteristic waveform and envelope shape. However, if we want to classify other types465

of signals like tremors, anthropogenic noise, or ambient noise, correlating waveforms are466

unlikely to be suitable for this task. One key feature of the deep scattering spectrum is the467

representation of the waveform’s envelope in the second-order scattering coefficients (Andén468

& Mallat, 2014). Consequently, we should find clusters with weakly correlating waveforms469

but strongly correlating envelopes.470
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Figure 8. Seismic waveforms identified in subclusters D.2 and D.3. (a) waveform data of D.2

and D.3 where the phase arrivals match the merged catalog. (b) waveform data of D.3 which do

not correspond to phase arrivals from the merged catalog.

–16–

ESSOAr | https://doi.org/10.1002/essoar.10507113.1 | CC_BY_4.0 | First posted online: Sat, 22 May 2021 03:09:27 | This content has not been peer reviewed. 



manuscript submitted to JGR: Solid Earth

A.1 A.2 A.3 B.1 B.2 B.3 B.4 B.5 C.1 C.2 C.3 C.4 D.1 D.2 D.3 D.40.0

0.5

1.0

CC

a

CCW CCE

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0

1
envelopes of channel Eb

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0

1

no
rm

al
ize

d 
am

pl
itu

de

envelopes of channel Nc

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time [s]

0

1
envelopes of channel Zd

0 5 10 15 20
hour in day

0

10

20

30

# 
de

te
ct

io
ns

e

0 5 10 15 20
frequency f1 [Hz]

4

3

lo
g(

S1 (
f 1

))

f

Figure 9. Interpretation of subcluster B.4. (a) Averaged correlation coefficient for the wave-

forms CCW and for the envelopes CCE for all 16 subclusters. (b,c,d) Aligned envelopes for the

three channels for subcluster B.4. (e) Number of detections per hour for subcluster B.4. (f)

Centroidal first-order scattering coefficients for subcluster B.4.

For that reason, we investigate the correlation coefficient of the waveform (CCW ) and471

the envelope (CCE) for all subclusters. Firstly, a template is defined by the closest sample472

to the centroid representing the most typical waveform of a cluster. Then, we calculate473

the correlation coefficient of the waveform data CCW and the correlation coefficient of the474

smoothed envelope CCE between the template and the remaining samples. The envelope is475

defined by the modulus of the analytical signal. The averaged results are depicted in Fig-476

ure 9a. We firstly observe that CCE is more significant than CCW for most subclusters. In477

particular, cluster B.4 shows the most significant discrepancy between CCE and CCW ; this478

subcluster is part of cluster B, which we related to high-frequent urban noise. In Figure 9b479

to d, we align the envelopes for each channel and each sample in B.4 to depict the shared480

characteristics. We see a very symmetric envelope that lasts around 5 s. The envelopes481

look very similar on all three components. Figure 9e shows a histogram of detections over482

the time of the day. We see that this cluster mostly appears during daytime with a clear483

peak around 14:00 local time. Figure 9f shows the averaged first-order scattering coefficients484

for all three channels. The frequencies above 5 Hz are very pronounced and peak between485

10 and 15 Hz. In summary, we see that subcluster B.4 is related to non stationary urban486

noise which produced similar envelopes lasting 5 s. Nearby road traffic could produce these487

kind of signals.488

5.4 Long-lasting signals with low envelope correlation489

As the last example, we want to draw attention towards clusters A and C. Both clusters490

show relatively low correlation coefficients for the envelopes (see Figure 9). Cluster C491

contains more than half of the data, and the average scattering coefficients are the lowest492

for all frequencies compared to the other clusters (see Figure 4b and d). Moreover, the493

subclusters of C have a relatively low distance to each other, and their within-cluster variance494

is relatively low (see Figure B1 in Appendix B). This indicates that they contain similar495

signals. Combining these facts, we conclude that this cluster contains ambient noise without496

any significant activity of transient signals.497
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Figure 10. Fourier amplitude of all three channels calculated over 10 min windows in the fre-

quency range of 1.4 to 1.6 Hz together with the activation of the main cluster A

Cluster A seems to correlate with the monochromatic noise source around 1.5 Hz (see498

Figure 3c and 4c). To prove that cluster A contains only data with increased activity around499

1.5 Hz we depict the occurrence of cluster A and the Fourier amplitude of the three channels500

filtered between 1.4 and 1.6 Hz as a function of time in Figure 10. In general, an increased501

amplitude around 1.5 Hz correlates well with the appearance of cluster A. However, not all502

samples with an increased monochromatic activity fall into cluster A. This can be explained503

by the fact that a sample in the independent component space contains pooled information504

of ca. 20 s of waveform data which can contain many different signals. For example, if two505

different seismic data windows contain an increased monochromatic signal activity, but only506

one of the two windows also contains an earthquake or road traffic, the representation in507

the feature space will be different because of the pooling. Therefore, some samples with508

increased activity around 1.5 Hz will not fall into cluster A because other signals happening509

simultaneously will change their position in the independent component space. Moreover,510

it is interesting to note that subcluster A.1 and A.3 show larger correlation coefficients for511

the waveforms than for the envelopes (Figure 9a). This characteristic only applies to these512

two subclusters and is related to the dominance of the monochromatic signal.513

Cluster A and C show that the dendrogram representation based on features from the514

deep scattering spectrum also finds cluster of noise sources without strong correlation of the515

waveforms or envelopes.516

6 Conclusion517

In this study, we proposed a new way of exploring seismic data hierarchically with a518

dendrogram based on features extracted from the deep scattering spectrum. A primary519

advantage of the workflow compared to other machine learning algorithms for classifying520

continuous seismic data is the interpretability at each step. For an application in this study,521

we chose a 2-day long data set containing a nearby seismic crisis with 148 cataloged events.522

These labels served as a sanity check for the algorithm.523

Firstly, we calculated time-frequency features with the scattering network, decreasing524

the sampling period in time and increasing the number of dimensions. Due to the curse525

of dimensionality, we reduced the data into a ten-dimensional data space with ICA. The526

single independent components already revealed trends in the data set (see Appendix A). In527

the reduced data space, we created the dendrogram based on the Ward’s distance between528

data points and clusters. The dendrogram was then used to navigate through the data set529

and explore areas of interest. This approach is very different from conventional clustering,530

where a certain number of clusters has to be defined beforehand. Here, the number of531
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clusters changes with the depth of the dendrogram. This approach can retrieve different532

sized clusters, of which some would have been ignored by statistical analysis.533

At a significant distance threshold, we extracted the four main clusters A, B, C, and D.534

With the cluster size, the temporal detection, and averaged first-order scattering coefficients,535

we delivered a rough interpretation of each cluster and obtained a rough overview of the536

entire data set. We identified cluster D as the cluster containing the seismic crisis. Inside537

cluster D, we found D.1 and D.4 containing 92.6 % of the seismic crisis. The main difference538

between the two subclusters is the magnitude of the events: D.4 contains events with a539

larger magnitude than D.1. 7.4 % (ten events) were found in subclusters of B and C due to540

poor signal-to-noise ratio or other significant amplitude signals in the pooling window. Here541

the problem is related to the pooling itself and the choice of similarity measure, which drives542

the iterative agglomeration. Nevertheless, we believe that Ward’s method is an appropriate543

choice as a similarity measure for the agglomeration process, since it is adapted to the class544

imbalance within seismic data. Moreover, the misidentified ten events are outweighted by545

the 77 new events found in subcluster D.1 and D.4. The similarity of the waveforms suggests546

that they come from the same source area. The case of the seismic crisis has shown that we547

can identify a repeating pattern with slight variations of the waveforms in an unbalanced548

data set.549

The other subclusters of D can also be primarily explained by seismic activity. D.2 is550

a minor outlier cluster containing a regional M4 event and a quarry blast from a nearby551

mine. 67 % of D.3 can be explained by a catalog containing local and regional events. These552

findings are very interesting when we talk about the meaning of neighborhood. Since we553

know that D.1 and D.4 contain the seismic crisis, we have reasons to assume that we can554

find similar types of signals (e.g., other types of earthquakes) in the neighborhood of these555

subclusters. However, we also need to keep in mind that subclusters from A, B, or C can556

also be in the vicinity of the subclusters D.1 and D.4. Further research needs to be done to557

understand better the meaning of neighborhood in this type of data representation.558

At last, we also analyzed clusters that are not related to seismicity. B.4 contains559

samples with a low correlation coefficient for the waveform data but a high correlation560

coefficient for the envelopes. Here we found a characteristic envelope that was symmetric561

and lasted for 5 s. The traffic of a nearby road could be a possible source for this cluster.562

This case shows the possibility to detect patterns that do not share the same waveform but563

the same envelope. This is particularly interesting for the detection and classification of564

volcanic and tectonic tremors, which often show similar envelopes but no seismic phases.565

Moreover, we relate Cluster A to a monochromatic signal around 1.5 Hz and cluster C to566

the general ambient noise. These examples show that the workflow also finds clusters with567

low correlating waveforms and envelopes.568

In general, the method can be used for various tasks. It is beneficial to get a general569

overview of an unknown data set. If there is a particular target of interest (e.g., earthquakes,570

urban noise sources, tremors), we can navigate the dendrogram and focus the analysis on571

a specific branch. The method can also be helpful to extract particular types of noise for572

performing ambient noise cross-correlation. We also believe that the dendrogram can reveal573

clusters/classes human expert knowledge could not reveal yet and expand the classes of574

signals we know so far.575

Moreover, the analysis of the seismic data showed its multi-label characteristics. Multi-576

ple signals can arrive simultaneously and, thus, assigning a single label to a window does not577

reflect the whole truth. Integrating this issue into clustering seismic data is an interesting578

aspect for future work.579
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Figure A1. Reconstruction loss with independent component analysis from the deep scattering

spectrum. The reconstruction loss ε(n) is calculated from Equation A1 as a function of the number

of independent components n.

Appendix A Number of relevant independant components580

For dimensionality reduction, we apply an independent component analysis using the581

FastICA algorithm from the scikit-learn Python library. Setting the number of dimen-582

sions in the reduced data space is always an exploratory task, and it is appropriate to583

estimate the information loss as a guideline for that. In this study, we use a reconstruction584

loss ε between the original data x and the reconstructed data x̂(n), obtained from Equation 2585

with n independent components, as586

ε(n) =

∑N
i=0 |xi − x̂

(n)
i |

N
. (A1)

Figure A1 depicts the reconstruction loss ε(n) for an increasing number of indepen-587

dent components n. The reconstruction loss decreases rapidly with the first components.588

With a more significant number of components, the rate of error decrease becomes smaller.589

The choice of the number of dimensions in the reduced data space is a trade-off between590

keeping the dimensions low and retaining most of the information. Thus, ten independent591

components seem like a good compromise to us.592

The time series of the ten independent components calculated from the data set are593

shown in Figure A2. To see if single components already show a clear distinction between594

the seismic crisis and the rest of the data, we marked in blue the samples containing at least595

one earthquake from the crisis. We see that all independent components show very different596

trends. For example the ninth independent component seems to separate the seismic crisis597

from the rest of the data. This observation raises the question if other trends, such as the598

background noise, can be correlated with specific independent components.599
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Figure A2. Time series of the ten independent components (IC) of the deep scattering spectrum

for the overall seismic data set. The samples containing one or more arrivals of the earthquake from

the nearby seismic crisis are highlighted with blue dots.

–21–

ESSOAr | https://doi.org/10.1002/essoar.10507113.1 | CC_BY_4.0 | First posted online: Sat, 22 May 2021 03:09:27 | This content has not been peer reviewed. 



manuscript submitted to JGR: Solid Earth

If we compare with the spectrogram of Figure 3c we see that the second independent600

component seems to correlate with the variations around 0.2 Hz and the eighth independent601

component seems to correlate with the monochromatic noise source around 1.5 Hz. This602

quick visual inspection shows us that the reduced data space can already be physically603

interpreted, and the ICA separates different signals on its different components, which is604

favorable for further analysis by clustering algorithms.605

Appendix B Within-cluster variance and inter-cluster distance606

This section presents the way we calculate the inter-cluster distance dij between clusters607

i and j and the within-cluster variance σi of cluster i. The inter-cluster distance are defined608

by the Euclidean distances between the centroids of the cluster:609

dij = ‖µi − µj‖2, (B1)610

where µi = 1
Ni

∑
n∈i ŷn represents the centroid of cluster i with the samples ŷn ∈ RC

611

belonging to cluster i, and where ‖ · ‖2 represents the L2 norm. Similarly, the variance σi612

of cluster i is defined as:613

σi =
1

Ni

Ni∑
n∈i
‖ŷn − µi‖22. (B2)614

This analysis is inspired from the silhouette analysis (Rousseeuw, 1987) and helps to615

understand better the clustering results. The within-cluster variances and the Euclidean616

distances between the centroids are depicted in Figure B1.617

Appendix C Comparison with Single-station Template Matching618

Station DC06 recorded higher signal-to-noise ratio S-waves from the seismicity crisis619

than the more proximal stations. Therefore, we are able to detect about twice more events620

by running the matched-filter search only on station DC06, with respect to the multi-station621

(ten stations) matched-filter search. The single-station template matching catalog captures622

a seismicity pattern similar to clusters D.1 and D.4, but reports about 50% more events (see623

Figure C1). Both the single-station and multi-station template matching catalogs were built624

with a detection threshold of eight times the root-mean-square of the correlation coefficient625

time series. The 20-second time resolution of the clustering method presented in this work626

sets a hard constraint on revealing the details of low magnitude seismicity. Nevertheless, we627

recall that producing a fine resolution earthquake catalog is not the first goal of our method,628

which instead aims at unraveling signals of different nature with no prior knowledge of the629

data set.630
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Figure B1. Inter-cluster distances and within-cluster variances. (a) Within-cluster variance

according to equation B2 for all 16 subclusters. (b) Inter-cluster distance according to equation B1

between all 16 subclusters.
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Figure C1. Comparison between the earthquake catalog from clusters D.1 and D.4 (thick brown

line), and the single-station (DC06) template matching catalog (dashed blue line). (a) Normalized

cumulative number of events. (b) Cumulative number of events. The single-station template

matching catalog documents about 50% more events.

et al., 2020; Pedregosa et al., 2011). Maps were created with the python package Cartopy645

(Met Office, 2010 - 2015). We used map tiles by Stamen Design, under CC BY 3.0. Data646

by OpenStreetMap, under ODbL.647
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