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Abstract: This paper presents a Linear Parameter Varying (LPV) based approach to handle different
steering scenarios for autonomous vehicles. The proposed methodology consists of the design of a
fast and performant LPV/LFT controller which can track the generated yaw rate reference, for speed
operating range, for lane tracking and smooth/fast lane changes. The handling of a dynamic maneuver is
achieved by a Command Governor (CG), which feeds the updated LPV/LFT closed loop system with a
“virtual” yaw rate reference. This virtual signal is the solution of an online receding horizon optimization
problem, meeting simultaneously safety bounds for the steering of the vehicle. The efficiency of the
suggested methodology is illustrated by simulation results for parameters of an automated Renault Zoe.
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1. INTRODUCTION

Automated vehicles consist of multiple cooperative systems
that have to be able to perform under different scenarios.
Vehicle control is the component that defines the behavior of
the vehicle for a given task, taking into account constraints,
performance criteria and the presence of uncertainties (Paden
et al. (2016)).

One of the most significant tasks is the steering of the vehicle.
Among steering control techniques are vision-based algorithms
where control points located at a look ahead distance in front
of the vehicle are tracked. The tracking, for a range of speed
considered as a varying parameter, is achieved either by min-
imizing a lateral error (Taylor et al. (1999)) or by following a
yaw rate reference (Tan and Huang (2014)).

Linear Parameter varying (LPV) control emerged as a way
to treat systems which include an external parameter that is
varying with respect to time but also is measured at every
instant. LPV theory has been demonstrated successfully to
multiple applications in aerospace, automotive and robotics
Hoffmann and Werner (2015); Biannic et al. (1997); Saupe and
Pfifer (2012); Marcos et al. (2015); Kapsalis et al. (2020).

On the other hand, reference and command governors (RG and
CG) are add-on schemes that supervise the operation of the
closed-loop system. This is achieved by solving in real time
a linear (for the case of RG) or a QP (for CG) optimization
problem where a new virtual reference feeds the system, for
which the states of the system do not violate some convex
constraints (see Garone et al. (2017)).

This paper at first, presents the design of a yaw rate tracking
LPV/LFT controller, considering as varying parameter the lon-
? This work was supported by Renault.

gitudinal speed of the vehicle. As it can be seen in simulation
results, the controller can perform well during steering for lane
tracking and smooth lane changes.

However, that fast controller is not able to achieve all the re-
quired tasks as a dynamic maneuver. The reason is that it leads
the vehicle to the loss of control cause of unwanted nonlinear
dynamics which are based on the saturation of the lateral forces
(Pacejka (2005)). Beal and Gerdes (2012) introduced safe han-
dling constraints on the yaw rate and the side slip angle of the
vehicle which are utilized in an MPC framework to control the
vehicle at its limits.

In this paper, these safe bounds are exploited and steering wheel
angle maximum values are obtained. Taking the varying speed
at every instant, the LFT matrices are updated online feeding
the CG with the steering wheel angle constraints. Through that
CG formulation, the LPV/LFT closed-loop system is restricted
to satisfy these bounds and making the maneuver feasible.

The rest of the paper is structured as follows. Section 2 presents
the augmented vehicle model used for the LPV/LFT controller
synthesis in section 3. Section 4 shows the formulation and
the design of the CG, as well as the constraints computation.
Section 5 and 6 presents the simulation results for the cases of
lane tracking/change and for the fast maneuver respectively.

2. VEHICLE’S LATERAL DYNAMICS

In this paper, for control design purpose, the bicycle model (See
Rajamani (2011)) is considered to describe the vehicle’s lateral
motion (lateral speed and yaw rate). Considering the velocity
of the vehicle vx as external varying parameter, a steering
controller can be designed regardless of the longitudinal motion
of the car. Note that this decoupling of the longitudinal and
lateral control is quite usual in that (industrial) context.



Fig. 1 shows the bicycle model which consists of the front and
rear wheels (assuming the left/right symmetry). vx, vy are the
longitudinal and lateral speeds, Fy f and Fyr are the lateral tire
forces, L f , Lr are the distances of the front and rear wheel from
the center of gravity respectively. ψ̇ is the yaw rate of the car.
α f , αr are the tire side-slip angles of the front and rear wheels
respectively. β is the side slip angle of the vehicle body. δ is the
steering wheel angle and C f , Cr are the front and rear cornering
stiffness.

Fig. 1. Two wheeled bicycle model depicting the lateral dynam-
ics of the vehicle.

Assuming small side slip and steering angles, the bicycle model
is given in a linear state space form as follows (see for instance
Corno et al. (2020)):

ẋ(t) = Ax(t)+Bu(t)
y(t) = Cx(t) (1)

with, A=
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and C = [0 1].

The state space vector is x(t) =
[

vy
ψ̇

]
and the input u(t) = δ is

the steering wheel angle.

Note that the steering command is applied to the vehicle by an
actuator which has been identified in the Renault test car as a
second order model with a time delay. The actuator model is
the one shown below:

Gact =
k

s2 +2ζ ωns+ω2
n

e−Tds (2)

where k, ζ , ωn and Td are the static gain, the damping, the
natural frequency and the time-delay respectively. For control
design the time delay is modeled by a second order Padé
approximation. Therefore, the identified fourth order model is
expressed in a state space form as presented below:

ẋact(t) = Aactxact(t)+Bactδ (t)
δact(t) = Cactxact(t)

(3)

where xact ∈ R4 is the vector expressing the states of the
actuator, Aact ∈R4×4, Bact ∈R4×1, Cact ∈R1×4 are the systems
matrices and δact ∈ R is the output.

The two systems (1), (3) are connected in series to form an
augmented state space model that will be considered for the
synthesis of the steering controller.{

ẋ f (t) = A f x f (t)+B f u(t)
y(t) =C f x f (t)

(4)

where, x f (t) =
[

x(t)
xact(t)

]
∈ R6 is the extended state vector,

A f =

[
A BCact
0 Aact

]
∈ R6×6, B f =

[
0

Bact

]
∈ R6

and C f = [C 0] ∈ R1×6 are the extended system matrices.

3. LFT CONTROLLER DESIGN

This section presents the design of the LFT controller, taking
the speed as a varying parameter, that can perform sufficiently
for the cases of lane tracking and during a smooth lane change.

3.1 LPV/LFT Model Formulation

The augmented model (4) is a LPV model considering the
velocity of the car ρ(t) = vx(t) as a bounded varying parameter
in the system matrix A f (ρ(t)).

ẋ f (t) = A f (ρ(t))x f (t)+B f u(t)
y(t) =C f x f (t)

(5)

In this study we have chosen to represent the above LPV sys-
tem (5) in the Linear Fractional Transformation (LFT) form
(Packard (1994)). Indeed such a representation is very conve-
nient when the state matrices have a rational dependency on the
parameter ρ (as here for vx) (Cockburn and Morton (1997)).
Note that this may allow to reduce the conservatism of the
polytopic approach (see for instance Kapsalis et al. (2021)).

The LFT plant (Fig. 2) is an interconnection of two parts: a
Linear Time-Invariant system M and a diagonal matrix ∆(ρ) =
ρI4×4 that includes all the appearances of the varying parameter
ρ in the varying parameter matrix A f (ρ). The input ω∆ and
output z∆ (where ω∆ =∆(ρ)z∆) are the fractional feedback vari-
ables which describes how the parameter ρ enters in the vehicle
dynamics. This allows to pull out the varying parameters from
the LTI part.

Fig. 2. LFT open-loop system

3.2 Dynamic Output LFT/H∞ Controller Design

The automatic steering control system is based on tracking a
yaw-rate reference r(t) computed at a target point, ahead of the
vehicle at a look-ahead distance L, located onto the reference
trajectory (See Tan and Huang (2014)). The designed steering
controller has to be fast enough but also provide comfort at the
same time.

To achieve the aforementioned objectives, some weighting
functions are selected to tune properly the tracking controller,
where the yaw-rate tracking H∞ control structure is presented
in Fig. 3.



Fig. 3. Control structure for yaw-rate tracking using H∞ weight-
ing functions.

The first order filters We(s) and Wu(s) are selected to en-
sure tracking of the yaw rate reference (through We(s)), while
handling the actuator limitation thanks to Wu(s) (Skogestad
(2007)).

The template functions are chosen as explained below:

• We(s) =
s/Me +ωe

s+ωeε
, where ωe = 3rad/s is the bandwidth

for fast tracking of the reference. Me = 2(6db) is chosen
to ensure robustness and εe = 0.001 which corresponds to
the steady state tracking error.

• Wu(s) =
s+ωu/Mu

εus+ωu
, where ωu = 10rad/s is the band-

width of the controller and have a smooth steering wheel
angle change. Mu = 2(6db) is chosen in order to satisfy
the saturation limits of the controller and εu = 0.1 which
is the roll-off frequency for better noise attenuation.

From the plant model and the weighting functions the control
scheme in Fig. 3 is converted into the general control config-
uration in Fig. 4, where P is the LTI part of the LFT form
of the generalized plant, including the controlled output vector
z = [z1 z2]

T and the exogenous input r.

Fig. 4. LFT plant of the augmented vehicle model

The H∞ control problem to be solved is then formulated as
follows : find a controller K such that the LPV/LFT controller
Fl(K,∆(ρ)), where Fl denotes the lower LFT representation,
satisfies :

• the closed-loop system in Fig. 4 is internally stable for all
parameter trajectories ρ

• The induced L2-norm between r and z satisfies

sup
‖z‖2

‖r‖2
< γ∞,(γ∞ > 0, to be minimized)

The above problem can be solved through the appropriate
Linear Matrix Inequalities as detailed in Apkarian and Gahinet

(1995). Here the LFT controller is computed using the toolbox
LPVTools (Hjartarson et al. (2015)) for vx ∈ [5,25]m/s,. The
optimal attenuation level reached is γ = 1.66. Fig. 5, 6 depict
the frequency response of the closed-loop system in comparison
with the template functions We(s) and Wu(s).
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Fig. 5. Controller Sensitivity function of the closed-loop system
for different values of the parameter ρ
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Fig. 6. Sensitivity function of the closed-loop system for differ-
ent values of the parameter ρ

4. COMMAND GOVERNOR DESIGN FOR EVASIVE
MANEUVER

The designed controller is a fast one that can track well a vary-
ing reference. However, when an abrupt maneuver is required,
that controller will lead the vehicle to loss of control. (Pacejka
(2005)). In the sequel, safe bounds on the steering wheel angle
of the controller are obtained and the the CG is designed to
achieve a fast maneuver.

4.1 “Safe” region of lateral forces

The bicycle model (Rajamani (2011)) is based on the linear
approximation of the lateral forces applied to the tires, and can
be expressed as follows:

Fy f =C f α f

α f = δ −β −
L f ψ̇

vx
,

Fyr =Crαr

αr =−β +
Lrψ̇

vx

(6)

In reality, the linear approximation stands till some maximum
value of the side slip angles α f ,max and αr,max after which
the forces start to saturate (Pacejka (2005)). Beal and Gerdes
(2012) then define safe envelopes for path tracking as maximum
bounds for β and ψ̇ as such:

ψ̇max =
Crαr,max(1+L f /Lr)

mvx

βmax = ar,max +
Lrψ̇

vx

(7)



where g is the acceleration due to gravity.

For these maximum values, the maximum “safe” steering wheel
angle is defined for which the vehicle can perform a maneuver
without loss of control. Combining (6) and (7), the maximum
command action is the one below:

δmax = a f ,max +βmax +
L f ψ̇max

vx
(8)

These computed bounds will be used in the optimization prob-
lem for the design of the command governor.

4.2 Command governor design for the LPV/LFT system

This subsection presents the Command Governor design for the
closed-loop system to enable the vehicle to perform an evasive
maneuver. The proposed algorithm is a receding horizon opti-
mization problem solved online by QP programming.

Firstly, the input-output mapping of the the bicycle model (1) is
written under LFT form by the upper LFT interconnection:

y = Fu(V,∆(ρ))δ (9)
where V is the LTI system of the LFT form of the bicycle model
and Fu denotes the upper LFT representation.

In the sequel, the closed-loop LPV model is obtained under
the LFT form by interconnecting the vehicle model (9) and the
designed LFT controller as such:

C L (V,K,∆(ρ)) = Fl(Fu(V,∆(ρ)),Fl(K,∆(ρ)) (10)

In that way, the actuator dynamics are omitted from the closed-
loop system in order to reduce the prediction variables and
consequently the optimization problem is faster for real-time
implementation. The discretized LFT closed-loop model of
(10) for sampling time Ts, is presented below as such:

xcl(k+1) = Acl(ρ)xcl(k)+Bcl(ρ)r(k)
ycl(k) =Ccl(ρ)xcl(k)+Dcl(ρ)r(k)

(11)

where xcl(k) =
[

x(k)
xK(k)

]
∈ R10 is the closed-loop state space

vector, ycl(k) =
[

ψ̇(k)
δ (k)

]
∈R2 the closed-loop output vector and

the LPV/LFT matrices Acl(ρ)∈R10×10,Bcl(ρ)∈R10,Ccl(ρ)∈
R10,Dcl(ρ) ∈ R2, given the measured parameter ρ on-line, are
updated similarly as the LFT controller in (16).

A Command Governor is designed for the system (11) as a solu-
tion to perform an abrupt maneuver. In real time it modifies the
yaw-rate reference r(k) by solving a constrained optimization
problem and feeding the controller with a virtual reference v(k)
for which the constraints are respected throughout a prediction
horizon N.

Furthermore, the command governor is fed with the updated
LPV/LFT matrices as well as the estimated states x̂cl(k) by an
LTI observer designed for the closed-loop system (11) where
the parameter ρ has nominal value, i.e ρ = 15m/s (Fig. 7).

As state constraints are chosen:
|δ (k)|<= δmax i.e,
|CK(ρ)xK(k)|<= δmax

(12)

in order to keep the vehicle inside the “safe” region as ex-
plained. Furthermore, the slew rate of the virtual reference is

restrained by an upper limit Dv so as to avoid the overshoot of
the controller steering angle.

Fig. 7. Full control-scheme including the command governor

All the above constraints and model formulation lead to the
quadratic programming problem, where constraint fulfillment
and tracking performance is evaluated (Kogiso and Hirata
(2006)).

minimize
v(k)

J = |v(k)− r(k)|2 +
N

∑
i=1

(ψ̇(k+ i)− r(k))2

subject to xcl(k+1+ i) = Acl(ρ)xcl(k+ i)+Bcl(ρ)v(k),
E(ρ)xcl(k+ i)� D,

|v(k)| ≤ r(k),
|v(k)− v(k−1)| ≤Dv,

∀i = 1, ..,N
(13)

5. APPLICATION ON LANE CHANGE AND LANE
TRACKING.

The designed LPV/LFT controller, as explained previously, can
be applied on the scenarios where the vehicle has to perform a)
lane change and b) lane tracking.

This section presents the simulation results which has been car-
ried out using a reliable Renault Simulator, where the vehicle’s
model parameter of (1) correspond to a Renault Zoe. During
lane-change a smooth transition from one lane to another is
required. For that reason, it is enough to choose the look-ahead
distance L “further” from the vehicle and generate a smaller
yaw-rate reference. On the contrary, during lane-tracking the
look-ahead distance L is chosen “closer” to the vehicle for a
higher bandwidth.

First, the steering system accepts command at Ts = 0.01s.
Consequently, the synthesized LFT controller is discretized for
that sampling period. The LTI system of the discretized LFT
controller is denoted as:

K(z) =
(

DK11 DK1∆

DK∆1 DK∆∆

)
+

(
CK1
CK∆

)
(zI−AK)

−1(BK1 BK∆
) (14)

The real-time implementation of the discretized LFT controller
is performed as below:

xK(k+1) = AK(ρ)xK(k)+BK(ρ)e(k)
δ (k) =CK(ρ)xK(k)+DK(ρ)e(k)

(15)

where xK(k)∈R8 is the state space vector of the LFT controller
and, given the measurement ρ(k) which updates the matrix
∆(ρ), the parameter-dependent matrices are calculated as such:



AK(ρ) = AK +BK∆
Λ(ρ)CK∆

∈ R8×8

BK(ρ) = BK1 +BK∆
Λ(ρ)DK∆1 ∈ R8

CK(ρ) =CK1 +DK1∆
Λ(ρ)CK∆

∈ R1×8

DK(ρ) = DK11 +DK1∆
Λ(ρ)DK∆1 ∈ R

Λ(ρ) = ∆(ρ)(I−DK∆∆
∆(ρ))−1

(16)

5.1 Simulation result on lane change

The lane change situation can be simulated when the vehicle
has to converge to the desired trajectory from an initial lateral
offset. Fig. 8, 9 shows the convergence of the vehicle starting
from 3 meters distance for vx = 10 m/s,15 m/s and the look-
ahead distance is chosen as L = 30 m,60 m respectively.

As it can been seen from the evolution of the lateral deviation,
the vehicle converges smoothly to the desired trajectory for both
speeds and remains always at that lane.
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Fig. 8. Vehicle response during lane change for vx = 10 m/s
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Fig. 9. Vehicle response during lane change for vx = 15m/s

5.2 Simulation results on lane tracking

In the case of lane tracking, as a simulation scenario is used
a straight lane which continues to a turn of radius R = 100m
and then to a straight lane again. Fig. 10, 11 show the lateral
deviation of the vehicle for speeds vx = 10,15 m/s and look-
ahead distances L = 15m,20m accordingly.

The aforementioned figures show that the LFT controller is able
to perform well during the turn without allowing big lateral
errors at the center of gravity of the vehicle.

6. SIMULATION OF THE INTEGRATED CONTROL
SCHEME WITH THE LFT CONTROLLER AND THE

COMMAND GOVERNOR

This section presents the simulation results where the tracking
controller is able to perform a dynamic maneuver at vx =
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Fig. 10. Vehicle response during lane tracking for vx = 10m/s
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Fig. 11. Vehicle response during lane tracking for vx = 15m/s

15 m/s where the integrated control scheme of the LPV/LFT
controller with the CG from Fig. 7 is implemented. For the
parameters of Renault Zoe, is calculated that δmax = 40 degrees.

The QP optimization problem (13) is solved online using CVX-
GEN (Mattingley and Boyd (2012)). The prediction horizon is
chosen N = 10 and Dv = 0.01.

The validity of the proposed method is proven by the simulation
results, where the vehicle starts from an initial lateral offset of
3m. The trajectory of the vehicle is shown in Fig. 12 where
the vehicle is able to reach fast the desired trajectory without
allowing significant overshoots.

Fig. 13 shows the applied steering command. It respects the
maximum selected value without overshooting and conse-
quently enables the fast lane change maneuver. Fig. 14 presents
the comparison of the different yaw rates. The virtual yaw rate
reference v(k), computed online, makes feasible the vehicle to
perform the maneuver via tracking the desired yaw-rate refer-
ence r(k) when the steering wheel angle is between the “safe”
bounds.
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Fig. 12. Vehicle response of the Governed system for vx =
15m/s.
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Fig. 13. Steering wheel angle of the Governed system for vx =
15m/s.
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Fig. 14. Yaw rate comparison of the governed system for vx =
15m/s.

7. CONCLUSION

This paper presents an LPV/LFT steering controller which is
able to perform different tasks for a range of speeds. The
controller is equipped with a command governor that keeps it
in a “safe” region of steering commands by solving online a
QP problem. Hence, the closed-loop system is able to perform
a dynamic maneuver without leading the vehicle to instability.

Future works include the experimental validation of the pro-
posed methodology on the real Renault Zoe vehicle for different
speeds in order to investigate the limits of the vehicle. Another
future step may be the experimental validation of the proposed
methodology where more state constraints are included as the
lateral speed of the vehicle during fast lane-change maneuvers
for different velocities.
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