
HAL Id: hal-03211565
https://hal.univ-grenoble-alpes.fr/hal-03211565v1

Submitted on 24 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

A shear warping kinematic enhancement for fiber beam
elements with a damaging cross-section

Sophie Capdevielle, Stéphane Grange, Frédéric Dufour, Cédric Desprez

To cite this version:
Sophie Capdevielle, Stéphane Grange, Frédéric Dufour, Cédric Desprez. A shear warping kinematic
enhancement for fiber beam elements with a damaging cross-section. Finite Elements in Analysis and
Design, 2021, 195, pp.103559. �10.1016/j.finel.2021.103559�. �hal-03211565�

https://hal.univ-grenoble-alpes.fr/hal-03211565v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


A shear warping kinematic enhancement for fiber beam

elements with a damaging cross-section

Capdevielle Sophiea,b,1, Grange Stéphanec, Dufour Frédéricd, Desprez
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Abstract

The present paper is dedicated to the modeling of the non-linear behavior
of reinforced concrete structures subject to transverse shear or torsion under
monotonic and cyclic loading. The fiber beam element approach has been
proved to be an interesting modeling strategy, but needs to be improved for
shear effects. This can be achieved by enhancing the cross-section kinematics
with a warping displacement field. This field must be free from the cross-
section rigid body motions, for the problem to be well posed. This condition
can be enforced by projecting the warping displacements orthogonally to the
space of the plane cross-section displacements. The present contribution pro-
poses a kinematic enhancement for a Timoshenko fiber beam element with a
new formulation of the projection functions. The warping shape of the cross-
section is computed along with the beam displacements and rotations by an
implicit solution procedure. The proposed formulation takes into account the
possible material heterogeneity of the cross-section. It enables the warping
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profile to evolve in time with the material damage state, as may occur in
reinforced concrete structures. The element formulation is validated using
an analytical solution in the case of transverse shear, and 3D simulations of
beams subject to shear and torsion. To address nonlinear behavior, a com-
parison to experimental results is performed. The first case study shows that
including warping in the model drastically improves the prediction of the
experimental behavior of concrete beams in torsion. The second case study
shows the ability of the model to deal with cyclic bending of a reinforced
concrete column.

Keywords: Fiber beam, nonlinear analysis, shear, torsion, concrete
damage, cyclic behavior

1. Introduction

The evaluation of the vulnerability of existing structures is one of the cur-
rent challenges in Civil Engineering. In order to check the structural safety
of reinforced concrete structures, accurate, robust, and efficient numerical
methods must be used. These methods must handle several materials, which
state may evolve during the loading due to damage and plasticity. Further-
more, to assess the seismic vulnerability of structures, the cyclic behavior of
these materials must be well-represented. The finite element method based
on continuum mechanics is by far the most popular approach for computa-
tions at the structural scale. However, one can benefit from the slenderness
of some structural elements and use the beam theory to drastically reduce
the computational time. The fiber beam element method has been proved to
lead to accurate results when modeling existing reinforced concrete structures
[1, 2], with a reasonably low computational cost. Based on beam elements,
fiber beam elements consist in adding a scale to the model by consider-
ing the strains and stresses at the cross-section level [3]. The principle of
displacement-based fiber beam elements is explained in figure 1. As in the
beam element method, generalized strains es are computed at the integration
point of the element from the displacements and rotations U at the nodes.
However, fiber elements do not use a constitutive direct equation between
generalized strains and internal forces. The actual strains ε are computed at
the cross-section level, based on a kinematic assumption for the cross-section
behavior. The stresses σ are computed from the strains according to the
chosen constitutive laws. The generalized forces F are eventually computed
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by stress integration over the cross-section.

U U
×
es

×
ε ε → σ σ

×

F F
×
Ps

Figure 1: The fiber beam element: a multiscale approach

By replacing the generalized constitutive law at the cross-section scale,
the fiber beam element method is particularly suitable for computing the
structural behavior. Indeed, it enables to access precise information at the
material scale, like the level of material damage. Yet, if the method has
proved to be efficient to model slender frame structures mainly subject to
normal stresses, it fails to deal with structures subject to higher shear stresses
or torsion. As an example, Mazars et al. [4] related how multilayered beam
elements, which are the 2D version of fiber beam elements, managed to pre-
dict the seismic behavior of walls with a slenderness of 0.7, while failing to
predict the behavior of walls with a slenderness of 0.4. Indeed, the computa-
tion of the cross-section strains is based on the plane cross-section kinematics.
When subject to large shear stresses, the cross-section does not remain plane,
but warps. The warping deformations have to be added in the fiber element
computation of strains to enable accurate modeling of shear behavior.

To address this issue, several authors have built enhanced fiber elements.
Vecchio and Collins [5] proposed to satisfy the local multilayered section
equilibrium with a homogenized concrete behavior to accurately compute
shear stresses. Efficient and accurate under monotonic loading, the model is
limited when dealing with cyclic loading. Dubé [6] proposed to enhance a
multilayered beam element by adding transverse shear warping. The warping
shape of the cross-section is computed by satisfying the elastic equilibrium
between the cross-section layers. The warping shape of the cross-section is
then kept constant during the computation, and thus does not account for
damage evolution. The same concept of fixed strain pattern is behind the

3



model of Mazars et al. [7], who enhanced a beam element by adding a tor-
sion warping profile, computed by the local equilibrium of the cross-section.
The drawback of the fixed warping pattern is the unability of the model to
account for the effect of damage and cracking on warping. Based on [7],
Capdevielle et al. [8] developed an enhanced beam element with torsional
warping updated with the evolution of the material damage. Though, this
element ignored transverse shear warping. In addition to that, the warp-
ing shape was computed based on the material properties of the previous
converged time step, which introduced a small load step dependency of the
results.

Further enhancements accounting for evolving warping profiles have been
presented in [9, 10, 11, 12]. Bairan and Mari [9, 10, 11] proposed an enhanced
cross-section model, by adding warping and distorsion displacements to the
displacement field of the plane cross-section. Mohr et al. [12] implemented
the cross-section model in a 2D displacement-based Bernoulli fiber beam ele-
ment. More recently, Poliotti and Bairán [13] have proposed a new version of
this model by using spline functions for the interpolation of the warping dis-
placements. The model exhibits good results in transverse shear. However,
the additional displacements do not vary in the longitudinal direction, which
constrains the resolution. Namely, the variational formulation contains the
derivative of the axial stress, that needs to be approximated during the so-
lution procedure [10]. Thus stresses and warping are not fully coupled and
the solution procedure cannot be completely implicit.

On the other hand, a fully implicit approach is used by Le Corvec [14]. A
mixed-formulated fiber beam element is enhanced by adding warping vary-
ing in both the transverse and longitudinal directions to the cross-section
displacements. This approach is very efficient to model the behavior of
structural elements subject to shear, with an elasto-plastic material. Di Re
et al. [15] have added the inertia effects to the model, to represent the dy-
namic vibration of thin-walled structures in torsion. Another enhancement
of force-based elements to account for warping in elasto-plastic frames has
been proposed by Almeida et al. [16]. The advantage of force-based or mixed-
based formulations is the small number of beam elements required to obtain
an accurate solution. The exact deformed shape in linear elasticity is ob-
tained with only one element, and dealing with nonlinearities requires only
few beam elements. However, an additional internal loop is needed for the
element state determination. This requires the section stiffness to be well-
conditioned, which is the case for an elasto-plastic material with kinematic
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hardening. Perfect plasticity or softening however require specific numeri-
cal strategies [17], for which an enhancement of the element would not be a
straightforward step. Addessi and Di Re [18] have coupled the enhancement
proposed by Le Corvec [14] with a damaging material for applications in
torsion, by linearizing the constitutive equations in the element state deter-
mination algorithm. Although it is an interesting approach, damage related
to the cyclic response of concrete structural elements, or to warping due
to transverse shear have not been investigated with mixed-formulated beam
elements, to the authors’ knowledge.

The present contribution proposes a formulation based on the models
of Bairan and Mari [10] and Le Corvec [14], with a new proposition for the
warping shape function projection. A displacement-based approach is chosen,
to avoid dealing with the cross-section singularities inherent to force-based
beam elements. A finite element cross-section discretization is used here, to
enable a fine representation of damage evolution in the cross-section. The
novelty of the approach proposed here is the coupled evolution of warping
and damage computed with a fully-implicit solution procedure based on the
beam equilibrium only. It can be used for the computation of non-linear
concrete structures under transverse shear and/or torsion, and is able to
deal with a cyclic loading.

The governing equations of the enhanced displacement-based fiber ele-
ment are presented in a first part. A validation of the formulation is then
proposed, by comparing the results on a beam with a linear elastic behavior
to a reference solution. In the case of transverse shear, the computed strains
are compared to the analytical solution. In the case of combined flexure and
torsion, the results are compared to a 3D computation. The formulation is
then confronted with experimental results. The case of concrete beams sub-
ject to monotonic torsion is investigated, followed by the case of reinforced
concrete columns subject to reverse cyclic bending.

2. Governing equations of the enhanced element

2.1. Warping kinematics

A 3D displacement-based fiber beam element is enhanced by adding warp-
ing displacements. Total displacements in the beam are given by equation
(1). up contains the displacements of the plane cross-section, according to
Timoshenko’s beam theory. u, v and w are the mean displacements and
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θx, θy, θz the mean rotations of the beam’s cross section. uw is the addi-
tional warping displacement vector. These out-of-plane displacements can
obviously vary in the transverse directions y and z. They are also allowed to
vary in the longitudinal x direction, which enables the formulation to account
for restrained warping boundary conditions and different damage states along
the beam.

u = up + uw =

u− y θz + z θy
v − z θx
w + y θx

+

uwx (x, y, z)
0
0

 (1)

The linearized strain tensor accounting for warping is given by equation
(2). For the beam element formulation, this tensor is expressed as a strain
vector ε, given by equation (3). From the kinematic enhancement, a term cor-
responding to the warping strains εw adds to the plane cross-section strains
εp.

ε =
1

2

(
grad(u) + grad(u)T

)
= εp + εw (2)

ε =

 εxx2εxy
2εxz

 =

dudx − y dθzdx + z dθy
dx

−z dθx
dx

+ dv
dx
− θz

y dθx
dx

+ dw
dx

+ θy


︸ ︷︷ ︸

εp

+


∂uwx
∂x
∂uwx
∂y
∂uwx
∂z


︸ ︷︷ ︸
εw

(3)

2.2. Equilibrium equation and variational formulation

Assuming that there is no body force, the beam equilibrium equation
reads:

div (σ) = 0 (4)

The Cauchy’s stress tensor σ depends on the displacements through a non
linear material relationship relating stresses and strains : σ = σ̂ (εp, εw).
Let D denote the trial solution space and ∆ the variation space. With Ω
denoting the beam domain, the variational form of the equilibrium equation
(4) is given by: {

Find u ∈ D, such that ∀ δu ∈ ∆,∫
Ω
δuTdiv (σ) dΩ = 0

(5)
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With Dp and ∆p the trial and variation spaces for the plane section dis-
placements up, and Dw and ∆w the trial and variation spaces for the warping
displacements, equation (5) can be rewritten as:{

Find up ∈ Dp and uw ∈ Dw, such that ∀ δup ∈ ∆p and ∀ δuw ∈ ∆w,∫
Ω

(
δupT + δuwT

)
div (σ) dΩ = 0

(6)

With no further requirements on the solution displacements up and uw,
the problem is ill-posed. The solution is not unique, because no condition
prevents uw from containing a plane displacement solution. To address this
problem, the warping displacements uw are required to be orthogonal to the
plane displacements up. The consequences of this requirement on the imple-
mentation are exposed in section 2.4. With this orthogonality requirement,
the weak form of the equilibrium equation can be projected on ∆p and ∆w.
The variational form of the equilibrium equations thus reads:

Find up ∈ Dp and uw ∈ Dw, such that:

∀ δup ∈ ∆p,

∫
Ω

δupTdiv (σ) dΩ = 0 (7)

∀ δuw ∈ ∆w,

∫
Ω

δuwTdiv (σ) dΩ = 0 (8)

Equation (7) reflects the global beam equilibrium, as shown by Bairan
and Mari [10]. Equation (8) reflects the local beam equilibrium in the cross-
section, which is not considered in classical fiber beam elements. This local
equilibrium equation ensures the transverse inter-fiber equilibrium. After
integrating by parts equations (7) and (8), the final variational form of the
equilibrium equations (9) and (10) is obtained. n is the outward unit normal
vector to the beam boundaries ∂Ω.∫

Ω

δεpTσ dΩ =

∫
∂Ω

δupT (σn) dS (9)∫
Ω

δεwTσ dΩ =

∫
∂Ω

δuwTx (σxxnx) dS (10)

The right-hand side of equation (10) accounts for the forces due to con-
strained warping. If the beam is free to warp, equation (10) becomes:
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∫
Ω

δεwTσ dΩ = 0 (11)

2.3. Discretization of the equilibrium equations

The formulation of the enhanced beam element follows the finite element
process [19], applied to fiber beam elements. Equations (9) and (10) are
spatially discretized to get the element and section matrices. The deforma-
tions are discretized first. From equation (3), the plane section strain vector
is written in equation (12) in terms of a transformation matrix as and the
section generalized strains es.

εp =

1 0 0 0 z −y
0 1 0 −z 0 0
0 0 1 y 0 0




du
dx

dv
dx
− θz

dw
dx

+ θy
dθx
dx
dθy
dx
dθz
dx

 = as (y, z) es (x) (12)

A separate interpolation method for the longitudinal and transverse di-
rections is assumed for the warping displacement to adapt to the beam dis-
cretization (equation (13)). Consequently, the warping strain vector is ex-
pressed in equation (14).

uwx (x, y, z) = c (x)ϕ (y, z) (13)

εw =


dc
dx
ϕ

c∂ϕ
∂y

c∂ϕ
∂z

 =


ϕ 0

0 ∂ϕ
∂y

0 ∂ϕ
∂z


 dc
dx

c

 = āw (y, z) ew (x) (14)

The considered structure is discretized into nel fiber beam elements. The
element degrees of freedom are collected into the vectors Up

el and Uw
el. Up

el

contains the classical nodal displacements and rotations. Uw
el contains the

warping degrees of freedom at the beam element nodes. The degrees of
freedom are interpolated over the beam elements through the use of shape
functions and their derivatives, contained in the matrices Bp and Bw. The
matrices as and āw contain the shape functions over the cross-section. With
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these notations, the strain vector’s plane and warping parts can be rewritten
as:

εp = ases = asBpU
p
el (15)

εw = āwew = āwBwUw
el (16)

The expressions of εp and εw are introduced into the variational form of
the equilibrium equations given by equations (9) and (10). The symbol σ̂ is
used to differentiate the constitutive law from the stress tensor ins its matrix
form. With U∗ and W∗ denoting the vectors obtained by assembly of the
virtual plane and warping displacements respectively, equations (9) and (10)
respectively become :

U∗T
nel

A
e=1

∫
Ωe

BT
p as

T σ̂ (εp, εw) dΩe = U∗T
nel

A
e=1
F e

ext (17)

W∗T

nel

A
e=1

∫
Ωe

BT
waw

T σ̂ (εp, εw) dΩe = W∗T

nel

A
e=1
F we (18)

Equations (17) and (18) lead to the set of non-linear equations to be
solved for the structure (19). Fext are the external forces applied to the
structure nodes, and F w are internal efforts due to restrained warping. This
is how the element internal force vector Pel is derived.

nel

A
e=1


∫

ΩeB
T
p as

T σ̂ (εp, εw) dΩe

∫
ΩeB

T
waw

T σ̂ (εp, εw) dΩe


︸ ︷︷ ︸

Pel

=

Fext

F w

 (19)

2.4. Enforcement of the orthogonality requirement

As mentioned in section 2.2, warping displacements have to be orthogonal
to the plane section displacements to allow a unique solution. This require-
ment needs to be enforced in the formulation. Le Corvec [14] proposed a
projection for the transverse shape functions used to compute the warping
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displacements. The shape functions are projected to a space orthogonal to
the plane displacement solution. However, the deformations are not com-
puted using the derivatives of the shape functions. To address this issue, the
present paper proposes a projection method, which computes the derivatives
of the projected shape functions.

The enhancement consists of the warping displacement in the longitudinal
direction only (equation (1)). As can be seen in equation (1), the axial
component of the Timoshenko’s displacement upx is generated by the base
functions 1, y and z. From the original interpolation functions over the cross
section Ni, the projected shape functions Ñi are given by equations (20) and
(21). S represents the cross-section domain. The shape functions derivatives
are computed in equation (22).

Ñi = Ni −
∫
S
Ni

[
1
a1

y
a2

z
a3

]
dS

1
y
z

 (20)

Where a1 =
∫
S 1 dS ; a2 =

∫
S y

2 dS ; a3 =
∫
S z

2 dS (21)

∂Ñi

∂y
= ∂Ni

∂y
−
∫
SNi

y
a2
dS and ∂Ñi

∂z
= ∂Ni

∂z
−
∫
SNi

z
a3
dS (22)

Theoretically, the formulation proposed in [14] leads to the same expres-

sions for ∂Ñi

∂y
and ∂Ñi

∂z
, only if the transverse shape functions satisfy the

conditions (23). nw is the number of warping degrees of freedom, and (yi, zi)
the coordinates of the corresponding warping nodes. Conditions (23) seem
to be verified for Lagrange polynomials. However, they are not true in the
general case, to the authors’ knowledge.

nw∑
i=1

∂Ni

∂y
= 0 ;

nw∑
i=1

∂Ni

∂z
= 0

nw∑
i=1

∂Ni

∂y
yi = 1 ;

nw∑
i=1

∂Ni

∂y
zi = 0

nw∑
i=1

∂Ni

∂z
yi = 0 ;

nw∑
i=1

∂Ni

∂z
zi = 1

(23)

a1, a2 and a3 (equation (21)) are computed by numerical integration over
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the cross-section. The precision of the computation of a1, a2 and a3 is crucial
for the projection’s accuracy. The choice for the cross-section discretization
is explained in section 2.5.

2.5. Spatial discretization of the cross-section and interpolation functions

When dealing with damaging concrete, accurate modeling of the spatial
distribution of damage along the cross-section is needed. This automatically
leads to an increase of the number of interpolation points in the cross-section.
Le Corvec [14] and Addessi and Di Re [18] have proposed applications with
warping degrees of freedom interpolated using 2D Lagrange polynomials.
Even if this is an efficient interpolation strategy, it limits the number of in-
terpolation points that can be used in the cross-section. Indeed, increasing
the number of polynomials leads to spurious oscillations between the interpo-
lation points, known as Runge’s phenomenon. If the number of interpolation
points is limited, the spatial variability of damage is necessarily averaged. For
these reasons, a finite element element modeling strategy has been chosen for
the cross-section here.

Another possible solution to avoid this drawback of the Lagrange poly-
nomials is to use spline functions [13]. However, numerous integration points
would still be needed to deal with the variation of the damage state of the ma-
terial over the cross-section. In addition to this, when the section damages,
especially in torsion, its warping profile becomes sharper. Capturing this
shape with accuracy would require to increase the number of interpolating
functions, and thus the number of interpolating points.

The cross-section is thus discretized here in 2D finite elements, which can
be as numerous as needed, to take into account the local variation of the
material state. Three integration points by element are needed for the exact
computation of the integrals of quadratic functions for the computation of
a2 and a3. This is necessary for the exact computation of the rigid body
motions of the cross-section to get a warping displacement free from the
section global rotations. The cross-section is thus discretized by quadratic
6-nodes triangles.

The presented enhancement has been implemented in a linear displacement-
based Timoshenko fiber beam element. The numerical examples presented in
the following parts are computed with the presented element, implemented
in the ATL S [20] finite element code.
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3. Validation of the linear behavior at the cross-section scale

In this section, the warping profile in a beam modeled with the enhanced
element is computed. The case of transverse shear and combined shear and
torsion loading are studied successively. For each type of loading, a can-
tilever beam of of length 1 m with a rectangular cross-section with dimen-
sions 0.1 m× 0.2 m is tested. A linear elastic constitutive law is used for the
material behavior. The numerical examples presented here aim at validating
the formulation and the implementation for simple cases.

3.1. Warping due to transverse shear

This part is dedicated to the formulation validation for the case of trans-
verse shear. The beam is subjected to a transverse load of 1 kN at its free
end. The beam is discretized using 10 enhanced fiber beam elements. A
relatively high number of beam elements is chosen here to avoid the classical
displacement error due to the use of linear shape functions in the longitudinal
direction. The cross-section is discretized using 6-node quadratic triangles,
as explained in part 2.5. A regular mesh of 64 triangular elements is used.
This relatively high number of elements in the cross-section would actually
not be necessary for a linear-elastic case-study. It is the mesh used in section
4 for computations with a damaging material, when it is interesting to have
precise values of damage in the transverse directions of the beam. The case-
study’s geometry is displayed in figure 2. The material linear elastic features
are set to E = 30 GPa and ν = 0.2.

F

L = 1 m
× x

z

0.1 m

0.2 m ×O y

z

Figure 2: Case study used for the analytical validation of the enhanced fiber beam element:
beam geometry and loading; and cross-section mesh.

12



Figure 3(a) displays the computed warping displacements in the cross-
section. The studied beam is loaded only in the z direction. Accordingly,
warping displacements are constant in the y direction.

According to Jourawsky’s theory, the analytical expression for the shear
strains εxz in the cross-section is given by equation (24).

εxz (x, z) =
Vz

2GIy

(
(h/2)2 − z2

)
(24)

(a)

-6 -5 -4 -3 -2 -1 0
ǫ

xz ×10-6

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

z
 [

m
]

Analytical solution
Fiber solution

(b)

Figure 3: Results for the bended cantilever beam case-study. 3(a): Warping displacements
of the rectangular cross-section under shear. 3(b): Comparison of the computed shear
strains to the analytical shear strains for the bended cantilever beam.

The numerical strains are computed in each Gauss point of the cross-
section. The strains εxz do not vary in the y direction of the cross-section.
The analytical and computed strains εxz in the cross-section are plotted in
figure 3(b). The shear strains are perfectly well computed by the enhanced
beam element in this case.

3.2. Warping under transverse shear and torsion

Once the linear elastic behavior under transverse shear is validated, the
response of the enhanced model under shear and torsion is investigated. The
same cantilever beam is tested. A load F = −10 kN is applied at its free end
in the z direction, along with a torsional moment M = 100 Nm. The beam
is discretized in 10 enhanced fiber beam elements. The cross-section mesh is
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displayed in figure 4. Such a fine mesh would not be necessary for the result
precision, since the cross-section elements are quadratic. This choice has
been made to smooth the representation of the warped cross-section (figure
5(a)).

F

L = 1 m
M×O x

z

0.1 m

0.2 m ×O y

z

Figure 4: Case - study for the validation of the enhanced fiber beam element under shear
and torsion: beam’s geometry and loading; mesh of the cross-section.

The fiber element solution computed with ATL S is compared to a 3D
volumetric computation realized with the CAST3M [21] finite element soft-
ware. The 3D beam is discretized using linear prismatic elements. Since the
difference between the displacements computed by the beam formulation and
the 3D finite element software is too tiny to be observable, an error indicator
δloc is computed in equation 25. It quantifies the error between the warping
displacements Uw,beam obtained with the fiber beam element model and the
3D displacements Uw,3D. The values of δloc across the section are plotted in
figure 5(b).

δloc =
‖Uw,beam − Uw,3D‖2

max (Uw,beam) max (Uw,3D)
(25)

The error between the displacements obtained by the beam computation
and the 3D computation reaches 5 % where the warping displacements are
the greatest. The error does not exceed 1 % elsewhere in the cross section.
It can be noted that the error increases close to the cross-section boundaries
when the amplitude of the warping displacements increases. It is well-known
that the Timoshenko’s linear beam element does not give the exact solution
for the plane-section displacements. In the enhanced element, the plane
section displacements and the warping displacements are interdependent.
The linear beam interpolation functions might not be accurate enough to

14



(a) (b)

Figure 5: Results for the case-study of the cantilever beam under shear and torsion:
5(a): Warping displacements in the middle cross-section of the beam under shear and
torsion. 5(b): Error δloc in the cross-section displacements between the enhanced fiber
beam element model and the 3D discretization

give the exact warping solution. This can explain the difference between
the beam-computed displacements and the 3D-computed displacements. A
solution to further improve this result could be the use of a higher order beam
element to implement the cross-section enhancement. Nevertheless, based
on the presented results, the model and its implementation are considered as
validated in the case of a linear elastic material behavior.

4. Numerical investigation of the nonlinear behavior using beams
in torsion

The linear elastic behavior of the enhanced element has been validated in
the previous part against an analytical solution and a 3D finite element solu-
tion. Now, the nonlinear behavior of the element is investigated. Monotonic
torsion is modeled, with the aim of predicting experimental results.

4.1. Non linear material behavior

Concrete behavior is represented by a scalar damage model. The Mu
model [22] is chosen because of its good representativeness for concrete shear
behavior. The main equations of the model are summarized below. The
constitutive law is given in equation (26). Λ0 is the initial stiffness tensor.

15



Dµ, given in equation (27), represents the activated part of damage. It
depends on the two internal variables Yµt and Yµc (equation (28)), governing
the yield surface’s evolution in tension and compression. These variables
are combined to compute the internal variable Yµ according to the loading
scenario. Yµ0 denotes the initial value of Yµ. A and B control the shape of
the behavior curve after damage initiation.

The internal variables are defined from the extension strain εµt and com-
pressive strain εµc in equation (28). The strains are computed from the two
first strain tensor invariants Iε and Jε, as described in equation (29). εµt0
and εµc0 represent the damage thresholds. Two yield surfaces are associated
to the internal variables, defined in equation (30).

σ = (1−Dµ) Λ0 : ε (26)

Dµ = 1−
(1− A)Yµ0

Yµ
− A exp

(
−B

(
Yµ − Yµ0

))
(27)

Yµt = max
(
εµt0, max

t
(εµt)

)
; Yµc = max

(
εµc0, max

t
(εµc)

)
(28)

εµt =
Iε

2 (1− 2ν)
+

√
Jε

2 (1 + ν)
; εµc =

Iε
5 (1− 2ν)

+
6
√
Jε

5 (1 + ν)
(29)

fµt = εµt − Yµt ≤ 0 ; fµc = εµc − Yµc ≤ 0 (30)

4.2. Beams subject to monotonic torsion

The experimental campaign of Chalioris and Karayannis [23] is chosen
as a reference. This experimental campaign has already been used by the
authors to validate a model with torsion-only induced warping [8]. The aim
of the present study is first to check that the newly enhanced element can also
predict the non-linear behavior of the plain concrete specimens in torsion,
with a reasonable computational time. Then, the numerical behavior of the
fully-implicit approach is investigated.

Several beams, with various cross-section shapes, have been tested in
torsion. To highlight the effect of warping, five cross-section shapes have
been selected for the present study. They are displayed in figure 6, with
their respective mesh. One of the beams, namely the ”L-shaped” cross-
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section, is used for the material parameters calibration. The other beams are
used to compare the behavior predicted by the model to the experimental
results given in [23]. The behavior of the tested beams is simulated with
both models without and with warping.

The concrete Young modulus has been estimated according to the experi-
mental compressive strength and the European standard Eurocode 2 formula
[24]. An arbitrary normal random field with a 5 % coefficient of variation has
been included in the model for the Young modulus. The negative values have
been truncated. This field is meant to coarsely represent the material spatial
variability, which is very useful in applications with a homogeneous solicita-
tion. This forces damage to initiate and develop in the weakest beam element,
instead of a localization imposed by numerical round-off errors. Five different
realization of the Young modulus random distribution have been computed
for each cross-section shape.

The experimental material data are insufficient to determine the non-
linear material curve. This is why in the previous study [8], the material
parameters describing the nonlinear material behavior have been calibrated,
taking the experimental behavior of the ”L-shaped” cross-section beam as
a reference. The unknown parameters are the damage thresholds in com-
pression and in tension, as well as the parameters Ac, Bc, and Bt which
govern the shape of the damaged behavior curve. To calibrate these five
unknown parameters, the aim is to simultaneously reproduce the material
tensile and compressive strengths and the structural torque–twist curve for
the L-shaped cross-section case. A genetic algorithm has been used to solve
this multi-criteria optimization problem. A different set of parameters has
been determined for both cases without and with warping, as the best fit for
the L-shaped beam. More details on the calibration process, as well as on
the resulting parameters, can be found in [8]. These two sets of parameters
have been kept for the simulation of the behavior of the other cross-section
shapes, without any fitting on the structural curve.

The beams are discretized using 4 displacement-based fiber beam ele-
ments. In pure torsion, the classical Timoshenko shape functions give the
exact solution for the linear elastic case. There is no need to increase the
number of elements. For the non-linear case, the choice of the element size
governs the amount of dissipated energy. Since a softening material is mod-
eled here, the solution will depend on the beam element size. The calibration
of the material parameters takes this phenomenon into account The same size
of beam elements is kept between the calibration case-study [8] and the other
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Figure 6: Dimensions [m] and mesh of the beams cross-sections

modeled beams. The torsion load is applied by enforcing the extreme rota-
tions of the beams, up to 0.03 rad, in 50 steps. The predicted torque-twist
curves with the fiber beam model without and with warping are presented
in figure 7. Each curve is the mean torque-twist curve resulting from the
5 realizations of the Young modulus random field in the cross-sections. To
quantify the ability of the numerical model to represent the experimental re-
sults, the relative difference between the numerical and experimental initial
stiffness is computed. The results are given in table 1. The relative difference
between the computed peak torque and the experimental peak torque is also
computed, given in table 2.

Cross-section type Ls Ts R T

Without warping 160% 106% 126% 170%
With warping 35% 6% 38% 19%

Table 1: Relative difference between the numerical and experimental initial stiffness

Cross-section type Ls Ts R T

Without warping 21% 7% 15% 24%
With warping 16% 6% 27% 13%

Table 2: Relative difference between the numerical and experimental peak torque values,
for both classical and enhanced models.

As shown in figure 7, the enhanced model predicts the experimental
torque-twist behavior better than the plane cross-section model. By en-
forcing a plane cross-section, the classical fiber beam element model reduces
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Figure 7: Comparison of the experimental and predicted torque-twist curves. 7(a) Ls
cross-section; 7(b) Ts cross-section; 7(c) R cross-section; 7(d) T cross-section.

the freedom of the cross-section movement. This leads to a too stiff torque-
twist curve in the linear range of the behavior. In average, the prediction of
the initial stiffness is improved by 83 % when adding the warping degrees of
freedom. This result is consistent with previously obtained conclusions on
torsion-only warping models [7, 8]. The prediction of the peak torque is com-
parable for both numerical models, but the model without warping results in
a more fragile behavior. The energy dissipated up to the peak is computed by
numerical integration of the experimental and numerical torque-twist curves.
The relative difference between the numerical and experimental energy is dis-
played in table 3. It shows that the prediction of the non-linear torque-twist
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behavior is improved by 63% in average by including warping in the model.
The experimental post-peak behavior is not available, due to the sudden
failure of the plain concrete samples [23].

Cross-section type Ls Ts R T

Without warping 37% 60% 40% 50%
With warping 6% 28% 18% 20%

Table 3: Relative difference between the dissipated energy before failure, for both classical
and enhanced models.

To illustrate the importance of modeling the local material behavior with
good accuracy, damage maps of the beam cross-sections are displayed in
figure 8. The value of damage is computed at the integration points of
the cross-section, which directly correspond to the integration points of the
quadratic triangles. After the peak, damage localizes in a single beam ele-
ment. The damage maps of figure 8 correspond to the cross-section of this
element, right after the torque-twist peak. It can be observed that the dam-
age distribution is very different from the circular shape it would have in
the case without warping [8, 18]. Accurate information on damage is indeed
necessary to quantify the crack opening or to obtain the right deformation
in rebars in case of reinforced concrete.

R Ls Ts T

Figure 8: Damage maps of the cross-section where damage localizes right after the peak.

As already stated, damage localization induces a mesh dependency. This
phenomenon is well-known for classical beam elements with a softening ma-
terial, and is not specific to the enhanced element presented here. It is taken
into account in this example through the calibration of the constitutive law on
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Cross-section type Ls Ts R T

Without warping 906 s 994 s 703 s 1200 s
With warping 1490 s 2300s 1350 s 2550 s

Table 4: Mean computational time for each case study.

the ”L-shaped” cross-section behavior and a mesh kept constant throughout
all the simulations. To further enhance the model, regularization techniques
can be used, based for example on Hillerborg’s strategy [25, 26] or on non-
local methods [27, 28]. Higher-order beam elements internally accounting
for discontinuities could also be used [29], but the kinematic enhancement of
such elements would require further developments.

Adding warping degrees of freedom to the fiber beam elements improves
the prediction capacity of the nonlinear beam behavior. On the other hand,
it slows down the computation of the solution. To investigate the effect
of the enhancement on the computational time, the elapsed time for each
case-study is displayed in table 4.

In average, the enhanced formulation is twice as computationally demand-
ing as standard fiber beam elements. Nevertheless, the computation of the
non-linear behavior of a beam only takes a few minutes on a conventional
laptop. Thus, this drawback of the enhanced formulation will not prevent
computations at the structural scale.

4.3. Influence of the size of load steps

To further investigate the nonlinear numerical behavior of the enhanced
beam element, the influence of the load step size is studied. Several numerical
tests are carried out on the beam with the rectangular cross-section presented
in the previous paragraph. A rotation of 0.03 rad is applied, respectively in
25, 50, 100, and 200 steps. The resulting torque-twist curves are displayed in
figure 9. This last case-study shows that there is no influence of the rotation
step size on the material behavior. This result confirms that the formulation
is fully implicit.

5. Nonlinear behavior of a reinforced concrete column subject to
cyclic transverse loading

In the previous part, the importance of taking warping into account has
been assessed by simulating the behavior of concrete beams in torsion. Nev-
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Figure 9: Results for the model with warping applied to the R-cross-section beam, with
different rotation-step sizes.

ertheless, the ability of the model to account for reinforcement in concrete
has not been demonstrated yet. Furthermore, for seismic applications, in-
vestigating the monotonic behavior is not enough. For these reasons, the
case of columns subject to reverse cyclic bending is investigated here. The
goal of this study is first to check that the proposed model is able to re-
produce the cyclic experimental response of a reinforced concrete column in
bending. Then, the effect of warping when the shear stress part increases is
investigated.

5.1. Presentation of the case-study

The experimental campaign of [30, 31] has been chosen. Square rein-
forced concrete columns have been tested under a constant axial load and a
reverse cyclic imposed top displacement. The specimen ”C80B60N40” has
been selected for the present study, as the specimen with the least high con-
crete strength, among the ones presented in [32]. This 2 meter-high column
is represented in figure 10(a) with its square cross-section. The longitudinal
reinforcement consists in 4 steel rebars of diameter 19.5 mm placed in the
cross-section corners, and 4 steel rebars of diameter 16 mm in the middle
of each edge. Stirrups ensure the lateral reinforcement and confine the cen-
tral concrete part of the cross-section. A constant axial load of 2900 kN is
imposed on the column.

The cross-section mesh is represented in figure 10(b). The concrete cross-
section is discretized into 6-node quadratic triangles. The element size is
given by the width of the cover zone, pictured in black in figure 10(b). It has

22



y

z

267 305

δ

P = 2900 kN

x

y

(a) (b)

Figure 10: Representation of the tested column. 10(a) Column with its square cross-
section. Dimensions of the section are given in mm. 10(b) Ccross-section discretization.

been chosen to discretize the confined concrete part of the cross-section with
a similar element size, which explains the relatively high number of elements
in the cross-section. The confined concrete part of the cross-section is repre-
sented by blue elements in figure 10(b). Each longitudinal rebar is modeled
by one 6-node quadratic triangle. The warping degrees of freedom are the
concrete cross-section nodes, but the deformations in the steel rebars are
computed taking warping into account. Stirrups cannot be directly modeled
in a fiber beam element approach. Their effect on the column’s behavior can
however be taken into account through the confined concrete constitutive
law, as proposed by [32, 33].

Concrete is represented by the Mu model, described in section 4.1. In
addition to its good representativeness of the concrete shear behavior, the Mu
model takes into account the unilateral effect. It is thus relevant to represent
the material behavior during a cyclic test. The input parameters of the model
are the Young modulus and Poisson’s ratio of concrete, the compression and
tension stress thresholds yc0 and yt0, and parameters that govern the post-
peak constitutive behavior in compression and tension Ac, Bc, At, and Bt.
The Young modulus E for concrete is calibrated on the linear elastic part of
the experimental response of the column. The other material parameters are
calibrated such that the material uniaxial compressive behavior reaches the
peak strength and deformation given in [32]. The chosen material parameters
are presented in table 5.

An elasto-plastic model with kinematic hardening is used for steel. The
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Concrete E ν yc yt Ac Bc At Bt

Confined 28 GPa 0.2 -80 MPa 3 MPa 0.7 145 0.8 8000
Unconfined 28 GPa 0.2 -80 MPa 3 MPa 1 800 0.8 8000

Steel Es νs fy εsh fsu εsu

210 GPa 0.3 500 MPa 0.0023 710 MPa 0.11

Table 5: Summary of the concrete and steel model constitutive parameters

1D Menegotto-Pinto model [34] has proven its effectiveness in many appli-
cations [3, 22, 35]. Classical material parameters have been chosen for the
present case-study, summarized in table 5. fy denotes the yield strength,
εshthe corresponding yield strain, fsu the ultimate strength and εsu the cor-
responding ultimate strain.

Because of the concrete softening behavior and localization phenomena,
the numerical response of the column is sensitive to the beam element size.
This fact has also been evidenced by [33], who proposed a calibration of the
element size based on the experimental results and the identification of an
”equivalent plastic hinge” [33, 36]. Based on this approach, [33] suggested to
use 5 elements of length 40 cm to model the tested column. This choice has
been adopted in the present study.

5.2. Numerical results for the experimentally-tested column

The force-top displacement curve computed using the enhanced fiber
beam element model is displayed in figure 11, along with the experimen-
tal results. It is important to note that neither the element length nor the
material parameters have been adjusted according to the experimental re-
sponse in the present study. Taking this fact into account, the experimental
behavior is reasonably well reproduced. The maximum force is slightly over-
predicted by the model. The loading and unloading pathes, as well as the
dissipated energy are well computed.

The result displayed in figure 11 validates the ability of the model with
warping to compute the flexural behavior of a concrete column, accounting
for the longitudinal rebars. However, it does not indicate the effect of warping
itself. Indeed, the computed column is slender enough not to activate shear
failure mechanisms. The results of the models with and without warping
are displayed in figure 12. There is very little difference between the two
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Figure 11: Prediction of the behavior of the column by the fiber beam element model with
warping

diagrams, confirming that the effect of warping is negligible in this case. A
shorter column is computed in section 5.3 to assess the effect of warping.

Figure 12: Numerical results for the column’s behavior, using the model with warping or
without warping.

5.3. Effect of warping on a shorter column

To observe the effect of warping, the column presented in the previous
part is shortened to a length of 45 cm. This length corresponds to the limit
at which shear becomes prevailing over bending. The material parameters
of the 2-meter long column are kept, as well as the constant axial loading of
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2900 kN. The transverse imposed displacement is adapted to the new column
length. As mentioned in section 5.1, the numerical response depends on the
beam element length. Since no reference data is available to calibrate the
element length in this case, a length of 15 cm is chosen as a realistic length
size for the energy dissipation due to the localized nonlinearities at the base
beam element. The numerical results obtained with the models with and
without warping are presented in figure 13.

Figure 13: Numerical results for the short column’s behavior, using the model with warping
or without warping.

Although the curves of the models with and without warping are very
close up to the first peak, the model with warping leads to a less ductile be-
havior. The rest of the cyclic behavior is strongly influenced by the addition
of warping in the model. This post-peak difference is explained by the fact
warping deformations increase when damage increases in the cross-section.
Furthermore, the heterogeneity of the material properties between confined
and unconfined concrete induces a variation of warping in the z-direction.
Thus, the beam with warping encounters shear stresses in the xz-direction,
contrarily to the beam without warping. This effect takes part in the more
brittle failure of the beam when accounting for warping.

This study on a short column confirms that the shear warping enhance-
ment is a necessary ingredient to compute the nonlinear behavior of a struc-
tural element, when dealing with great shear stresses. This is of major im-
portance for short columns applications, such as parking lot columns for
example, or partial infill frames.
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6. Conclusion

To improve the shear response of the fiber beam element method, a new
element is presented in this paper. Warping degrees of freedom are introduced
in a Timoshenko displacement-based fiber beam element. Warping is allowed
to vary both in the longitudinal and transverse directions of the beam. Added
to the classical beam degrees of freedom, the warping degrees of freedom are
computed at the nodes by satisfying a local beam equilibrium. Plane section
displacement solutions are removed from the warping displacement solution
space by an orthogonal projection of the warping shape functions. The warp-
ing shape function derivatives are computed accordingly, which is the novelty
of the proposed approach compared to existing models. The multi-scale for-
mulation, with a 2D finite element mesh of the cross-section, enables a fine
representation of the material state variation in the cross-section. Another
advantage associated with the FE approach of the cross-section discretiza-
tion is its flexibility. It is possible to use fewer elements in the zones that
remain linear elastic, and to refine the mesh in the severely damaged zones
only. The local and global equilibrium equations are solved simultaneously,
using a fully implicit time integration procedure. This enables the evolution
of warping and material damage to interact in the nonlinear computation of
concrete structural elements.

The deformations computed by the enhanced element reproduce exactly
the analytical deformations for a rectangular beam with a linear-elastic be-
havior. This case-study is a first step in the validation of the enhanced
element formulation and implementation. It enables to fully trust the lin-
ear elastic transverse shear results. The linear elastic warping displacements
under coupled transverse shear and torsion are then successfully compared
to the displacements obtained by a 3D finite element model. This result
demonstrates the ability of the enhanced element to deal with multiaxial
loadings. To investigate the non-linear behavior, a monotonic torsion case
study and a cyclic transverse shear case study are presented. As regards tor-
sion, experimentally tested beams made of plain concrete are simulated with
both the classical and the enhanced fiber beam element method. From the
calibration of the material constitutive law on a single cross-section shape,
the proposed enhanced fiber beam element method predicts accurately the
entire torsional response of plain concrete beams with various cross-sectional
schemes (rectangular, L-shaped and T-shaped). It could be extended to
simulate the behavior of steel fiber reinforced concrete beams by the imple-
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mentation of proper constitutive laws of the composite material. The results
confirm the necessity of including warping in the formulation, to obtain a
physically meaningful torsional behavior.

The case of a reinforced concrete column subject to an axial load and
to cyclic bending is eventually investigated, to address the tranvserse shear
response. If the warping add-on is unnecessary for a slender column, this
case-study demonstrates the ability of the model to deal with the reinforce-
ment rebars and a cyclic loading. A numerical test on a shorter column shows
the influence of warping on the response when shear stresses prevail.

The representation of the shear behavior of structural elements is greatly
improved by the enhancement. However, additional warping degrees of free-
dom need to be solved for, which makes the model more computationally
demanding. Nevertheless, the enhancement still enables computations at the
structural scale.

References

[1] S. Grange, P. Kotronis, J. Mazars, Numerical modelling of
the seismic behaviour of a 7-story building: NEES bench-
mark, Materials and Structures 42 (2008) 1433–1442. URL:
http://www.springerlink.com/index/10.1617/s11527-008-9462-y.
doi:10.1617/s11527-008-9462-y.

[2] P. Kotronis, J. Mazars, S. Grange, C. Giry, Simplified modeling strate-
gies for non linear dynamic calculations of rc structural walls including
soil-structure interaction, in: IASS-IACM, 2008.

[3] E. Spacone, S. El-Tawil, Nonlinear analysis of steel-concrete composite
structures: State of the art, Journal of Structural Engineering 130 (2004)
159–168.

[4] J. Mazars, P. Kotronis, L. Davenne, A new modelling strategy for the
behaviour of shear walls under dynamic loading, Earthquake engineering
& structural dynamics 31 (2002) 937–954.

[5] F. J. Vecchio, M. P. Collins, The modified compression-field theory
for reinforced concrete elements subjected to shear., ACI J. 83 (1986)
219–231.

28
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