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Abstract: This paper addresses the problem of designing control systems for steering an autonomous
vehicle, for varying speed, ensuring stability and sustaining performance, taking into account comfort
and safety. A novel automatic lateral control architecture is proposed combining Linear Parameter
Varying (LPV) control theory and the Pure-Pursuit algorithm. The response of the robust controller
is investigated for tracking a reference trajectory. The implementation is based on the reduction of the
polytopic LPV model. In addition, to illustrate the results, the synthesized controller has been tested
first in simulations, and then to an automated electric Renault Zoe in a test track providing encouraging
results.
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1. INTRODUCTION

Autonomous vehicles could facilitate modern life reducing ac-
cidents rate, average transportation time and fuel consumption;
see Bagloee et al. (2016). To achieve these goals, vehicles
have to be able to accomplish several scenarios to reach full
autonomy.

From the control perspective, the main categories can be di-
vided into: Lateral control, Longitudinal control, Integrated
Lateral/Longitudinal control and higher-level control issues;
see González et al. (2015). The addressed issue for this paper is
Lateral Control.

Numerous efforts have been devoted to automate the steering
control of a vehicle. Since 90s, automatic lateral control has
been studied by the California Path Program at the University
of Berkeley. They introduced a new dynamic vehicle model
and applied an optimal control law-based controller, including
a feed forward term as a function of the road curvature of the
trajectory in Peng and Tomizuka (1990).

In the 90s, Ackermann et al. (1999) made a breakthrough de-
coupling the yaw and lateral dynamics of the vehicle by active
steering control. In 1995, Jochem and Pomerleau (1996) from
Carnegie Mellon University demonstrated Navlab 5, a test-bed
car that completed about 2800 miles journey across America.
The vehicle wasn’t driving fully autonomously because the
pedals were manually controlled. The steering wheel control
was based on the pure-pursuit algorithm. The lane-tracking was
achieved by minimizing lateral deviation and heading error in a
look-ahead distance ahead of the vehicle.

? This work was supported by Renault.

In 1996, Broggi et al. (1999) demonstrated the Argo project.
The main target of the project was the autonomous driving
of the vehicle through Italy. The steering system was using
only two low-cost cameras and was controlled by a gain-
scheduled proportional controller to correct the vehicle’s offset
with respect to the reference trajectory.

In 2005, Stanford presented the Stanley vehicle which won the
second Defense Advanced Research Projects Agency (DARPA)
Grand Challenge that took place in the desert; see Thrun et al.
(2006). Its steering controller was a nonlinear feedback func-
tion. The steering system’s main purpose was to minimize the
cross-track error and secondly correct the heading of the vehi-
cle.

In 2013, Tan and Huang (2014) conducted real experiments
with drivers of different levels and tried to formulate the steer-
ing mechanism of the humans. They resulted in a PID con-
troller, the T&C controller (Target and Control Driver Steering
Model). The controller’s command is the steering rate which is
the angular error (error between the vehicle’s heading and the
target point’s at a look-ahead distance) multiplied by a gain. The
gain could be selected through pole placement and the system
was validated in a bus revenue service.

Several control methods have been implemented and tested
experimentally for the design of automatic steering wheel sys-
tems. Some of them are cascade control architecture combined
with fuzzy logic in Pérez et al. (2011), as well as adaptive and
predictive control e.g. Ercan et al. (2017). Furthermore, Corno
et al. (2020) have implemented successfully LPV control the-
ory and recently reinforcement learning and deep-based lateral
control strategy has demonstrated promising results in Li et al.
(2019).



1.1 Motivations & Contributions

The above brief review allows us to emphasize three main
pillars of Lateral control. First, the control theory applied to
the vehicle model i.e Gain scheduling, MPC, Adaptive control
theory, fuzzy logic etc. Second, the strategy for the formaliza-
tion of the model such as T&C, Pure Pursuit or Stanley method.
Third, the control objectives to be satisfied for better results i.e
the minimization of the key variables, such as the yaw rate error
between the vehicle and the reference trajectory, the angular
error of the vehicle etc.

The main motivation behind this study is the use of LPV theory
for the design over a range of speed, allowing a smooth transi-
tion for speed variations. Indeed, even if stability is guaranteed,
transient effects of switching between controllers can become
important for the system performance.

LPV techniques offer capabilities to handle the whole operating
domain of a varying parameter with respect to time. In automo-
tive problems where parameters variations as speed exist and
play a significant role, LPV can provide stability and perfor-
mance against them; see Sename et al. (2013). Finally, LPV
problems are convex and amenable to Linear Matrix Inequality
(LMI) computations, the latter being supported by efficient and
reliable software tools.

This paper proposes a novel architecture combining LPV con-
trol theory, the Pure-Pursuit strategy and the control objectives
by minimizing: 1) the lateral offset at a given look-ahead dis-
tance, 2) the angular error between the vehicle and the refer-
ence trajectory at that distance and 3) the yaw rate difference
between the yaw rate of the vehicle and the reference trajectory.

1.2 Structure of the paper & Vehicle Parameters

This paper is organized as follows. Sections 2 introduces the
vehicle model and the errors to be minimized according to the
Pure-Pursuit strategy. Section 3 presents the LPV synthesis of
the controller, according to the polytopic approach, including
the polytope reduction. In section 4 is presented the simulation
results and in section 5 the experimental validation of the pro-
posed algorithm to an electric Renault Zoe. Some concluding
remarks and future work directions are given at the end of the
paper.

The following notations will be referred in the rest of the
paper expressing useful information about the vehicle, as well
as for the model used. Throughout the paper, the following
notation will be adopted: { f ,r} are used to identify vehicle
front and rear positions respectively. {x,y} holds for dynamics
in the longitudinal and lateral axes respectively. Then, let v =√

v2
x + v2

y denote the vehicle speed and K is the road curvature.
yL is the offset from the centerline at the look-ahead, εL is
the angle between the tangent to the road and the vehicle
orientation and ψ̇ is the yaw rate of the vehicle (see Fig. 1).
In addition, L and T denote the look-ahead distance and time
(Fig. 2). m is the vehicle mass, Iz is the yaw inertia, L f COG-
front distance, Lr the COG-rear distance, C f cornering stiffness
of each front tire and Cr cornering stiffness of each rear tire.

2. VEHICLE AND ERRORS MODELING

Combining the lateral dynamics derived from the bicycle model
of Rajamani (2011), as shown in Fig. 1, and the geometry from

the pure pursuit algorithm; see Taylor et al. (1999) in Fig. 2
for the design of an automatic steering controller, the following
extended state space model is obtained.

2.1 Lateral Dynamics

The bicycle model, depicted in Fig. 1, is used with states the
lateral speed vy, the yaw-rate ψ̇ of the vehicle and as input
the steering wheel angle δ . The corresponding equations are
presented below:

Fig. 1. A two wheeled bicycle model describing the lateral
dynamics
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2.2 Error Dynamics

Navigation provides at each instant a generated trajectory tak-
ing into account the speed, heading and current position of
the vehicle. That reference trajectory is discretized to a set
of points that each one of them contains as information the
coordinates and the heading. The lateral yL and the angular εL
errors are calculated as the projection of the vehicle pose at the
look-ahead distance onto the generated trajectory, Fig.2. The
equations which captures the evolution of these variables at the
look-ahead distance are the following:

Fig. 2. Pure pursuit geometry describing the errors created at
the target point.



ẏL =−vy−Lψ̇ + vxεL

ε̇L =−ψ̇ + vxK
(2)

where K is the road curvature of the trajectory at the target
point. The extended state space model created is the following:

ẋ(t) = Ax(t)+B1w(t)+B2u(t)
y(t) =Cx(t)

(3)
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,

and w(t) = ψ̇tra j = vxK is considered as an exogenous input.

3. LPV PURE PURSUIT CONTROLLER SYNTHESIS

3.1 LPV Model

The above state space representation (3) can be written in
an LPV form by expressing the parameter-dependent matrix
A(vx,L) in an LPV form, with vx and L as parameters, known
at each instant and bounded, and vary with respect to time.
Therefore, defining the vector of varying parameters ρT =
[vx L]T we obtained that the state matrix is of the form

A(ρ) = ρ1Aρ1 +
1
ρ1

A 1
ρ1
+ρ2Aρ2 (4)

In order to be able to express the model system in a proper LPV
form for the chosen design method (here the polytopic one); see
Mohammadpour and Scherer (2012), the matrices that depend
on time-varying parameters must be affine with respect to the
the vector of varying parameters. From (4), A(ρ) is not affine
with respect to the parameter vector ρ . To get such an affine
form, it is necessary to define 1

vx
as a new additional parameter,

which leads to a vector of 3 varying parameters.

It is known that such a choice may increase the conservatism
due to the larger convex set to be considered during the opti-
misation process. However, as seen later, some reduction of the
polytopic set might be considered.

On the other hand, the look-ahead time T is chosen constant
to further reduce the size of polytope, by considering L =
vxT which is a coherent choice for the path tracking control.
Therefore the vector of varying parameters is considered as:

ρ
T = [vx

1
vx
]T (5)

Considering as bounds of the parameters ρi ≤ ρi ≤ ρi, the LPV
matrix A(ρ) can be written as:

A(ρ) =
4

∑
i=1

ai(ρ)Ai (6)

where 4 are the number of vertices ωi of the polytope i.e all the
possible combinations of the lower and upper bounds ρi and
ρi. Additionally, ai(ρ) are parameter-dependent variables com-
puted on-line, as explained later for the on-line implementation
of the LPV controller.

Replacing the LPV matrix (6) in (3), the polytopic system, by
Apkarian et al. (1995), is:

ẋ(t) = A(ρ)x(t)+B1w(t)+B2u(t)
y(t) =Cx(t)

(7)

3.2 Reduction of the Polytope

It is worth to mention that the parameters defined previously
depend actually on the same variable vx. This may lead to a
conservatism using the polytopic approach (this is indeed a
drawback of such an approach; see Robert et al. (2009)). As
a result, the performances of the closed-loop system may be
degraded or even the controller might not be implementable.

The modification presented below is to define the LPV con-
troller based on a reduced polytope that expresses at least the
possible combinations of the bounds of the parameters (see Fig
3). The operating domain of speed is considered vx ∈ [1,20]m/s,
so the bounds of the parameters ρi are the following:

1≤ ρ1 ≤ 20
0.05≤ ρ2 ≤ 1

(8)

The two realistic vertices of the polytope (see left subfigure in
Fig.3) are ω2 and ω4 but in order to keep the convexity property
and solve the equivalent LMIs, the reduced polytope should
contain all the intermediate combinations of the parameters; see
Boyd et al. (1994). For that reason, the third selected vertex for
the reduced polytope is ω1 (right subfigure in Fig.3).

The whole procedure for the reduction of a polytope is detailed
in Robert et al. (2009), where the authors implemented the
synthesized controller based on a reduced polytope to a T
inverted pendulum.

Fig. 3. Full and Reduced Conservatism Polytopes

3.3 Control Structure and Synthesis

Control problem formulation in the LPV framework is depicted
in Fig. 4 where the LPV controller’s performance is achieved by
tuning the weighting functions; see Poussot-Vassal (2008). The
MIMO generalized plant considers the LPV extended model (7)
defining the vector of variables z that have to be minimized in
order to achieve the desired performance.



The z variables are formed by introducing some appropriate
weight functions Wu(s,ρ),We(s,ρ) to the measurements eψ̇ =
ψ̇re f − ψ̇ , yL, εL as to the output of the controller u as shown in
Fig. 4.

Fig. 4. Control Scheme

The augmented state vector xg consists of the states of the ex-
tended model (3) plus the states xz, which express the dynamics

of the weighting functions i.e xg(t) =
[

x(t)
xz(t)

]
.

The generalized LPV plant is:[ẋg(t)
y(t)
z(t)

]
=

[
A (ρ) B1(ρ) B2(ρ)

C 0 0
Cz(ρ) Dz1(ρ) Dz2(ρ)

][xg(t)
w(t)
u(t)

]
(9)

The generalized plant in (9) is also in polytopic form consisted
of the three vertices ωi, i = 1,2,3 of the reduced polytope.

Problem Definition: The LPV control synthesis problem con-
sists in finding a LPV controller K(ρ), for the polytopic ap-
proach the vertex controllers Ki, by solving off-line the appro-
priate set of LMIs, so that the closed-loop system represented
in Fig. 4 is stable and there exists a γ > 0 s.t.

sup
||w||6=0

‖z‖2

‖w‖2
< γ, ∀ ωi (10)

The solution of that problem are the vertices of the LPV
controller’s K(ρ) corresponding polytope. This allows to get
the vertex controllers in state space form:

ẋc(t) = Aixc(t)+Biy(t)
u(t) =Cixc(t)+Diy(t)

(11)

where xc is the state space vector of the controller.

In the sequel, the LPV controller K(ρ) is computed on-line as a
convex combination of the vertex controllers, for the reduced-

polytope in Fig. 3, Ki =

[
Ai Bi
Ci Di

]
,

K(ρ) =
3

∑
i=1

ai(ρ)Ki (12)

where the constants ai are the solution of the linear system
shown below and θi are the vectors that include the coordinates
of the vertices ωi; from Poussot-Vassal (2008).[

θ1 θ2 θ3
1 1 1

][a1
a2
a3

]
=

[
ρ1
ρ2
1

]
(13)

4. SIMULATION RESULTS

To validate the proposed designed controller, a given scenario
was implemented using the aforementioned extended model. A
straight lane is used as a reference trajectory. All simulations
started with an initial offset of 3m away from the reference
trajectory and the vehicle’s longitudinal speed is set to vx = 1 :
19m/s and T = 1.5s to show indicatively the convergence and
the performance of the controllers for different cases.

In Fig. 5, the trajectory of the vehicle is presented in the
frame of the global coordinates where convergence is achieved
for lower speeds at 50m and for higher after 80m, having
overshoots below 0.5m at all speeds.

Fig. 5. Trajectory

5. EXPERIMENTAL VALIDATION

This section demonstrates the results of the proposed control,
which is implemented and tested on an electric Renault Zoe that
has been automated for allowing steering computed control (see
Fig. 6).

The vehicle is equipped with a Real-Time Kinematic Differ-
ential Global Positioning System (RTK-DGPS) providing in-
formation for the localisation. In addition, a MicroAutoBox is
installed at the back of the car to integrate the Matlab code to the
vehicle’s architecture. The vehicle acceptes steering command
at 100 Hz. Consequently, the vertex controllers Ki, i = 1,2,3
are discretized for sampling time Ts = 0.01s and their on-line
implementation is achieved following (12), (13).

In a test track in Satory, France a straight lane followed by a
turn is used (see Fig. 7). The vehicle started in manual mode
and the autonomous mode is activated in presence of an initial
lateral offset. For that reason, it can be seen that there is an
initial steering wheel angle in figure 8 but also initial errors to
be minimized in the figures 9, 10, 11.

Furthermore, vehicle’s velocity followed a speed profile pro-
vided by the navigation system (see Fig. 12). At the beginning,
the vehicle accelerated gradually from 6m/s to 14m/s, contin-
ued with a constant speed of 14m/s, decelerated from 14m/s to
8m/s and accelerated to enter the turn, as shown in Fig. 12.

In Fig. 7 shows the trajectory followed by the vehicle and its
position for different instants throughout the test. It has to be



remarked that in the straight lane the mean error value of the
lateral offset of the vehicle is (0.15m) and at the turn (0.63m).
That could be remarked as a flaw of the method to increase
more the bandwidth of the closed-loop system for the whole
operating domain.

In Fig. 9, 10 and 11 are shown the evolution in time of the
yaw rate error, the lateral and angular errors at the target point
respectively. As it can be seen, these errors converged close
to zero without having significant oscillations, apart from the
overshoot that occurred at the beginning cause of the brute
acceleration of the vehicle in combination with the presence
of the initial lateral offset.

It’s worth to mention that the vehicle has a good performance
and the steering was comfortable enough as can be seen in Fig.
8. The steering angle increased abruptly only at the beginning
cause of the initial errors and the acceleration of the vehicle. In
the rest of the track, the corrections were smooth, as it can be
seen there are no sudden changes of the steering wheel angle.

Fig. 6. Automated electric Renault Zoe used throughout the
experiments.
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Fig. 7. Trajectory followed in the test track.

6. CONCLUSIONS

This paper has presented that using LPV theory and especially
the polytopic approach, an automatic lateral controller could be
designed for lane-tracking.

Even though the Polytopic approach is a conservative method,
experimental results have shown that it can work for different
variations of speed reducing errors smoothly only by comput-
ing the convex combination of three linear dynamic output
controllers guaranteeing stability and performance at the same
time.
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Future works will include the use of different LPV techniques,
such as Gridding or Linear Fractional Transformation (LFT) for
reduced conservatism, where different look-ahead time T could
be selected as a function of speed and ameliorate even better the
performance.

Additionally, LPV identification method expressing the actu-
ator model dependent on speed will be explored in order to
design a controller using full information of the real vehicle
and achieve the optimal performance for the whole operating
domain of speed.
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