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Abstract 19 

Seismologists are eagerly seeking new and preferably low-cost ways to map and track changes in the 20 

complex structure of the top few kilometers of the crust. By understanding it better they can build on 21 

what is known regarding important, practical issues. These include telling us whether imminent 22 

earthquakes and volcanic eruptions are generating tell-tale underground signs of hazard, about 23 

mitigation of induced seismicity such as from deep injection of waste water, how the Earth and its 24 

atmosphere couple, and where accessible natural resources are. Passive seismic imaging usually relies 25 

on blind correlations within extended recordings of Earth’s ceaseless “hum” or coda of well-mixed, 26 

small vibrations. In this paper we are proposing a complementary approach. It is seismic 27 

interferometry using opportune sources - specifically ones not stationary in time and moving in a 28 

well-understood configuration.  Its interpretation relies on accurate understanding how these sources 29 

radiate seismic waves, on precise timing, on careful placement of pairs of listening stations, and on 30 

seismic phase differentiation (surface and body waves). Massive freight trains were only recently 31 

recognized as just such persistent, powerful cultural (human activity-caused) seismic sources. One 32 

train passage may generate tremor with an energy output of a magnitude 1 earthquake and be 33 

detectable for up to 100 km from the track. We discuss source mechanisms of train tremor and review 34 

basic theory on seismic interferometry with opportune sources.  Finally, we present case studies of 35 

body- and surface-wave retrieval as an aid to mineral exploration in Canada and to monitoring of a 36 

Southern California fault zone. We believe noise recovery from this new signal source, together with 37 

dense data acquisition technologies such as nodes or Distributed Acoustic Sensing, will deeply 38 

transform our ability to monitor activity in the shallow crust at sharpened resolution in time and 39 

space.  40 
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1 Introduction 41 

Vehicle traffic was long seen mainly as a pervasive source of nuisance noise that degrades seismic 42 

records (Douze and Laster, 1979). But the recent and intriguing discovery of tremor from trains 43 

startled seismologists. Studies soon followed on detection and characterization of these signals (Riahi 44 

and Gerstoft, 2015; Li et al., 2018; Green et al., 2017; Fuchs et al., 2018; Inbal et al., 2018) as well as 45 

source modeling (Lavoué et al., 2020). Earlier studies Nakata et al. (2011); Quiros et al. (2016); Chang 46 

et al. (2016) proposed using traffic noise and seismic interferometry for both body- and surface-wave 47 

imaging. These studies were, however, limited to highly local sources of background cultural noise 48 

and near-surface applications. 49 

In a fortuitous attempt to gather non-volcanic tremors (NVT) along the San Andreas Fault 50 

Zone in Southern California, Inbal et al. (2018) discovered extended tremor sequences that shared 51 

puzzling similarities with NVTs. But they traced the new discovery to massive freight trains running 52 

along the nearby Coachella Valley. They could detect them as much as 100 km from the rails. 53 

Brenguier et al. (2019)  calculated that a single 1-km-long freight train rolling through a 10-km-long 54 

railway section radiates energy equivalent to a magnitude 1 earthquake. By further using seismic 55 

interferometry for correlation of this underfoot train  noise Brenguier et al. (2019); Dales et al. (2020) 56 

showed it possible to extract useful information on the Earth’s crustal structure and temporal changes 57 

down several kilometers and that provides a potential alternative to costly monitoring of active 58 

sources such as hydraulic thumping or explosives (Tsuji et al., 2018).  59 

    This paper reviews basic concepts and examples of the application of seismic interferometry to 60 

train tremors. Its special focus is on long-range body-wave retrieval for crustal exploration and 61 

monitoring (Fig. 1). The Green’s function is the elastic impulse response of the ground between a 62 

seismic source and a seismic receiver, i.e., the signature of the ground structure encapsulated by its 63 

effects on the velocity and other behavior of a signal as it traveled. Seismic interferometry is often 64 
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able, by correlating diffuse coda or seismic noise, to retrieve the Green’s function between two seismic 65 

sensors by turning one sensor into a virtual source.  The impact of Green’s function retrieval in recent 66 

decades is revolutionary  (e.g., Campillo and Paul, 2003; Shapiro et al., 2005; Snieder, 2004; 67 

Wapenaar, 2004).  It spurred publication of at least 2000 seismology papers in the last 15 years. One 68 

payoff from seismic interferometry and Green’s function retrieval is improved crustal imaging 69 

through correlation of pervasive surface wave noise generated in the oceans in the period range from 70 

1 to 20 seconds. Recent studies have also unveiled the possibility of reconstructing body-waves at 71 

global (e.g., Poli et al., 2012; Boué et al., 2013) and local scales (Draganov et al., 2009; Nakata et al., 72 

2015; Olivier et al., 2015; Nakata et al., 2016). 73 

A perfect application of Green’s function retrieval and seismic interferometry requires 74 

correlation of either a fully diffused seismic wavefield or noise signals generated from all around the 75 

studied region, including at depth (Wapenaar, 2004). In practice these demands are never met. 76 

Seismologists must live with or find work-arounds for partial reconstructions and potentially biased 77 

wave travel times (Snieder et al., 2006; King and Curtis, 2012). Moving trains are welcome, opportune 78 

sources of noise on well-mapped railways. It is essential that they be rigorously assessed for seismic 79 

interferometry. Train traffic noise cannot be blindly correlated without considering the effects of 80 

irregular source distribution on body-wave retrieval. 81 

In this paper we first describe typical train noise signals, discuss recent models of mechanisms 82 

that create train seismic radiations, and provide a map of the predicted extent of useful train noise in 83 

the contiguous US. Second, we propose a methodological framework focusing our approach on the 84 

stationary zones (geographical area where we observe constructive interferences when cross-85 

correlating signals between two stations,  Snieder, 2004) and propose a signal processing strategy for 86 

applying seismic interferometry to train noise with focus on long-range body-wave retrieval. We 87 

finally review two recent case studies regarding mineral exploration in Canada and tectonic fault 88 
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monitoring in Southern California. 89 

90 
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2 The sound of trains in the Earth 91 

As noted, massive freight trains generate seismic waveforms with striking similarity to episodic 92 

tectonic tremors. These may be from such events as slow-slip fault motion (Fig. 2 top).  As Inbal et al. 93 

(2018) report, the identity of the sources as manmade was not obvious because freight train traffic 94 

often lacks cultural diurnal or weekly modulation, and typical train speed (25 m/s or 90km/h) is also 95 

in the range of reported tectonic tremor migration velocity at depth. Train hum has however a distinct 96 

signature with clear spectral lines above 1 Hz (Fuchs et al., 2018) illustrated in Fig. 2 for a train signal 97 

recorded in Canada about 3 km from the railway (first case study presented below, see Section 5). 98 

The engineering community has studied train-induced ground vibrations thoroughly to damp 99 

them and mitigate potential hazards. Several source mechanisms are under study (e.g. Connolly et al., 100 

2015) including quasi-static excitation due to axle loads, and dynamic interactions among trains, 101 

tracks, and ground. In a recent study, Lavoué et al. (2020) showed that excitation due to axle loads is 102 

the main mechanism producing the spectral characteristics of seismic signals at intermediate to long 103 

distances from the railway (from hundreds of meters to tens of kilometers, Fuchs et al., 2018; Inbal et 104 

al., 2018; Li et al., 2018; Brenguier et al., 2019). One may then model train-generated seismic signals 105 

by considering only the vertical forces due to loading applied by axles on the railroad ties (commonly 106 

called sleepers) along the railway (Krylov and Ferguson, 1994; Lavoué et al., 2020). 107 

Lavoué et al. (2020) conclude that the spectral lines arise from complex interactions of 108 

periodic loads through the regularly spaced wheels on the even more evenly separated sleepers. The 109 

frequencies of these spectral lines depend on train geometry (i.e. train car length and wheel spacing 110 

within each car), spacing between sleepers, and train velocity. We provide an open-source code to 111 

assess the frequency response of a specific train (see link in Data and Resources). With most trains, 112 

the dominant spectral lines are expected in the 1 to 20 Hz range, which is ideal both for high-113 

frequency surface wave tomography of the near subsurface and for crustal body-wave imaging and 114 



 
 
 

7  

monitoring (wavelengths not too large and scattering not too strong, Brenguier et al., 2019). 115 

Our ability to predict the long-range, body-wave Peak Ground Velocity (PGV) of a moving train 116 

tremor – the physical motion in the medium as signals go through it - is crucial to image formations 117 

and monitoring any changes with seismic interferometry. Lavoué et al. (2020) propose that train 118 

tremor PGV is directly proportional to the wagon weight for a given train length, and is a square-root 119 

function of train length for constant wagon weight. Faster trains also generate higher PGVs. Moreover, 120 

the ground stiffness beneath railways controls high-frequency content and amplitude of excitation 121 

(trains traveling across rock or stiff soil generate higher-frequency and higher- amplitude signals). 122 

This ground stiffness parameter may also reflect a coupling between the rail track and the ground. 123 

While maximum detection distance may be limited (a few kilometers) in sedimentary basins due to 124 

attenuation and weak excitation but, again, it can reach almost 100 km on a hard-rock substratum. In 125 

southern California, for instance, Inbal et al. (2018) observed a freight train tremor signal from as far 126 

as 90 km from the railway.  At 45 km from the railway, they estimated a PGV of about 6 × 10−8 m/s. 127 

By applying a simple correction for intrinsic attenuation and geometrical spreading for body (P) 128 

waves, we now estimate that the level of PGV for a specific Coachella Valley train would be of the 129 

order of 5 × 10−7 m/s at 10 km and 5 × 10−6 m/s at 1 km.  These values are quite low. Even high-130 

sensitivity seismometers may record such train signals at long distances only in quiet environments. 131 

Nevertheless, Brenguier et al. (2019) demonstrated that Coachella Valley train noise supported 132 

seismic body-wave interferometry - with data recorded by an array of geophones (nodes) - as much 133 

as 60 km from the railway (see Section 6). 134 

At shorter distances small-amplitude body waves might be barely visible in the raw data, 135 

either because surface waves hide them or because they are below the ambient noise level. But it 136 

should be possible to extract body waves from the correlations of train tremors by stacking data from 137 

several passages (see Section 5). Using train tremors for seismic interferometry thus depends both on 138 
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detection limits (instrument sensitivity and local noise level) and on reliably recognizable features in 139 

train signals. 140 

Observation from previous studies (Inbal et al., 2018; Brenguier et al 2019)  persuade us that 141 

50 km is a typical maximum distance range for detecting tremors generated from large North 142 

American freight trains. That led us to look into the spatial extent of detectable train tremor in the 143 

entire contiguous US plus southern Canada (Fig. 3). The map displays the main freight railway routes. 144 

The swathes in colors represent high tonnage routes. Their width (100 km) is a rough guide to 145 

potential long-range train tremor detection scope. This map does not take into account the reduced 146 

detectability of signals in urban areas due to intense local noise and in sedimentary basins with strong 147 

attenuation compared to the Southern California-Coachella Valley reference.  148 

Noteworthy is that the Coachella Valley, a stretch of Sonoran Desert northwest of the Salton 149 

Sea, is a singularly apt place to find practical uses for ground vibrations of massive trains.  Its Union 150 

Pacific RR tracks are a prime corridor to and from the ports of Los Angeles and Long Beach, the 151 

Western Hemisphere’s busiest seaport complex. Dozens of trains go through daily. The average length 152 

is more than 2.5 km with more than 100 cars, often including multiple engines front and back. Rail 153 

enthusiasts visit to make, and often to post on YouTube, mesmerizing videos of the immense steel 154 

caravans rumbling by (see Data and Resources).   155 

Annual freight tonnage (Fig. 3) is a proxy for the number of trains travelling on rail sections. 156 

Assuming an average train length of 2 km and a weight of 15 kilotons (according to statistics derived 157 

from the public waybill samples, 20181), a tonnage of 100 MT/year corresponds to about 18 trains 158 

per day. The number of trains per day will affect ability to stack the reconstructed body waves from 159 

seismic interferometry.  It also affects the temporal resolution needed in monitoring applications (see 160 

Section 6). This map highlights the potential of using trains as sources of opportunity. Potential 161 

application may be in Cascade volcanoes, the Southern California’s San Andreas Fault system, induced 162 
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seismicity (e.g. Oklahoma), and resource exploration and monitoring (minerals, water). 163 

 164 

1https://prod.stb.gov/wp-content/uploads/PublicUseWaybillSample2018.zip 165 

 166 

3 Seismic interferometry with opportune sources 167 

Seismic interferometry is a general term embracing all methodologies aiming to infer seismic 168 

responses from the correlation of seismic signals observed at multiple receiver locations (e.g., 169 

Wapenaar et al., 2010a,b).  To turn sensors into virtual sources, this concept has been refined in 170 

seismology and seismic exploration,  mostly in the last 20 years, based on the pioneering studies of  171 

random fields or vertical planar wave autocorrelation (Aki, 1957; Claerbout, 1968) and the time-172 

reversal principle in acoustics  (Fink, 1997). 173 

To retrieve a Green’s function using the correlation or an equivalent operator the theory 174 

heavily relies on either a stationary phase condition (e.g., Snieder, 2004; Roux et al., 2005) and/or an 175 

equipartition of modes defining a diffuse field (e.g., Sánchez-Sesma and Campillo, 2006). The 176 

stationary phase condition implies that the correlation function’s convergence towards the Green 177 

function requires the presence of sources (or scatterers) in line with two carefully placed receivers. In 178 

a 2D homogeneous medium, these stationary points define a hyperbolic area, outward from the 179 

receiver pair, with an aperture that is frequency dependent (the lower the frequency, the broader the 180 

calculated source region). Also known as Fresnel zones, these "kernels" are clues to the reliability of 181 

the correlation’s implied source locations.  In 3D and for both surface and body wave retrieval, the 182 

requirement of equipartition remains.  Full Green function retrieval demands sources evenly 183 

distributed, along an arbitrarily shaped surface enclosing the two sensors (e.g., Wapenaar, 2004; 184 

Wapenaar and Fokkema, 2006). However, even with a clearly dominant distribution of sources at the 185 

free surface, several studies confirmed the feasibility of retrieving body waves (e.g., Draganov et al., 186 

https://prod.stb.gov/wp-content/uploads/PublicUseWaybillSample2018.zip
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2009, 2013), and even explicitly using traffic noise (Nakata et al., 2011). 187 

Each of the possible phases (or wave types) included in the Green’s function has its own 188 

source sensitivity. The main contributors to a particular phase are sources within its stationary phase 189 

area. We can therefore measure a specific phase between two receivers by correlation of a source 190 

within its stationary phase zone including the surface. The following case studies investigated P 191 

waves from moving trains, and emerging from the interference between a direct P recorded at the 192 

first station, and a PP (redirected once by a buried layer or formation edge) recorded by a second 193 

station after a rebound below the first one. One can do the same with S waves, Fig. 4b). 194 

Useful interference occurs if the seismic sources (trains) satisfy the stationary phase criterion:  195 

∆𝑡 = 𝑡𝑝𝑝 −  𝑡𝑝  ≤  𝑡𝑔𝑟𝑒𝑒𝑛 ±
𝑇

4
,   196 

where  𝑡𝑝𝑝  is the arrival time of the PP wave at the second receiver; 𝑡𝑝 is the arrival time of the P 197 

wave at the first station 𝑡𝑔𝑟𝑒𝑒𝑛  is the arrival time of the P wave between the two receivers and T is the 198 

dominant period. Note that using somehow controlled sources to retrieve body-wave response 199 

through interferometry is similar to daylight imaging developed by (Schuster et al., 2004) or to the 200 

virtual source approach discussed by (Bakulin and Calvert, 2006) for borehole imaging. For train 201 

signals, we need to characterize the source and of course take into account that the sources are 202 

moving.  203 

One reason train signals are practical for interferometric studies is that we can easily detect, 204 

or learn in advance, that a train is coming.  If a railway is sufficiently close to a targeted area, a single 205 

train’s motion could illuminate many azimuths and potentially different depths. Figure 4a shows an 206 

example of geometry in Marathon (Ontario, Canada). There a railway essentially surrounds a 207 

temporary array put in to assess an ore deposit (detailed in the following section). By selecting station 208 

pairs aligned with train locations (illustrated for two positions by red and blue stars), one can 209 

potentially illuminate the ore body from a broad azimuth range. Figure 4b to 4d are schematics of 210 
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several P-wave interference scenarios, each with a pair of stations. They offer a perfect ballistic 211 

interference between a diving P and PP wave (Figure 4b) leading to a directly measurable diving P 212 

wave between the two receivers; and a classical scenario of a scattered wavefield from which we 213 

expect some random source energy to transit between the two receivers (Figure 4c); See also a more 214 

problematic interference between two diving wave, or a head wave recorded at the two stations 215 

(Figure 4d). Instances of this last scenario are sometime regarded as spurious correlations or virtual 216 

refractions (Dong et al., 2006; Snieder et al., 2006; Mikesell et al., 2009).  Although not included within 217 

the impulse response between the two stations, this last correlation feature might be useful for 218 

imaging if it is well distinguished from expected diving waves (Dong et al.,2006). 219 

We decided to try to illuminate specific ray paths by using a data processing workflow, 220 

starting with the selection of short time windows including specific train passages. This presumably 221 

could be extended to any kind of seismic tremors and should help extract body waves between well-222 

selected pairs of stations useful for imaging and monitoring studies. 223 

 224 

4 Strategy for data processing 225 

Standard noise-correlation workflow typically removes strong transient events such as earthquakes 226 

and then correlates the entire remaining time series recorded at different sensors (Bensen et al., 227 

2007). With opportune sources including train traffic we propose a novel workflow. It includes source 228 

characterization with signal and station pair selections as alternatives to blind correlation. We thus 229 

aim to improve the signal-to-noise ratio (SNR) of the reconstructed correlation functions and the 230 

temporal resolution of monitoring studies. This approach is illustrated is sections 5 and 6 for imaging 231 

and monitoring applications, respectively. Figure 5 summarizes the five main stages of our data 232 

processing in comparison to the classical method of continuous blind data correlation. 233 

The workflow’s steps:  234 
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 - Identify opportune source signatures in the continuous data and, if possible, locate these 235 

sources perhaps by distance but at least in azimuth. As shown in section 2, the modeling of opportune 236 

sources helps reveal the temporal and spectral content of the generated wavefield.  Standard (short-237 

time average window / long-time average window) and more advanced techniques (e.g., Meng et al., 238 

2019; Kong et al., 2019) detect these transient events. Array processing techniques (e.g., Cheng et al 239 

2020) can be used to locate their sources.  240 

- Station pair selection: With source location estimates in mind we can narrow down the 241 

options for station pairs. For a given signal time window we use only station pairs for which the train 242 

source is in a stationary phase zone. During a train passage, the energy carried by its seismic signal 243 

reaches an array of sensors from a range of directions.  Figure 4a illustrates two train positions at 244 

different times (red and blue stars) and the associated selected stations for pair-wise correlations 245 

(red and blue dots).  246 

- Compute cross-correlations after proper time windowing and station pairs selection. 247 

- Stack (by events, by azimuth): To improve SNR, we stack the cross-correlations over 248 

different events. Cultural sources such as train traffic have the advantage of reliability and frequent 249 

repetition. 250 

- Measurement and analysis: Depending on the type of studies, various approaches such as 251 

travel time measurements can enhance imaging and monitoring applications. 252 

 253 

5 Body- and surface-wave retrieval from correlations of train tremors applied to mineral 254 

exploration 255 

 We investigated a region near Marathon, Ontario, Canada (see Fig.  6b) where potential targets 256 

include a high concentration of platinum group metals and minor Cu in a gabbro intrusion. 257 

Reconstruction of high-frequency body-waves from train noise correlations was of significant 258 
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interest. A reason is such signals’ sharp sensitivity to seismic velocity contrasts at depth, offering a 259 

clear path to imaging geological boundaries. In the fall of 2018 we 1020 seismic stations in a backbone 260 

array and a dense station line (see Fig. 6b). We recorded 30 straight days of seismic signals.  261 

Dales et al. (2020) showed that the main generators of high-frequency seismic noise in 262 

Marathon are freight trains to the southwest.  They reinforced earlier evidence that by selectively 263 

using train traffic noise, one retrieves body waves better than does correlating a more extended or full 264 

noise record. Dales et al. (2020) stacked correlations over 1 month, selecting all periods during which 265 

the ambient noise came from the direction aligned with a dense W-E line of sensors. Their study is 266 

illustrative but the results did not allow them to perform 3D imaging. We moved a step further by 267 

separating and binning noise azimuths for virtual source retrieval in different directions. Following 268 

the workflow proposed in section 4, we detected train passages, inferred the positions and azimuths 269 

of the trains relative to the array, carefully selected station pairs and time windows for correlations, 270 

and finally stacked by train passage and azimuth. 271 

A more detailed workflow follows:  272 

-  We first generated a catalog of train passages with the covariance matrix method proposed 273 

by Seydoux et al. (2016). This method uses the spatial coherence of the signals to detect emergent 274 

signals in the noise. We applied the procedure to the entire data set day by day and detected 207 train 275 

passages in 30 days. We retained for study approx. 180 events after skipping overlapping trains. 276 

Beamforming concluded that the array receives energy from each train for approx. 80 minutes.  277 

- Second, we extracted train signals from the rest of the recording, and selected station pairs in 278 

line with train positions. To determine position, we did beamforming within 1-minute-long windows 279 

using data filtered between 8 and 16 Hz (Fig. 6-d and e, the right side shows 6 beamforming panels for 280 

6 different events at two different times). Each panel corresponds to a one-minute beamforming time 281 

window and one single train passage. We saw that with properly selected time windows for each 282 
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event, we got a tight and usable ranges of azimuth. We assumed that the main source of energy was 283 

the train and noted the maximum beam power. We back-projected this signal onto the railway to 284 

locate each train minute by minute. Figure 6-b (red and blue cross) shows the train position from the 285 

first beamforming panel (i.e., one single train). We then selected station pairs that are in line with the 286 

train position for each minute, always taking the station closest to the railway as a virtual source (red 287 

and blue arrows in Fig. 6b). We applied an azimuthal filter of +/- 5 degrees for each station pair with 288 

respect to the train position.  289 

-  Third, we cross-correlated the selected station pairs minute by minute without overlap and 290 

for each event (i.e., train passage). Filters excluded signals outside 15 to 40Hz to avoid surface waves. 291 

We stacked cross-correlations according to their inter-station distances and collected them in 292 

distance-binned correlation gathers for the selected station pairs (second step). In contrast, Figure 6a 293 

shows the stack of one-minute cross-correlation for a quiet period (i.e., non-train passage), 294 

highlighting the absence of coherent wave propagation in this rather high-frequency window. 295 

- In the fourth and last step we stacked events sharing the same train azimuth. We stacked 296 

these correlation gathers into a reference azimuthal gather. We converged on a stable reference stack 297 

from 6 train passages. We showed that by applying the workflow explained in section 4 we only 298 

needed one minute of data and stacking over the 6 events to retrieve body-waves.  Figures 6-d and e, 299 

left side, show the stacked section over 6 train passages with one-minute data segments. 300 

We retrieved two dominant arrivals with an apparent velocity of 3.8 km/s and 7 km/s.  There 301 

are uncertainties, but we suggest that the first arrival is a P-wave, and the second one is probably a 302 

mix of S- and surface waves. One can use both P- and S-waves plus high-frequency surface waves 303 

jointly for imaging the subsurface. We need further analysis to assess the types of body-waves (direct, 304 

refracted) and how one can use velocity variations in the azimuth’s function for 3D imaging. 305 

 306 
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6 Retrieving long-range body waves from train-tremor correlations to monitor the San Jacinto 307 

Fault Zone 308 

Following studies by Nakata et al. (2015) and Nakata et al. (2016) of high-frequency body- wave 309 

retrieval using dense seismic receiver arrays Takano et al. (2020), Brenguier et al. (2020) and Zhou 310 

and Paulssen (2020) explored ways to monitor temporal changes of ballistic wave velocities. In this 311 

section, we employ opportune seismic sources to passively monitor temporal changes and revisit the 312 

experiment of Brenguier et al. (2019). Here, the goal was to use ballistic P-waves, reconstructed from 313 

ambient vibrations between two dense arrays, to monitor subtle velocity changes at depth within the 314 

San Jacinto Fault Zone (SJFZ, parallel to the San Andreas and part of the same fault complex). 315 

      Brenguier et al. (2019) showed that standard ambient noise correlation processing can retrieve 316 

high-frequency direct P-waves that traveled between two arrays, one at Piñon Flat Observatory (PFO) 317 

and the other on the Cahuilla Reservation (CIR, Fig. 7). The main sources of these P-waves were 318 

Coachella Valley freight trains traversing the Coachella Valley about 30 km to the East-North-East of 319 

PFO. Brenguier et al. (2019) used full records of ambient noise to obtain stable direct P-wave 320 

seismograms. We showed that, by carefully selecting time-windows where most of the energy is 321 

generated by trains, the quality and spatiotemporal stability of the reconstructed P-waves rose. As 322 

described in Figure 5, the standard three-step noise correlation computation workflow was replaced 323 

by a four-step procedure to correlate only the main source of opportune energy i.e., here, trains. Our 324 

workflow:  325 

 - First, we built our train catalog for the period of interest (July 22 to August 11 of 2018) using 326 

three broadband stations (MGE, IDO, and THM of the CI network, Fig. 7b) near the railway in the 327 

Coachella Valley.) After band-pass filtering the continuous data between 0.75-5 Hz we slant-stacked 328 

the envelopes of the continuous seismograms with apparent velocities of plus or minus ~95 km/h 329 

(dashed blue and orange lines in Fig. 7c).  This procedure detected trains passing through the 330 
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stationary phase zone (Fig. 7b) both North to South and South to North.  331 

- With the catalog in hand, we sorted broad time-windows, those with and without train 332 

tremors (large green and red shaded rectangle in Fig. 7c, respectively).  333 

- In the third step, to analyze the dense nodal array data, we cross-correlated the selected 334 

time-windows, (green rectangles in Fig 7c) and 8a)i), filtered between 3 and 10 Hz and using non-335 

overlapping data segments of 30 min.  336 

- We next stacked the cross-correlations, according to their inter-station separations, into 337 

distance-binned correlation gathers. We highlight only correlation gathers for the causal part of the 338 

correlations (from PFO to CIR), for a time-window centered at the P-wave arrival time. These 30 min 339 

correlation gathers were further pruned based on three quality criteria seen in their vespagram, 340 

indicators of the different waves' apparent velocities observed in the correlation gathers. (Davies et 341 

al., 1971). Figure 8a)ii shows the vespagrams associated with the correlation gathers in the upper 342 

panels (Fig. 8a)i). The three quality criteria were: 1) SNR1, the ratio between the maximum 343 

vespagram amplitude in the [0.13-0.2] s/km slowness (inverse of velocity [5-7.5] km/s velocity) 344 

window (dashed black rectangle in the leftmost vespagram panel, Fig. 8a)ii and the root-mean-345 

squared (RMS) amplitude of the rest of the vespagram. 2) SNR2, the ratio between the maximum 346 

vespagram amplitude in the [0.13-0.2] s/km slowness × [4.5-6] s travel-time window (solid black 347 

rectangle in the leftmost vespagram panel, Fig. 8a)ii and the RMS in the rest of the [0.13-0.2] s/km 348 

slowness window. 3) MaxAmp, the peak vespagram amplitude in the [0.13-0.2] s/km slowness × [4.5-349 

6] s travel-time window. SNR1 is used to reject gathers exhibiting phases with apparent velocities 350 

different from the expected apparent velocity of a direct P-wave. SNR2 is used to reject gathers 351 

exhibiting energetic spurious phases with arrival times that are either too early or too late, even 352 

though their apparent velocity is correct. We used the MaxAmp criteria  to reject gathers for which the 353 

expected P- wave phase is not energetic enough or is too large for a train signal, indicating the 354 
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detection of an earthquake located in the Fresnel zone (Fig. 8a)i). For this specific situation, we set 355 

thresholds to be sure the conditions SNR1 ≥ 2.5, SNR2 ≥ 1.5, and 0.15 ≤ MaxAmp ≤ 4.0 were  met  for a 356 

correlation gather to be selected (green boxes in Fig. 8a)iii). The actual values for SNR1, SNR2 and 357 

MaxAmp are shown below each vespagram in Figure 8a.  358 

- In the last step, we stacked the selected correlation gathers into daily gathers and a reference 359 

gather including every selected gather for the whole period of interest (Fig. 8a)vi). Ultimately, we 360 

used less than 20% of the full dataset for the monitoring measurements (Fig. 8b). 361 

To quantify the improvement of the signals using the opportune sources approach, we 362 

measured the ratio of SNRs between a reference gather computed with all the data (Fig. 8c)i, similar 363 

to Brenguier et al. (2019) and the reference gather from selected train windows shown in Fig. 8a)iv. 364 

We performed this operation for each waveform in the gathers.  365 

The results (Fig. 8c)ii) show that the opportune source concentration improves the SNR of the 366 

P-wave signal by an average of more than 25%. This has important implications for monitoring. As 367 

Silver et al. (2007) showed, the SNR is the main factor controlling the precision of a time delay 368 

measurement between two similar waveforms; such precision scales linearly with the SNR. Therefore, 369 

carefully selecting train signals before correlation allows us to improve the precision of the 370 

monitoring measurements. The 30 min long segments of continuous data used here to discretize the 371 

study period could be decreased and adapted even more closely to the train signals, which in turn 372 

should allow even larger SNR improvements. This final process is still ahead of us but the 373 

methodology proved effective. 374 

-The final step of the workflow was to measure seismic velocities. Different approaches were 375 

available. We chose to measure relative time-shift between the seismograms resulting from the slant-376 

stack at 6 km/s of the daily gathers and the reference gather (black and red traces in Fig. 8b, 377 

respectively). We measured the instantaneous time-delay δt(t) between the traces in the 3-10 Hz 378 
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frequency band using the cross-wavelet transform algorithm of Mao et al. (2020). Although a time-379 

delay was determined for each sample of the waveform, we only show δt values for the direct P-wave. 380 

Here, the time-shifts we found are shorter than 0.1% of the propagation time, corresponding to time-381 

shift shorter than 5 ms between the daily and reference seismograms. These time-shifts can be 382 

translated into relative velocity changes with the relation δv/v = −δt/t, using the absolute travel-time 383 

t of the slant-stacked P-wave. We obtained velocity changes on the order of ±0.1%. The meaning of 384 

these values is difficult to know because it will take a lot more work to understand the exact 385 

sensitivity of the reconstructed P-wave and the different trade-offs among the source and structure 386 

sensitivities (see Fig. 4). We plan to estimate 3D spatial sensitivity kernels for these retrieved travel 387 

time perturbations and correct for shallow, environmental velocity changes. Thus, we shall see 388 

whether we will soon be observing and locating any places where changes in seismic velocity at a few 389 

kilometers depth occur within the San Jacinto Fault Zone. 390 

 391 

7 Discussion and conclusions 392 

We see great opportunity for exploiting any available massive freight train noise recovery to improve 393 

crustal imaging and monitoring dramatically. We describe applications to North America but our 394 

conclusions have global ramifications, especially in such countries and regions as China, Europe, 395 

Japan, and India. All have large freight railway systems, often with high speed passenger lines too. The 396 

latter are lighter than freight trains and generate less energetic tremors to be sure, but applications 397 

might be found in near-surface environmental or engineering studies. 398 

For all its potential, to put heavy freight train noise to work for seismic imaging and 399 

monitoring reasons is of course limited to regions near railways. It also requires trains traveling at 400 

rather high speed. But generally, this paper presents a workflow for using other and more local 401 

sources of cultural noise, including car and truck traffic, wind farms, and natural sources such as surf 402 
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break or tectonic, volcanic tremor, as opportune sources of useful seismic noise. 403 

Although promising, this work poses important, practical challenges that the field must 404 

confront.  Most important is to improve understanding of the retrieved body and surface waves’ 405 

spatial sensitivity to crustal structures when combining seismic interferometry with opportune 406 

sources. In contrast to actively-controlled and placed sources, measurements of travel times or 407 

temporal travel time perturbations using more irregular sources can improve sensitivity not only to 408 

the structure between the receivers but contrarily can also blur the overall picture due to interference 409 

in areas between the noise source and the receivers. This latter downside may induce misleading 410 

interpretations of velocity or velocity change measurements. 411 

 412 

A drawback of examples in this paper is that they used so many sensors (hundreds). Train 413 

vibrations cost seismologists nothing but recording them is not yet easy.  One solution to overcome 414 

these limitations is to find a way to use permanent, single seismic stations instead of costly temporary 415 

arrays. One potential initial approach is to deploy dense but temporary seismic arrays around 416 

permanent seismic stations. This may help to identify useful phases emanating from noise 417 

correlations of opportune sources.  A hope is that we learn enough to extract the needed information 418 

on a long-term basis with permanent stations alone.   419 

One additional major advance would be to couple Distributed Acoustic Sensing data (Zhan, 420 

2020) to seismic interferometry with opportune sources, as described by Dou et al. (2017) for car 421 

traffic and near-surface applications. This indicates potential for reconstructing widespread virtual 422 

sources along fiber-optics from correlations of both short- and long-range opportune sources. Success 423 

will open the path to many applications including water resource management in the near-surface 424 

and earthquake studies at greater depth. 425 

 426 
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8 Data and Resources 427 

The Marathon dataset will be released in June 2021. It will either be hosted online or freely sent on 428 

external hard disks upon request via the website for passive seismic techniques for environmentally 429 

friendly and cost-efficient mineral exploration (PACIFIC) (https://www.pacific-h2020.eu). The San 430 

Jacinto array data are available on request to Florent Brenguier. The broadband seismic data used in 431 

this study originate from the Southern California Earthquake Center, Caltech. Dataset. 432 

doi:10.7909/C3WD3xH1. 433 

Open-source codes reproducing Lavoué et al. (2020)’s results are available at https://gricad-434 

gitlab.univ-grenoble-alpes.fr/pacific/publications/2020_Lavoue-et-al_SRL_supplemental-material. 435 

Maps are made with Natural Earth. Free vector and raster map data @ naturalearthdata.com.  436 

Figure 3 is based on a map published by the US Department of Transportation 437 

(https://railroads.dot.gov/sites/fra.dot.gov/files/inline-images/0209.png), built from the 438 

(confidential) waybill samples 2010 established by the US Surface Transportation Board, which we 439 

could unfortunately not access directly. 440 

Coachella Valley train video can be found at 441 

https://www.youtube.com/watch?v=pE0LYuf7_F8 442 
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List of Figures 593 

Figure 1: Cartoon showing examples of studies related to train seismic tremors. 594 

Figure 2: Top: A train tremor recorded 3 km away from a seismic station in Marathon, Canada. 595 

Bottom: Spectrogram showing clear spectral lines oscillating as train speed varies. 596 

Figure 3: Regions of potential long-range train tremor detection from the main railway route and 597 

annual tonnage information in North America. Colors represent annual freight tonnage, which is an 598 

indication of the number of trains travelling on the rail sections (sections with annual tonnage < 10 599 

MT/year are ignored). Colored lines are 100-km-thick, which is an indication for the distance from 600 

which we may detect individual train tremors (50 km from the railway, see details in the text). 601 

Figure 4: Schematic representation of seismic interferometry for opportune sources. (a) A railway 602 

surrounding a dense geophone array; an example from the Marathon (Canada) deployment. Different 603 

train locations (stars) allow the illumination of the array with different azimuths. Yellow kernels are 604 

schematic views of the propagation of diving P waves. (b-d) 3 different scenarios of wave 605 

interference: (b and c) leading to a proper measurement of a diving P wave and (d) leading to a 606 

spurious or virtual refraction measurement. 607 

Figure 5: Chart illustrating the processing steps for opportune sources (in blue) compared to the 608 

standard ambient noise correlation workflow (in orange). 609 

Figure 6: Case studies of train tremor correlations over a dense array at Marathon/Canada.a) One-610 

minute cross-correlation for a quiet time period. b) Map of the study zone in the north of Marathon, 611 

Ontario, Canada. Grey dots are the 1020 seismic stations. The black dashed line is the railroad (CPRS). 612 

The red and blue cross are the position studied. c) Train seismic record. d) - e) left: stacked section 613 

over 6 trains. d) -e) right: 1-minute beamforming panels for 6 train passages. 614 

Figure 7: Detection of train passages in the Coachella Valley. a): Layout of the dense nodal arrays used 615 

for the monitoring of the San Jacinto Fault. b) Map of the study area showing the Fresnel zone (yellow 616 
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ellipse) where train signals contribute coherently to the P-waves in the correlations, travelling 617 

between PFO and CIR. The orange areas show the zones of sensitivity to the structure for a wave 618 

reconstructed by interferometry between the two arrays. The railway and the main highway are 619 

shown in blue. The active tectonic faults are shown in black. The three broadband stations used for 620 

building the train catalogue are shown with red and black circles. c) The train catalog is built by slant-621 

stacking the envelops of the train tremors. The colored rectangles show the location of the Fresnel 622 

zone along the railway, green for a time-window with trains, red for a time-window without train and 623 

rejected from further analysis. 624 

Figure 8: Workflow for monitoring applications. a) i: Cross-correlation computation and correlation 625 

gathers construction for every 30 min-long segments of selected continuous data from the dens 626 

arrays. a) ii: Vespagrams of the correlation gathers used for the 30-min window selection. The black 627 

rectangles in the leftmost panel are used to measure the different selection criteria. a) iii: The three 628 

selection criteria associated to each 30-min window. The red boxes are rejected, the green boxes are 629 

kept for the next step. a) iv: Stack of the selected 30-min gathers into daily gathers, then the daily 630 

gathers into the Reference gather. b) Monitoring results. The bottom histogram shows the number of 631 

hours of continuous noise records stacked to obtain the daily correlation gathers. c) i: Stack of every 632 

30-min windows without train selection, similar to the section shown in Brenguier et al. (2019). c)ii: 633 

Histogram of the signal-to-noise ratio improvement between the Reference correlation gathers 634 

without and with train signal selection 635 
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