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Abstract: Over the past two decades, the development of the ambient noise cross-correlation technology has spawned the exploration
of underground structures. In addition, ambient noise-based monitoring has emerged because of the feasibility of reconstructing the
continuous Green’s functions. Investigating the physical properties of a subsurface medium by tracking changes in seismic wave velocity
that do not depend on the occurrence of earthquakes or the continuity of artificial sources dramatically increases the possibility of
researching the evolution of crustal deformation. In this article, we outline some state-of-the-art techniques for noise-based monitoring,
including moving-window cross-spectral analysis, the stretching method, dynamic time wrapping, wavelet cross-spectrum analysis, and a
combination of these measurement methods, with either a Bayesian least-squares inversion or the Bayesian Markov chain Monte Carlo
method. We briefly state the principles underlying the different methods and their pros and cons. By elaborating on some typical noise-
based monitoring applications, we show how this technique can be widely applied in different scenarios and adapted to multiples scales.
We list classical applications, such as following earthquake-related co- and postseismic velocity changes, forecasting volcanic eruptions,
and tracking external environmental forcing-generated transient changes. By monitoring cases having different targets at different
scales, we point out the applicability of this technology for disaster prediction and early warning of small-scale reservoirs, landslides, and
so forth. Finally, we conclude with some possible developments of noise-based monitoring at present and summarize some prospective
research directions. To improve the temporal and spatial resolution of passive-source noise monitoring, we propose integrating different
methods and seismic sources. Further interdisciplinary collaboration is indispensable for comprehensively interpreting the observed
changes.

Keywords: Ambient noise correlation; noise-based monitoring; seismic wave velocity changes; the evolution of physical properties of the
crust

 

1.  Introduction
Studying the stress state of the crust is essential to understand the

mechanisms relevant  to  various  tectonic  and  nontectonic  pro-

cesses of the earth. Monitoring seismic wave velocity changes is a

useful tool for probing changes in the stress state of the crust, as

has  been  verified  both  theoretically  and  experimentally  (Birch,

1961; Nur  and  Simmons,  1969; O’Connell  and  Budiansky,  1974;

Schoenberg,  1980; Yamamura  et  al.,  2003). The  existence  of  per-

sistent  and  extensive  seismic  noise  allows  us  to  reconstruct  the

Green’s function  by  continuously  cross-  or  auto-correlating  seis-

mic  ambient  noise  recordings (Aki,  1957; Claerbout,  1968; Lobkis

and Weaver, 2001; Campillo and Paul, 2003; Shapiro and Campillo,

2004; Larose  et  al.,  2005a; Campillo,  2006, 2011).  Thus,  this  noise

allows us to monitor the seismic wave velocity changes with time.

By measuring the changes in seismic velocity, we can investigate

the  stress  state  of  the  crust  at  depth  and  continuously  in  time,

which provides essential constraints on dynamic processes in the

crust,  such  as  those  attributable  to  earthquakes,  volcanoes,  and

other activities. The ambient noise-based monitoring method can
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also  be  used  to  monitor  subsurface  velocity  changes  caused  by
various types of environmental changes. In addition, cross-correl-
ation noise monitoring can be applied on small scales, such as at
landslides  and  reservoirs,  for  possible  disaster  prediction  and  as
an  early  warning  system.  Here  we  briefly  review  the  methods  of
ambient  seismic  noise-based  monitoring  and  the  main  fields
where it  can  be  applied.  We  then  discuss  some  prospective  re-
search topics that are urgently needed and possible directions for
future development.

2.  Methodology of Ambient Seismic Noise-based

Monitoring
Conventional ambient  noise-based  seismic  wave  velocity  monit-
oring is a coda wave-based technology collectively referred to as
coda wave interferometry. The concept of coda wave-based seis-
mic velocity  monitoring was from Poupinet  et  al.  (1984), who re-
trieved the subtle phase shift  of  waveforms between earthquake
doublets along seismograms. Snieder et al.  (2002) later proposed
a similar  concept  to  measure  the time change by using different
lapse time moving windows to evaluate the relative seismic wave
velocity  changes  by  linear  regression.  This  evaluation  assumes
that  changes  in  the  wavefield  are  homogeneous;  therefore,  they
obey a  linear  relationship  in  which  a  travel-time shift  is  opposite
seismic velocity changes:

δt/t = −δv/v. (1)

Four  different  methods are  mainly  used for  measuring the travel
time  shift  based  on  coda  waves. Brenguier  et  al.  (2008a, b) and
Clarke  et  al.  (2011) applied  what  they  termed  a  moving-window
cross-spectral analysis to continuously record noise cross-correla-
tions. A moving-window cross-spectral analysis is a frequency-do-
main analysis based on measuring the phase shift in a sliding win-
dow  of  specific  lengths.  Through  two  linear  regressions,  we  can
obtain  the  velocity  changes  between  any  two  cross-correlation
functions. This method requires us to define the width of the slid-
ing window, the lapse time on the cross-correlation function, and
a set of quality filtering restrictions, among others.

Alternatively,  the  stretching  method  (Lobkis  and  Weaver,  2003;
Sens-Schönfelder  and  Wegler,  2006)  is  based  on  a  time-domain
analysis.  It  works  by  optimizing  the  cross-correlation  coefficient
between any two comparable cross-correlation functions after de-
forming one of them with a stretching coefficient. The changes in
seismic velocity are equal to the stretching coefficient producing
the maximum  cross-correlation  coefficient.  This  method  can  po-
tentially be polluted by changes in the spectrum of noise sources
(Zhan ZW et al., 2013).

Along with the two classical methods for measuring the time shift,
there is  dynamic time warping by Mikesell  et  al.  (2015).  Dynamic
time warping utilizes all the information, the time shift from coda
waves as well as the amplitude and decoherence information. Re-
cently, Mao SJ et al. (2020) proposed a new approach based on a
wavelet cross-spectrum analysis, a continuous wavelet transform.
This  approach  provides  optimal  time-frequency  joint  resolution
with  full  lapse  time  measurement.  This  method  has  a  powerful
computational advantage for multiple bands, and thus depth ana-
lysis.  All  four methods of measuring the time shift  can further be

used  with  linear  inversion,  based  on  the  relationship  below  by

Brenguier et al. (2014). Brenguier et al. (2014) showed that the dif-

ference in relative seismic velocity changes at time j and time i is
approximately equal to the change between the two times:

δvj − δvi ≈ δvij, (2)

where i and j indicate any two different times. This inversion-sup-

plemented procedure helps avoid the choice of an arbitrary refer-

ence correlation function by the usual stacking. Accurate continu-

ous  velocity  changes  are  retrieved  by  using  a  Bayesian  least-

squares inversion.  This  inversion  procedure  improves  the  preci-

sion  of  the  measurements  by  separately  computing  velocity

changes for all  the possible correlation functions for each station

pair.

A regularization during the inversion allows us to focus on either
rapid or  long-term changes in  seismic wave velocity.  When deal-

ing with high-temporal-resolution data or long time series, the in-

version of the matrix will require a relatively large storage volume.

Taylor  and  Hillers  (2020) developed a  new  method  of  determin-

ing  the  seismic  velocity  time  series  by  using  a  Bayesian  Markov

chain Monte Carlo (MCMC) approach. This method can effectively

tackle  the problem of  having a  large volume of  data.  The MCMC

seeks  to  construct  a  full  posterior  probability  distribution  of  the

changes in seismic velocity.  It  provides a robust way to compute
the time series of velocity changes by incorporating the informa-

tion on measurement uncertainty.

The four  measurement  methods  together  with  the  further  inver-

sion and  MCMC  methods,  which  can  increase  measurement  sta-

bility, are the most commonly used and updated techniques. They

cover  almost  all  the  possibilities  for  conventional  coda  wave-

based monitoring. However, the disadvantage is that coda wave-

based monitoring is  often hindered by insufficient spatial  resolu-

tion and difficulty in locating depth because of the complexity of
the  scattering  paths  of  waves,  and  thus  the  sensitivity  kernel  of

coda waves.

To avoid  insufficient  spatial  resolution  and  the  difficulty  of  de-

termining the specific depth when using coda waves, Brenguier et

al. (2020), Takano et al. (2020), and Mordret et al. (2020) began to

do  the  monitoring  using  ballistic  waves,  including  both  body

waves  and  surface  waves  (both  the  fundamental  mode  and  the

first overtone of Rayleigh waves) recovered from the seismic noise

correlation.  This  technology  relies  on  the  deployment  of  small-
scale targeted  dense  arrays,  which  have  developed  rapidly  in  re-

cent  years.  These  stations  are  usually  arranged  around  critical

faults;  hence,  the  technology  is  essential  for  accurately  tracking

small-velocity changes within small areas adjacent to faults.

This new ballistic wave-based methodology provides better depth

localization  of  the  detected  changes  in  seismic  velocity.  At  the

same  time,  it  relies  on  the  dense  array  to  reduce  possible  bias

from the high intrinsic sensitivity of reconstructed ballistic waves

to the  noise  source  properties.  Currently,  this  is  the  main  limita-

tion encountered  with  ballistic  wave-based  monitoring.  In  con-
trast,  coda  wave-based  monitoring  is  less  sensitive  to  the  noise

source  properties  because  of  the  phase  velocity  bias  resulting

from the anisotropic distribution of ambient noise energy (Yao HJ
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et al.,  2009). One can successfully apply coda wave-based monit-
oring even without perfect reconstruction of the Green’s function
(Hadziioannou  et  al.,  2009). Froment  et  al.  (2010), Weaver  et  al.
(2011), and Colombi et al. (2014) also estimated the travel time er-
ror by  considering  different  distribution  sources,  and  they  con-
firmed the stability of using coda waves to do the monitoring. This
is because  the  long  duration  and  disorder  of  the  scattering  pro-
cess can  enhance  the  signal-to-noise  ratio  and  reduce  the  de-
pendency of  the correlation function quality  on the noise source
properties (Larose et al., 2008).

We usually  apply  these methods in  the continuous Green's  func-
tions reconstructed from long-term recorded background signals
for passive  source-based  noise  monitoring.  Similarly,  we  can  ap-
ply  these  methods  to  signals  obtained  from  active  sources.  The
Green’s functions obtained from active sources, both earthquake-
produced  and  artificial  (Reasenberg  and  Aki,  1974; Karageorgi  et
al.,  1992; Ikuta  et  al.,  2002; Yamamura  et  al.,  2003; Niu  FL  et  al.,
2008; Yang W et al., 2018; Wang BS et al., 2020), have controllable
repeatability  in  time  and  excellent  advantages  in  the  signal-to-
noise ratio.  Therefore,  monitoring  with  active  sources  can  im-
prove the accuracy of  tracking instantaneous coseismic  changes.
There  is  a  possible  underestimated  momentary  velocity  drop  by
the  earthquake  that  can  hardly  be  measured  by  passive  wave-
based monitoring because of the compromise between the tem-
poral  resolution  and  the  convergence  time  of  stability.  For  this
reason,  it  is  also possible to use direct  waves from direct  sources
other than coda waves to ameliorate the problem of spatial resol-
ution.  However,  we need to consider  the cost  of  artificial  seismic
sources and  the  relatively  limited  detection  scale.  The  combina-
tion of both seismic sources with the methods above will signific-
antly improve the accuracy of detection.

3.  Application and Observation of Ambient Seismic

Noise-based Monitoring
Of the different methods mentioned, noise-based monitoring has
been applied  at  different  scales  and  with  different  research  ob-
jectives to  investigate  the  responses  of  the  crust  under  the  im-
pacts of  various mechanical  processes in the past dozen years or
more. Here we summarize the main origins of changes in seismic
wave velocity  as  dynamic  and  static  stress–strain-related  earth-
quake  co-  and  postseismic  procedures,  pressure  buildup,  and
magma migration in the volcanic area, external forces from envir-
onmental perturbations, and the activities of natural and human-
made reservoirs.  In  this  section,  we  list  some  representative  in-
vestigations of noise-based monitoring with different forcing ori-
gins.

3.1  Earthquake-Related Co- and Postseismic Velocity
Changes

Studies  of  the  mechanical  responses  of  the  earth’s  crust  to  large
earthquakes can  provide  us  with  unique  insights  into  the  pro-
cesses  of  stress  buildup  and  release  at  depth  (Bürgmann  and
Dresen, 2008). At this stage, we mainly observe a rapid coseismic
velocity reduction followed by a slow postseismic exponential re-
covery  process  (Field  et  al.,  1998; Wegler  and  Sens-Schönfelder,
2007; Brenguier et al.,  2008a, Xu ZJ and Song XD, 2009; Sawazaki

et al.,  2009; Chen JH et al.,  2010; Cheng X et al.,  2010; Zhao PP et
al.,  2012; Froment et al.,  2013; Acarel et al.,  2014; Brenguier et al.,
2014; Liu ZK et  al.,  2014; Hong TK et  al.,  2017; Liu ZK et  al.,  2018;
Wang QY et al., 2019; Poli et al., 2020). The predominant mechan-
ism  underlying  the  observed  earthquake-related  velocity  drop  is
referred  to  as  shallow  dynamic  shaking  (Sleep,  2015)  and  deep
stress  changes  by  the  earthquake.  The  classical  observation  by
Brenguier  et  al.  (2008a) in  the  San  Andreas  fault  zone  (Figure  1)
suggests  that  the  observed  seismic  velocity  changes  (0.08%)
should  come  from  both  coseismic  damage  in  the  shallow  layers
and a deep coseismic stress change and postseismic stress relaxa-
tion within  the  fault  zone.  A  similar  phenomenon  has  been  ex-
plained both experimentally and numerically by nonlinear elastic
behavior, including both anomalous nonlinear fast dynamics and
slow dynamics (Lyakhovsky et al.,  1997, 2009; Johnson and Sutin,
2005; Sens-Schönfelder et al., 2019).

Here we present a recent study by Wang QY et al. (2019) related to
the  2011 Mw 9.0  Tōhoku-Oki  earthquake  off  the  coast  of  Japan.
The authors identified depth (frequency)-dependent seismic velo-
city  changes.  A  shallow  seismic  velocity  decrease  (~0.07%  in  the
1–7  s  period  band; Figure  2a)  was  observed  to  be  related  to  a
mechanical weakening of the crust by the dynamic stress (repres-
ented by a map of the peak ground velocity (PGV); Figure 2b) as-
sociated  with  seismic  waves. Brenguier  et  al.  (2014) also  studied
the  sensitivity  of  stress  perturbations  to  changes  in  the  seismic
wave velocity.  Their  results  revealed  that  the  seismic  wave  velo-
city  changes  in  the  central  volcanic  region  of  Japan  were  highly
susceptible  to  coseismic  dynamic  stress  perturbations.  Distinct
from the map of changes in this relatively short period, the map of
velocity changes in the 8–30 s band (~0.04%; Figure 2c) disclosed
that the  static  strain  caused  by  the  earthquake  at  depth  domin-
ated the velocity decrease over a relatively long period.  This  was
the  first  observation  of  decreases  in  static  strain-related  co-  and
postseismic velocity.

3.2  Seismic Velocity Changes in Volcanic Areas
Another  crucial  application  is  small-scale  observation  in  volcanic
regions  (Brenguier  et  al.,  2016). One  of  the  most  classic  and  rep-
resentative cases is the use of the observed systematic seismic ve-
locity decrease  (~0.05%)  as  a  precursor  to  the  eruption  of  volca-
noes  at  Piton  de  la  Fournaise  (Brenguier  at  al.,  2008b; Figure  3).
Similar volcanic process-related observations (Mordret et al., 2010;
Sens-Schönfelder et al., 2014; Donaldson et al., 2017; Hirose et al.,
2017)  indicated  that  velocity  changes  were  strongly  correlated
with  the  dilatation  or  compression  of  the  volcanic  system.  The
heterogeneous  spatial  stress  distribution  can  lead  to  opposite
seismic velocity responses to the same volcanic activity. Liu ZQ et
al.  (2019) separated the observed velocity changes at the Kilauea
volcano  into  two  phases,  which  they  explained  by  compression
from  upward  migration  of  the  magma  and  the  injection  of
magma into the veins and fractures.

Recently, Takano  et  al.  (2020) also  applied  ballistic  wave-based
monitoring  to  the  Piton  de  la  Fournaise  volcano.  They  showed
that the  velocity  changes  as  a  result  of  strain  complexity  in  re-
sponse to  the  subtle  pressurization  of  the  shallow  magma  reser-
voir.  Noise-based  monitoring  thus  provides  a  robust  means  of
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studying the processes of pressure buildup at depth and magma
transport  in  the  volcanic  edifices  so  as  to  improve  the  ability  to
predict volcanic eruptions.

3.3  Environmental Seismic Velocity Changes
Apart  from  both  tectonic-  and  volcanic-related  seismic  velocity
changes,  commonly  existing  environmental  perturbations  from
multiple sources also play a significant role in the seismic wave ve-
locity. Studying the transient velocity changes related to those en-
vironmental  perturbations  can  help  isolate  the  tectonic-related
deformation and contribute to understanding the behavior of the
crust under diverse external forcing mechanisms.

Groundwater- and rainfall-related seismic velocity decreases up to
~10−2 % to 10−1 % that show the importance of hydraulic effects
on  seismic  wave  velocity  have  been  widely  discussed  (Sens-
Schönfelder and Wegler, 2006; Meier et al., 2010; Tsai, 2011; Hillers
et al., 2014; Hotovec-Ellis et al., 2014; Wang QY at al., 2017; Lecocq
et  al.,  2017; Poli  et  al.,  2020). When  rainfall  increases,  the  infiltra-
tion of  rainwater produces delayed pore pressure enhancements
in the top kilometers of the crust. This in turn leads to a decrease
in the  shear  modulus  and consequently  to  decreases  in  the  seis-
mic  wave  velocity.  Simultaneously,  the  velocity  changes  are
delayed slightly because of hydraulic diffusion compared with the
daily peaks in precipitation.

Figure 4b illustrates how rainfall in Kyushu, Japan, significantly de-
creased  the  velocity  of  the  seismic  waves  in  July  2011  and  July
2012. Figure  4a shows  a  map  of  the  averaged  seismic  velocity
changes in July 2011 and July 2012 after Gaussian smoothing of a
width of 100 km. The highlighted velocity decreases beneath vol-
canoes  (Figure  4a,  red  triangles)  also  demonstrate  the  identical

conclusion reached by Brenguier et al. (2014) of the high suscept-

ibility of the volcanic area.

In  the  shallow  layer,  thermoelastic  stress  changes  the  velocity  of

seismic waves in an annual cycle (Meier et al.,  2010; Richter et al.,

2014; Hillers et al., 2015a; Lecocq et al., 2017), as does atmospher-

ic  pressure  (Silver  et  al.,  2007).  Subtle  tidal  effects  (Yamamura  et

al.,  2003; Takano  et  al.,  2014; Hillers  et  al.,  2015b; Mao  SJ  et  al.,

2019; Wang BS et al.,  2020) as well as permafrost freeze and melt

(James et al., 2017) can also have a considerable effect in modulat-

ing the seismic wave velocity changes.  In addition,  snowfall,  pre-

cipitation,  and  changes  in  sea  surface  height  can  cause  direct

elastic  loading  effects  (Wang  QY  et  al.,  2017; Donaldson  et  al.,

2019). These directly  generated stresses  usually  have a  compact-

ing  effect  on  the  adjacent  subsurface  media.  Media  at  different

depths, distances,  and  fault  orientations  may  have  opposite  re-

sponses to seismic velocity under the impact of the same environ-

mental factor. Among them, the role of snowfall can be the most

complicated. Not only does it generate direct elastic stress, but it

also changes the pore pressure after melting when the temperat-

ure  rises  or  when  different  geologic  conditions  are  encountered

(Mordret et al., 2016). The superposition and interaction of the en-

vironmental factors mentioned can generate combined effects on

the underground media, which in turn affect the seismic wave ve-

locity in a non-negligible way.

3.4  Other Applications
In  addition  to  the  major  monitoring  applications  highlighted

above, noise-based monitoring as it is currently being researched

has further practical applications at different scales. The observed

Rayleigh  wave  velocity  drop  (7%)  before  a  landslide  caused  by  a
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Figure 1.   Seismic velocity changes, surface displacements from GPS, and tremor activity near Parkfield, California. The red curve represents the

postseismic fault-parallel displacements along the San Andreas fault as measured by a GPS station. After Brenguier et al. (2008a).
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decay in the mechanical rigidity of the clay suggests the possibil-

ity of applying ambient noise-based monitoring to predict failure

on a local scale (Mainsant et al., 2012). Its failure prediction poten-

tial provides us with the opportunity to apply it in landslide mon-

itoring and disaster prediction. Active source experiments both in

the laboratory (Scuderi et al.,  2016) and at a fault zone (Niu FL et

al.,  2008)  have  confirmed  that  the  short-term  velocity  changes

preceding  failure  can  indicate  earthquake  nucleation.  All  these

studies  serve  as  essential  references  for  tracking  the  changes  in

seismic  wave  velocity  to  predict  and  provide  early  warning  of

earthquakes and geological disasters. In addition, certain industri-

al  activities,  such  as  mine  activities  (Olivier  et  al.,  2015)  and  fluid

injection at geothermal sites (Hillers et al., 2015c; Obermann et al.,

2015), can  be  tracked  by  the  changes  in  velocity  and  decoher-

ence in the waveform. Planès et al. (2016) and Olivier et al. (2017)

successfully observed  changes  in  the  stress  field  of  dams  result-

ing from changes in the groundwater level and in the porosity of

the medium, which caused changes in the seismic wave velocity.

Their work verifies the potential for tracking the internal deforma-

tion  and  pressure  state  at  small-scale  applications,  such  as  at

dams and reservoirs.  Monitoring the evolution of  the stress state

at small-scale reservoirs is crucial for disaster prevention.

4.  Prospective Research in Ambient Seismic Noise-

based Monitoring
The preceding introduction to the methodology of ambient seis-

mic noise-based monitoring and examples of its application veri-

fy the feasibility of this method for continuously tracking the evol-

ution of the crustal medium to study the stress state of the earth’s

crust. Ambient seismic noise-based monitoring is a useful tool for

observing the crustal  responses to deformation sources of  differ-
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Figure 2.   (a, c) Separate spatial seismic velocity changes measured at 1–7 s and 8–30 s. (b) Map of peak ground velocity (PGV, cm/s). (d)

Coseismic strain modeled at a depth of 20 km. After Wang et al. (2019).
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ent origins and is applicable from a small laboratory scale to local

or regional scales. Further research is also needed in the following

areas to improve noise-based monitoring.

Regarding  the  spatial  resolution,  current  2-D  or  3-D  imaging

based on coda wave monitoring usually proceeds from a linear in-

terpolation  or  inversion,  and  the  analytical  solution  of  the  coda

wave sensitivity kernel is based on the diffusion regime or radiat-

ive transfer theory.  The sensitivity kernel is usually calculated un-

der the assumption of isotropic scattering with a uniform energy

velocity  and  transport  mean  free  path  (Pacheco  and  Snieder,

2005; Obermann  et  al.,  2013a, b, 2014, 2019; Mayor  et  al.,  2014;

Planès et al., 2014; Margerin et al., 2016; Zhang YX et al., 2016; Na-

kahara and Emoto, 2017). Figure 5 illustrates a case by Obermann

et al.  (2019) showing that the linear combination of  kernels from

the body and surface waves is effective in constraining the depth

of changes in a 3-D multiple-scattering medium.
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We  can  see  greater  sensitivity  around  the  two  stations,  and  the

shallow  part  seems  more  important  than  the  deep  part.  Using

similar  sensitivity  kernels,  we  can  localize  the  measured  travel

time  perturbations  in  the  space  and  interpret  the  origins  of  the

deformation more accurately.  However,  because of  the complex-

ity of the travel paths, we currently do not have an exact sensitiv-

ity kernel that can accurately characterize the travel time perturb-

ations  of  coda  waves  and  thus  localize  the  measured  changes

with precision. Therefore, further studies of 2-D and 3-D scattered

wave sensitivity kernels are imperative. With ballistic wave-based

monitoring,  spatial  localization  becomes  relatively  simple.

However, the temporal resolution and the stability of the velocity

changes are lower than those of coda waves. Knowing how to im-

prove the signal-to-noise ratio of ballistic wave-based monitoring

will thus become essential.

In terms of the temporal resolution, the current minimum detect-

able  temporal  resolution  of  passive-source  noise  monitoring  is

usually as  little  as  one  day  or  one  hour  according  to  the  conver-

gence rate of the Green’s functions at different frequencies.  With

active sources, the repeatability of the Green’s function is control-

lable and so is  the temporal  resolution.  The ability  to  capture in-

stantaneous changes can contribute to a better understanding of

the  momentary  stress  changes  of  earthquakes  or  other  ruptures

or  volcanic  eruptions,  which  will  advance  knowledge  of  their

mechanisms  and  processes.  Therefore,  improving  the  temporal

resolution will also become a vital research objective.

Pei  SP  et  al.  (2019) observed pronounced  coseismic  velocity  re-

ductions (~4%) after the 2008 Wenchuan earthquake by tracking

the travel  time  changes  in  Pg  waves  of  earthquakes  more  pre-

cisely.  They  located  changes  in  depth  ranging  from  2  to  20  km

with  a  3-D  tomographic  inversion.  This  order  of  magnitude  is

much  higher  than  the  classical  results  from  coda  wave-based

methods.  Consequently,  the  existence  of  repetitive  events  from

both artificial  sources (Yang W et al.,  2018; Wang QY et al.,  2019)

and  repeating  earthquakes  (Sawazaki  et  al.,  2015)  extends  the

possibility  of  the  combined  use  (Hirose  et  al.,  2017)  of  ambient

noise and other  sources  to  detect  changes in  seismic  wave velo-

city. Multiple approaches to monitoring can also effectively com-

plement each  other  to  improve  the  temporal  and  spatial  resolu-

tion and extend the scope and sustainability of a region that can

be monitored.

With the powerful computing capabilities currently available, real-
time noise monitoring is becoming particularly realistic.  Continu-
ous changes in a seismic time series can be measured while being
recorded in  permanent  seismic  networks.  It  is  necessary  to  ana-
lyze the local environmental factors simultaneously to distinguish
among them  and  correct  possible  transient  velocity  changes  re-
lated to nontectonic forcing. The purpose of real-time monitoring
is to detect possible velocity anomalies in order to forecast poten-
tial  disasters.  Thus,  statistical  analysis  of  the  seismic  wave  speed
becomes vital follow-up work. Nakahara et al. (2020) used the ex-
tensive  noise  monitoring  results  in  Japan  to  conduct  a  statistical
analysis to quantify and detect velocity anomalies associated with
volcanic eruptions or earthquakes. According to the mathematic-
al  distribution  law,  further  criteria  can  be  added  to  the  real-time
monitoring system automatically to predict possible anomalies.

With the acquisition of new, continuous seismic data and informa-
tion  from  other  planets  (e.g.,  the  moon  and  Mars),  researchers
have  successfully  applied  the  noise-based  correlation  technique
to  monitor  seismic  velocity  changes  on  the  moon  (Larose  et  al.,
2005b; Sens-Schönfelder and Larose, 2010). These applications in-
vestigate the moon by using diffusive waves in a frequency range
outside  of  and  higher  than  the  typical  microseismic  bands.  They
have succeeded in extracting the Rayleigh waves by cross-correl-
ating seismic noise recordings. The results have disclosed dynam-
ic  lunar  processes  related  to  the  subsurface  temperature,  which
Tanimoto  et  al.  (2008) verified  by  comparing  the  amplitude  of
Rayleigh waves and the statistics on thermal moonquakes. Schim-
mel  et  al.  (2018) verified  the  emergence  of  Rayleigh  waves  and
normal  modes by testing different  correlational  approaches  with
one station recording. The applications described above show the
feasibility of applying the noise cross-correlation technique in ex-
traterrestrial seismology  for  future  planetary  missions.  The  ambi-
ent noise correlation technology can be an effective method of in-
vestigating  the  internal  structure  of  planets  and  following  their
temporal deformation.

In  addition  to  monitoring  changes  in  seismic  wave  velocity,  the
continuous  Green’s  function  provided  by  noise  cross-correlation
can track  changes  in  other  physical  parameters  of  the  crust  over
time. Obermann  et  al.  (2014) located  independent  changes  in
seismic velocity and scattering properties of the crust from wave-
form decoherence to provide complementary information on the
crustal evolution. Hirose et al. (2019) studied changes in the scat-
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Figure 5.   Combined coda kernel from 3-D body- and surface-wave kernels by Obermann et al. (2019). Horizontal slices at depths of 0.5 km (a)

and 1.5 km (b) and a vertical slice (c) along the red line indicated in (a). The crosses mark the source and receiver positions.
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tering  and  intrinsic  absorption  parameters  of  the  crust  based  on
envelopes of the cross-correlations. Durand et al.  (2011) reported
temporal variations  in  the  polarization  of  surface  waves  that  re-
vealed changes in the orientation of distributed cracks in the me-
dium.  By  studying  multiple  physical  parameters  independently,
they  can restrict  each other  and better  explain  the  nature  of  the
changes.

It is  also  worth  noting that  by  monitoring the changes  in  under-
ground physical properties other than by seismic methods, obser-
vations  such  as  geodesy  can  also  be  applied.  Interdisciplinary
study has  great  potential  to  lead  to  a  more  comprehensive  per-
spective on  the  underground  stress  field  and  its  physical  pro-
cesses.
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