
HAL Id: hal-03143986
https://hal.univ-grenoble-alpes.fr/hal-03143986

Submitted on 17 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Speed and Memory Efficient Dense RGB-D SLAM in
Dynamic Scenes

Bruce Canovas, Michèle Rombaut, Amaury Nègre, Denis Pellerin, Serge
Olympieff

To cite this version:
Bruce Canovas, Michèle Rombaut, Amaury Nègre, Denis Pellerin, Serge Olympieff. Speed and
Memory Efficient Dense RGB-D SLAM in Dynamic Scenes. IROS 2020 - IEEE/RSJ International
Conference on Intelligent Robots and Systems, Oct 2020, Las Vegas, United States. pp.4996-5001,
�10.1109/IROS45743.2020.9341542�. �hal-03143986�

https://hal.univ-grenoble-alpes.fr/hal-03143986
https://hal.archives-ouvertes.fr

Speed and Memory Efficient Dense RGB-D SLAM in Dynamic Scenes

Bruce Canovas1, Michèle Rombaut1, Amaury Nègre1, Denis Pellerin1 and Serge Olympieff1

Abstract— Real-time dense 3D localization and mapping
systems are required to enable robotics platforms to interact
in and with their environments. Several solutions have used
surfel representations to model the world. While they produce
impressive results, they require heavy and costly hardware
to operate properly. Many of them are also limited to static
environments and small inter-frame motions. Whereas most of
the state of the art approaches focus on the accuracy of the
reconstruction, we assume that many robotics applications do
not require a high resolution level in the rebuilt surface and
can benefit from a less accurate but less expensive map, so as
to gain in run-time and memory efficiency. In this paper we
propose a fast RGB-D SLAM articulated around a rough and
lightweight 3D representation for dense compact mapping in
dynamic indoor environment, targeting mainstream computing
platforms. A simple and fast formulation to detect and filter out
dynamic elements is also presented. We show the robustness
of our system, its low memory requirement and the good
performance it enables.

I. INTRODUCTION

Robust and dense simultaneous localization and mapping
(SLAM) algorithms are a fundamental necessity for indoor
mobile robots to operate in their environment. They have
to provide sufficient accuracy and fast run-time performance
coupled to low memory requirement so as to be implemented
on less powerful devices. Low-cost RGB-D cameras are
interesting in this context as they allow joint acquisition of
dense depth and texture information at high framerate with
reduced power consumption. Several real-time dense RGB-
D SLAM solutions able to produce impressive results have
been proposed. They usually perform dense direct frame-to-
model registration to track the camera motion and integrate
newly acquired RGB-D data into a 3D map of the observed
scene. They rely on loop closure detection to correct drift
accumulated due to sensor noise.

However various limitations are shared by many of these
methods. They tend to operate with highly accurate but too
expensive forms of 3D representation to model the map
which forces them to rely on heavy hardware to run online
and limits the scalability of the reconstruction. Furthermore
the dense registration used to calculate the pose of the camera
is often based on a coarse-to-fine iterative closest point (ICP)
scheme failing in case of large shift between consecutive
frames. Traditional dense RGB-D SLAM algorithms also
assume static scenarios and thus performs poorly when
working in dynamic environments.

In this paper we propose a novel online dense RGB-D
SLAM system in indoor environment that intends to tackle

1Univ. Grenoble Alpes, CNRS, Grenoble INP,
GIPSA-lab, 38000 Grenoble, France {f author,
s author}@gipsa-lab.grenoble-inp.fr

some common bounds shared by traditional frameworks such
as static scene and slow inter-frame motion assumptions as
well as restricted scalability and reduced consistency. We
promote execution and memory efficiency rather than highly
accurate model reconstruction, which are decisive criteria to
enable dense SLAM algorithms to run in real time on mobile
robots. Our method integrates an approximate compact 3D
representation, which we recently developed, for fast and
lightweight mapping. The proposed SLAM relies on planar
patches called supersurfels, generated from superpixels, to
model the static part of the environment. We use both sparse
feature-based visual odometry (VO) and dense frame-to-
model registration for robust camera tracking. Sparse VO is
able to deal with strong motion and flat textured area whereas
the dense registration performs well in scenes with little
texture but rich geometry. Map consistency is maintained
with deformation-based loop closure. Besides the integration
of a coarse form of 3D representation to a complete dense
RGB-D SLAM pipeline, an other contribution of our paper
is the addition of a dense moving object detection strategy
combining egomotion compensation, depth information and
dense optical flow for robustness against dynamic scenes.

II. RELATED WORK

Most of the actual dense 3D mapping systems are based
on volumetric representation, popularized by KinectFusion
[1]. They build a high-quality 3D model represented as a
truncated signed distance function stored in a voxel grid.
These methods produce accurate continuous surface recon-
struction but suffer from huge memory footprint and are
thus limited too small environments. To reduce the memory
consumption [2] proposes to use voxel hashing. Kintinuous
[3] extends the size of the reconstruction with a cyclical
buffer to free voxels. Besides low scalability, volumetric
representations lack flexibility: the resolution of the voxel
is fixed limiting the adaptiveness and deforming them is too
expensive. Therefore they are not suitable for live correction
through loop closure.

Surfel-based methods are also widespread due to their
lower computational complexity and better scalability. Sur-
fels [4] are simply oriented disks. They offer better adaptiv-
ness compared to voxels since their resolution is bound to the
accuracy of the sensor and better flexibility as they can be
updated efficiently and independently. One of the first dense
RGB-D mapping method to use surfels is the one of Keller et
al. [5]. ElasticFusion [6] extends [5] by incorporating color
information in the frame-to-model registration to be more
robust in flat scenes and by employing a deformation graph
to apply loop closure correction on the map instead of pose

Fig. 1: Overview of the different steps of the proposed dense mapping RGB-D system.

graph optimization backend. Surfel representations are easy
to generate, to fuse and to deform. However they are discrete
and thus more prone to noise and redundancies. Surfel
maps are often composed of millions of surfels, requiring
extremly powerful GPU support to be processed online. [7]
and [8] generate surfel-like primitives using superpixels for
the mapping so as to enhance speed and memory efficiency
but, unlike us, they rely on an external sparse visual SLAM
to localize.

Previous methods are not designed to cope with dynamic
elements that can corrupt the estimated camera trajectory and
reconstructed map. They rely on the static world assumption
and thus fail in dynamic scenes. To address this problem [9]
and [10] exploit residuals and geometric constraints to detect
and remove moving elements to build a dense map of the
static part of the environment. However [9] does not run live
and [10] uses QVGA resolution to reach online performance.
Other dense approaches like [11] track and rebuild simulta-
neously the background and each dynamic object detected.
[12] and [13] use neural networks for detection of the a
priori dynamic objects and instance segmentation. Although
they provide good accuracy, they are computationally too
expensive to be used on low-cost platforms.

III. SYSTEM OVERVIEW

A. System Architecture

Figure 1 provides an overview of the proposed SLAM
system. It takes as input live registered RGB-D frames
(C,D), with C the color and D the depth, to simultaneously
rebuild a dense global 3D map M of the static part of the
environment and estimate the pose T ∈ SE(3) of the sensor
in global space. The camera pose T consists of orientation
R ∈ SO(3) and position t ∈ R3.

The global map M is modeled as a compact list of 3D
primitives called supersurfels [7]. First a set F of super-
surfels F l is extracted from the superpixel segmentation
of the current frame and sparse features are detected in a
parallel thread. Fast moving object detection at a superpixel
level based on robust ego-motion compensation and Dense
Inverse Search (DIS) optical flow [14] is then used to
extract and discard dynamic elements from the following
camera tracking and mapping processes. The tracking step
is initialized with a lightweight sparse feature-based VO and
refined using a dense frame-to-model registration to get a
robust and accurate estimate of the current camera pose. The
sparse VO which aligns detected interests points to a small
sparse local map of features is built on the implementation

in [15] improved with ORB features and GMS matching
[16]. Dense registration refinement attempts to align 3D
points measurements from the current frame to supersurfels
Ms from the dense global map M based on symmetric
point-to-plane ICP [17]. Finally registered detected features
and supersurfels F l from the current frame are integrated
respectively in the sparse local map and the dense global map
M. Loop closures are applied in real time to correct local and
global maps using non-rigid space deformation strategy, as
done by ElasticFusion [6].

B. Supersurfel Representation

An approximate but coherent and lightweight representa-
tion [7] that we developed is used to model the environment.
The dense global map M is rebuilt as an unordered list of
supersurfels Ms, which are simply oriented elliptical planar
patches. They can be seen as approximate 2D to 3D back-
projections of superpixels. Superpixels [18] are groups of
pixels that are homogeneous in color and geometry. Whereas
surfel-based methods model per-pixel surfels to map the
environment, supersurfels 3D primitives are generated from
RGB-D superpixels, producing a lower resolution surface
reconstruction. This easy to manage 3D data representation
allows faster processing as well as reduced memory foot-
print and noise while preserving the important information
(texture and depth discontinuities). Each map supersurfel
Ms is described by the following attributes: Ms

p ∈ R3 its
positions, Ms

c ∈ R3 its color, Ms
R ∈ SO(3) its orientation,

Ms
L and Ms

l ∈ R longitudinal and lateral elongations, Ms
Σ
∈

M3(R) a covariance matrix describing its shape, Ms
w ∈

R+ a confidence weight to quantify its reliability and Ms
t ,

Ms
t0 ∈ R+, last update and initialisation timestamps. For

convenience we also designate the normal of a supersurfel
as Ms

n, corresponding to the third column of its orientation.

IV. SYSTEM DESCRIPTION

A. Supersurfel-based Mapping

1) Supersurfel Generation: The input frame is segmented
into superpixels preserving as much as possible texture
boundaries and depth discontinuities following a GPU im-
plementation of the method presented in [19], which assigns
to each segment a slanted plane in 3D. Then a supersurfel
F l is extracted for each superpixel segment (see Figure 2)
by applying Principal Component Analysis (PCA) on the
2D to 3D backprojections of the pixels contained by the
superpixels, as explained in [7].

Fig. 2: Superpixels (left) with associated slanted planes
and generated supersurfels (right), displayed as rectangular
patches instead of elliptical patches for faster visualization.

2) Global Map Update: In this step, frame supersur-
fels are integrated into the global map M. Corresponding
frame and model supersurfels are fused so as to refine
the reconstruction and reduce redundancies, whereas frame
supersurfels with no correspondence are simply added with
a low confidence weight in the map. To find possible corre-
spondences between supersurfels from the map M and from
the current frame F , we use a projective data association
strategy. The position Ms

p of each model supersurfel Ms

in the field of view of the camera is projected into the
superpixel segmented RGB-D frame and associated to the
frame supersurfel F l related to the superpixel containing
the position of the projection. We then check similarity
between Ms and F l , ensuring that the distance between their
colors in Lab space, the divergence angle between their
normals and the euclidean distance between their centers are
small, in order to avoid fusing different supersurfels. Similar
supersurfels are merged together with weighted average and
covariance intersection strategies in an update scheme similar
to [7]. The confidence value Ms

w is incremented.
Finally, the model is cleaned by performing a fast free-

space violation check to remove supersurfels in front of
viable supersurfels, which are often related to dynamic
objects. Supersurfels that stay in an unstable state (with low
confidence value) for too long are also eliminated.

B. Camera Tracking

1) Sparse Feature-based Visual Odometry: First, sparse
VO from ORB features [20] is applied to get an initial
estimate of the camera pose. Unlike direct geometric registra-
tion methods, sparse feature-based VO performs well in flat
textured environments and is also more robust in the case of
strong inter-frame motion. We chose to rely on ORB features
because they are fast to match and extract and possess good
invariance to viewpoint properties. When a frame is captured,
ORB features are extracted and the depth image served as a
mask to reject points with invalid depth.

Detected features are then used to register the new frame
against a limited sparse local map of features created over the
past frames, by minimizing the reprojection error between
newly extracted 2D features points and the matched 3D local
map points:

{R, t}= argmin
R,t

∑
i

ρ(‖xi−π(RXi + t)‖2), (1)

with xi ∈ R2 positions of the 2D features, Xi ∈ R3 the
matched 3D map points and π : R3 → R2 the pinhole
projection model, determined by the intrinsic camera pa-
rameters. ρ is the robust Cauchy cost function to deal
with correspondence outliers. We based our local map man-
agement implementation on the lightweight visual tracking
(LVT) system [15], a visual odometry algorithm designed
for real-time operation with low computational overhead and
memory requirements. The use of a local map allows to
greatly reduce the accumulation of errors, with comparison
to standard frame-to-frame methods. When a feature is no
longer trackable it is cleared from the local map, so as to
keep track of a limited number of interest points.

To perform fast and high quality matching between current
frame 2D features and projected local map features, Grid-
based Motion Statistics (GMS) [16] is applied after GPU
brute force matching. GMS depends on a statistical formu-
lation to distinguish false and true matches based on the
number of neighboring matches. It presents good results even
in weakly textured environment or strong motion scenarios.
If the number of matches found is too small the initial
estimate of the camera pose is only predicted following a
constant velocity model based on the two previous poses.

2) Dense Frame-to-Model Registration: Next dense reg-
istration is employed to refine the initial pose estimate T We
compute in global space the set of 3D points Xi associated
to the input RGB-D frame pixels and assign to each of these
points Xi a normal ni = RF l

n , with F l
n the normal of the frame

supersurfel F l containing the point Xi and R the rotational
part of the current pose estimate T . The set of 3D points X i

is then aligned to the supersurfels from the model that lie in
the field of view of the camera.

The fast and reliable symmetric ICP variant presented in
[17] is applied. It is a simple improvement to traditional
point-to-plane ICP which produces faster and more reliable
convergence. The rotation Rrel and translation trel parts of
the relative transformation Trel from the previous camera
pose to the current one are computed using Gauss-Newton
to minimize the following cost function:

Esymm = ∑
Ai,s

[(RrelXi−R−1
rel Ms

p + trel).(ni +Ms
n)]

2. (2)

Ai,s is the list of associations between the 3D points from
the current frame and the supersurfels from the global model.
The pose of the camera is updated after ICP: T ← T Trel

Closest correspondences Ai,s are computed at each itera-
tion of the ICP algorithm with fast projective data associa-
tion. The centers Ms

p of model supersurfels are projected into
the current frame and the 3D point X i associated to the pro-
jection position is selected for the pairing. Correspondences
with a high depth difference, a high color dissimilarity in Lab
space, or a large angle between surface normals are rejected.

C. Moving Object Detection

1) Ego-motion Compensation: To detect dynamic ele-
ments, we chose to model the camera ego-motion in image
space as a 2D perspective transformation matrix H ∈ SE(2)

because ego-motion compensation in 3D space is more com-
putationally demanding and less robust due to noisy depth
measurements. ORB features detected from the previous
frame (Cprev,Dprev) and from the current one (C,D) are
used in combination with RANSAC to calculate the 2D
transformation H that relates the two images. We assume that
static elements are predominant in the scene viewed by the
camera, otherwise RANSAC might select as inliers a set of
dynamic features and the estimated transformation H would
not reflect the real camera motion. After that, the intensity
image I associated to the color image C of the current RGB-
D frame is computed as well as the previous intensity Iprev
related to Cprev. The calculated perspective transformation
H is then applied to Iprev and Dprev to generate two new
images: the warped intensity Iwarp and depth Dwarp images
that in case of a correct estimation and a fully static scene
should look like I and D.

2) Static / Dynamic Segmentation: In a second step we
calculate dense optical flow between the current image I
and the predicted image Iwarp. We use the DIS optical flow
algorithm [14] to estimate the apparent motion for each
pixel because it is able to run at up to 600Hz on a single
CPU core and reaches state-of-the-art performance with
large displacements. A 2D displacement vector ∆x is then
assigned to each superpixel of the current frame by averaging
those of the pixels inside it. Using superpixels as rigidly
moving elements allows to speed up the classification and to
reduce the influence of erroneous values. We used adaptive
thresholding on the magnitudes of the superpixel flow vectors
and on the compensated depth differences, computed using
D and Dwarp, to detect moving segments. A superpixel with
centroid x is classified as as dynamic if:

‖∆x‖2 > τ f and |Dwarp(x)−D(x)|> τd . (3)

τ f and τd are two adaptive thresholds. τd takes into account
the uncertainty of the depth sensor and is determined by:

τd = kσd(x), (4)

with k a constant set to 10 and σd(x) the standard deviation
of the depth noise for the pixel x. The threshold τ f is defined
in [21] as:

τ f = α +β

√
H(1,3)2 +H(2,3)2, (5)

where α = 1.0 is set to compensate the destabilization caused
by the resolution of the sensor or the precision of the optical

Fig. 3: An example of the moving object detection.

flow and β = 0.5 weights the magnitude of the perspective
transformation matrix elements H(1,3) and H(2,3) reflecting
the speed of the sensor motion. To limit false detections
due to inaccurate optical flow or depth data we set as
static superpixels that have been labeled as dynamic but are
only connected to static segments. A result of the moving
object detection is shown in Fig. 3. Features and supersurfels
associated to dynamic superpixels are rejected.

D. Loop Closure

1) Detection: We use randomized fern [22] for keyframe
database management and to detect loop closure candidates
since fern descriptors are really fast to compute and to
compare. If an image similar to the current frame is detected
in the keyframe database, ORB features from the current
frame and the candidate keyframe are matched using GMS
[16]. If there are enough matches, the transformation TLC
between the two images is calculated with the EPnP [23]
solution in combination with RANSAC to remove outliers.
If RANSAC gives less than 30% of inliers, the loop closure
is discarded. The transformation TLC is then refined with
dense ICP registration between the candidate keyframe’s
supersurfels and the current frame (as in section IV-B.2).

2) Map Deformation: If the loop closure is accepted, a
deformation graph embedded in the surface of the global
model is constructed and optimised to non-rigidly deform
the dense map so as to recover from accumulated drift.
Similarly to ElasticFusion [6] we follow the embedded
deformation formulation introduced by [24] and adapted it
to our supersurfel-based representation.

Sumner et al. [24] define a deformation graph G as a set
of nodes G j and edges sparsely and uniformly distributed
through a dense 3D model to deform: here the global map
M. The nodes are sampled from the supersurfels Ms of
the map. A node G j is defined by a timestamp G j

t0 ∈
R+, a position G j

p ∈ R3, initialized with position Ms
p and

initialization timestamp Ms
t0 of its associated supersurfel Ms.

It also stores an affine transformation composed of a rotation
matrix G j

R ∈ SO(3) and a translation vector G j
t ∈ R3 as

optimization parameters. Each node is connected to its k
neighbors N (G j) nearest in time. In our implementation
k = 4. Affine transformations of the nodes are computed from
the optimization of an objective function that encourages
smooth rigid deformation given a set of sparse positional
loop closure constraints (see [6]).

After optimizing the deformation graph, the nodes are used
to deform the supersurfels in the map M. Each supersurfel Ms

in the global map is influenced by a set of neighboring de-
formation graph nodes I (Ms,G), collected as the k nearest
nodes with regard to the euclidian distance, among a bigger
set of α nodes having timestamps G j

t0 nearby supersurfel
initialization timestamp Ms

t0 . The deformed position of a su-
persurfel Ms is calculated using the combination of optimized
rigid transformations from its associated nodes I (Ms,G):

Ms
p← ∑

v∈I (Ms,G)

wv(Ms)[Gv
R(M

s
p−Gv

p)+Gv
p +Gv

t], (6)

where wv(Ms) = (1−‖Ms
p−Gv

p‖/dmax)
2, with dmax the dis-

tance to the k+1 closest node. The orientation and covariance
of the supersurfel are updated according to:

Ms
R← R̄Ms

R and Ms
Σ← R̄Ms

ΣR̄T , (7)

where R̄ is the blended rotation calculated as the weighted
average of quaternions representations of the rotations of the
nodes I (Ms,G) influencing the supersurfel.

The deformation graph is also applied to deform the points
from the local map used by the sparse tracking (Section
IV-B.1). The current camera pose is corrected T = TLCTKF ,
where TKF is the pose of the keyframe.

V. EXPERIMENTAL RESULTS
We perform quantitative and qualitative evaluation of our

method and we compare it against other dense RGB-D
SLAM systems: Co-Fusion (CF) [11], StaticFusion (SF)
[10], ReFusion (RF) [9], all designed to deal with dynamic
scenes and ElasticFusion (EF) [6] which is designed for static
scenes. ElasticFusion, StaticFusion and Co-Fusion are surfel-
based mapping methods while ReFusion uses voxel hashing
volumetric representation. We use sequences from the TUM
dataset [25], providing ground truth camera trajectories, to
measure the camera tracking accuracy and the computational
performance of the developed SLAM algorithm. The accu-
racy of the surface reconstruction is evaluated too on the
sequences from the ICL-NUIM dataset [26].

The system is tested on a mainstream laptop with an Intel
Core i5-6300HQ CPU at 2.3GHz, 6GB of RAM and an

Fig. 4: Scans of an office environment captured in real-time.

Nvidia GeForce GTX 950M GPU with 4GB of memory.
It achieves around 15 FPS with VGA images. The segmen-
tation in superpixels, the dense tracking and the global map
update are performed on the GPU, whereas feature-based
VO, moving object detection and loop closure are conducted
on CPU. We use a superpixel size of around 256 pixels that
delivers a good balance between efficiency and accuracy.

A. Trajectory Estimation

TABLE I: Absolute Trajectory Error (RMS) on TUM dataset.

Sequence Trans. ATE RMSE (cm)
EF CF SF RF Ours

Static
Env.

fr1/xyz 1.2 1.5 1.5 2.4 3.1
fr1/room 22.6 26.9 51.8 76.5 27.3
fr3/office 2.3 68.3 31.0 11.6 8.8

Dynamic
Env.

fr3/sit xyz 2.4 3.9 3.9 3.7 4.5
fr3/walk xyz 73.8 69.8 9.3 8.7 21.0

fr3/walk halfsphere 55.0 82.0 68.0 10.8 16.7

Table I presents the results of the camera tracking ac-
curacy evaluation. We use the Absolute Trajectory Error
(ATE) [25] to measure the global quality of the estimated
trajectories with regard to ground truth trajectories in 6
video sequences: three sequences in static environments
(fr1/xyz, fr1/room, fr3/office), one in low dynamic environ-
ment (fr3/sit xyz) and two in highly dynamic environment
(fr3/walk xyz, fr3/walk halfsphere). Our system shows good
overall results, on par with the others in static environment. It
demonstrates consistency in long video sequences (fr3/office)
and state of the art accuracy when encountering fast motions
(fr1/room). The moving object detection strategy greatly
enhances the stability of the system in highly dynamic
scenarios compared to ElasticFusion, which can not handle
dynamic elements and Co-Fusion whose accuracy heavily
deteriorates when encountering objects moving too fast. No
significant improvement is shown in low dynamic scenes.

B. Surface Estimation

TABLE II: Reconstruction accuracy on ICL-NUIM dataset.

System Surface Accuracy (cm)
kt0 kt1 kt2 kt3

EF 0.7 0.7 0.8 2.8
Ours 1.3 5.2 1.1 1.4

Although accuracy is not the purpose of our method, the
3D map built has to be relevant. We compare the quality of
the surface reconstructed by our approach to those of Ela-
sticFusion on the living room scene of the ICL-NUIM dataset
which provides four synthetic noisy RGB-D sequences and
a ground truth 3D model. To evaluate the surface produced
we convert our supersurfel-based global map to a dense point
cloud by oversampling the surface of each supersurfel. We
then compute the mean distance from each point of the
obtained point cloud to the nearest surface of the ground
truth 3D model. Results presented Table II show that even
if our algorithm uses a rough form of 3D representation, a
certain level accuracy can still be maintained in simple indoor

TABLE III: Mean runtime and maximal memory footprint of the dense static global map.

Sequence Map Size (MB) Runtime (ms)
EF CF SF RF Ours EF CF SF RF Ours

fr1/xyz 14.4 13.2 4.5 166.5 1.8 72.6 83.0 64.2 297.6 56.2
fr3/office 57.8 42.5 18.6 785.6 4.8 84.9 125.0 77.3 480.6 61.3

environment. However it fails to well model thin details and
important curves. Additional qualitative results are presented
Figure 4.

C. Computational Performance

In Table III we show the computational efficiency eva-
luation of our method on two TUM sequences: fr1/xyz, a
short video and fr3/office which is longer. The maximal
memory footprint of the rebuilt static global map and the
average execution time for the different systems are given.
The use of a low resolution map representation makes
our approach outperform the others in terms of memory
consumption and speed, enabling extended scalability. Our
map is more compact and thus easier to manage. StaticFusion
achieves better performance compared to the other surfel-
based methods because it processes downsized images while
ReFusion demonstrates slow execution and huge memory
footprint due to the volumetric representation.

VI. CONCLUSION

In this paper we described a nnew complete dense RGB-D
SLAM pipeline. This system favours efficiency over highly
detailed reconstruction, representing the environment as a
set of patches extracted from superpixels. State-of-the-art
camera tracking accuracy is reached thanks to a combination
of sparse feature-based VO and dense frame-to-model regis-
tration, while robustness in dynamic scenes is ensured by a
dense moving object detection framework using compensated
optical flow and depth difference. Experiments showed the
lower memory requirement and faster processing speed of
our method compared to others, enabling it to run live on a
wider range of computing platforms.

For future work we plan to port the designed system
to a mobile robot embedding an Nvidia Jetson board and
to exploit the supersurfel-based representation for naviga-
tion. We would also like to combine our approach with a
lightweight deep learning strategy to enhance the moving
object detection.

REFERENCES

[1] R. A. Newcombe, S. Izadi, O. Hilliges, D. Kim, A. J. Davison,
P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon, “Kinectfusion:
Real-time dense surface mapping and tracking,” in IEEE ISMAR.
IEEE, October 2011.

[2] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, “Real-time
3d reconstruction at scale using voxel hashing,” ACM Transactions on
Graphics (TOG), January 2013.

[3] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, and
J. McDonald, “Kintinuous: Spatially extended KinectFusion,” in RSS
Workshop on RGB-D: Advanced Reasoning with Depth Cameras, Jul
2012.

[4] H. Pfister, M. Zwicker, J. van Baar, and M. Gross, “Surfels-surface
elements as rendering primitives,” in ACM Transactions on Graphics
(Proc. ACM SIGGRAPH), 2000, pp. 335–342.

[5] M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. Weyrich, and A. Kolb,
“Real-time 3d reconstruction in dynamic scenes using point-based
fusion,” 06 2013, p. 8.

[6] T. Whelan, S. Leutenegger, R. S. Moreno, B. Glocker, and A. Davison,
“Elasticfusion: Dense slam without a pose graph,” in Proceedings of
Robotics: Science and Systems, July 2015.

[7] B. Canovas, M. Rombaut, A. Nègre, S. Olympieff, and D. Pellerin,
“A coarse and relevant 3d representation for fast and lightweight rgb-d
mapping,” in VISAPP 2019 - International Conference on Computer
Vision Theory and Applications, Feb. 2019.

[8] K. Wang, F. Gao, and S. Shen, “Real-time scalable dense surfel map-
ping,” in 2019 International Conference on Robotics and Automation
(ICRA), 2019.

[9] E. Palazzolo, J. Behley, P. Lottes, P. Giguère, and C. Stachniss,
“ReFusion: 3D Reconstruction in Dynamic Environments for RGB-
D Cameras Exploiting Residuals,” arXiv, 2019.

[10] R. Scona, M. Jaimez, Y. R. Petillot, M. Fallon, and D. Cremers,
“Staticfusion: Background reconstruction for dense rgb-d slam in
dynamic environments,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA), May 2018, pp. 3849–3856.

[11] M. Rünz and L. Agapito, “Co-fusion: Real-time segmentation, tracking
and fusion of multiple objects,” in 2017 IEEE International Confer-
ence on Robotics and Automation (ICRA), May 2017, pp. 4471–4478.

[12] T. Zhang and Y. Nakamura, “PoseFusion: Dense RGB-D SLAM in
Dynamic Human Environments,” in 2018 International Symposium on
Experimental Robotics, Nov. 2018.

[13] M. Runz, M. Buffier, and L. Agapito, “Maskfusion: Real-time recog-
nition, tracking and reconstruction of multiple moving objects,” in
2018 IEEE International Symposium on Mixed and Augmented Reality
(ISMAR), Oct 2018, pp. 10–20.

[14] T. Kroeger, R. Timofte, D. Dai, and L. V. Gool, “Fast optical flow using
dense inverse search,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2016.

[15] M. Aladem and S. Rawashdeh, “Lightweight visual odometry for
autonomous mobile robots,” Sensors, vol. 18, p. 2837, 08 2018.

[16] J. Bian, W.-Y. Lin, Y. Matsushita, S.-K. Yeung, T. D. Nguyen, and
M.-M. Cheng, “Gms: Grid-based motion statistics for fast, ultra-robust
feature correspondence,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2017.

[17] S. Rusinkiewicz, “A symmetric objective function for icp,” ACM Trans.
Graph., vol. 38, no. 4, Jul. 2019.

[18] Ren and Malik, “Learning a classification model for segmentation,”
in Proceedings Ninth IEEE International Conference on Computer
Vision, Oct 2003, pp. 10–17 vol.1.

[19] K. Yamaguchi, D. McAllester, and R. Urtasun, “Efficient joint seg-
mentation, occlusion labeling, stereo and flow estimation,” in ECCV,
2014.

[20] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: an efficient
alternative to sift or surf,” 11 2011, pp. 2564–2571.

[21] J. Huang, W. Zou, J. Zhu, and Z. Zhu, “Optical flow based real-time
moving object detection in unconstrained scenes,” 2018.

[22] B. Glocker, J. Shotton, A. Criminisi, and S. Izadi, “Real-time rgb-d
camera relocalization via randomized ferns for keyframe encoding,”
IEEE Transactions on Visualization and Computer Graphics, vol. 21,
pp. 571–583, 2015.

[23] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o(n)
solution to the pnp problem,” International Journal of Computer
Vision, vol. 81, 02 2009.

[24] R. W. Sumner, J. Schmid, and M. Pauly, “Embedded deformation for
shape manipulation,” ACM Trans. Graph., vol. 26, p. 80, 2007.

[25] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of rgb-d slam systems,” in Proc. of the
International Conference on Intelligent Robot Systems (IROS), Oct.
2012.

[26] A. Handa, T. Whelan, J. McDonald, and A. Davison, “A benchmark
for RGB-D visual odometry, 3D reconstruction and SLAM,” in IEEE
Intl. Conf. on Robotics and Automation, ICRA, May 2014.

