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Discrete element modelling of concrete under high-stress level: influence

of saturation ratio

Hicham Benniou1 · Abdallah Accary1 · Yann Malecot1 · Matthieu Briffaut1 ·
Laurent Daudeville1*

Abstract The discrete element model proposed in this pa-

per addresses the macroscopic behavior of concrete taking

into account the presence of free water in pores, thanks to

a new interaction law between spherical discrete elements

(DE). When concrete structures are subjected to a severe

loading, e.g. an impact, material exhibits high triaxial com-

pressive stresses which are highly influenced by the satura-

tion ratio. In this new constitutive model, cracking and com-

paction are modeled at the interaction level between DEs

and free water effects are taken into account by introduc-

ing a dependency between the water saturation ratio and the

inelastic deformation due to the pore closure. The present

numerical model has been implemented within the YADE

(Yet Another Dynamic Engine) code in order to deal with

extreme loading situations leading to stress states character-

ized by a high mean stress level.

Keywords DEM · Discrete element model · Concrete ·
Saturation ratio · Confined compression

1 Introduction

When a concrete structure is subjected to an intense load-

ing, e.g. an impact, the material in the vicinity of the loading

zone undergoes high levels of stress leading to irreversible

compaction, whereas farther from this location, compres-

sion with a moderate triaxial stress level occurs [13], [7],

[34].

The quasi-static constitutive behavior of an ordinary con-

crete was extensively studied at 3SR laboratory thanks to

triaxial compression tests performed with a large capacity
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press named Giga [37]. Under high confinement (some hun-

dreds MPa), the water saturation of concrete plays a major

role [38]. On the one hand, the hydrostatic behavior of wet

or saturated concrete clearly becomes stiffer than that of dry

concrete. On the other hand, the shear strength of wet or sat-

urated concrete seems limited to a maximum value indepen-

dent on the confining pressure, while the shear strength of

dry concrete increases almost linearly with confining pres-

sure. The limit shear strength value is directly correlated

with the water saturation ratio of concrete [38]. It is also

worth noting that all these tests are performed under quasi-

static undrained conditions similarly to impact condition; as

the water has not enough time to migrate during impact.

Because protective concrete structures are generally mas-

sive, they may have a core partially or fully water saturated

whereas the skin is dry. Accounting the effect of water satu-

ration ratio is then particularly relevant for massive concrete

structures submitted to very high stress level.

The PRM coupled model [25], [40] is a finite element

(FE) model that uses the effective stress concept developed

by Mariotti et al. [20] for wet geomaterials under high stress

level. Thus, such a model takes into account the saturation

ratio, but finite element models are not well adapted for large

discontinuity and perforation simulations. The discrete ele-

ment method (DEM) has several advantages. It can easily

represent discontinuities caused by cracking or fragmenta-

tion and reproduce the macroscopic behavior of concrete.

Several DE models were developed to reproduce the behav-

ior of granular and cohesive materials [4], [5], [6], [9], [14],

[24], [31], [33], [35], but none of them accounts for the ef-

fects of saturation ratio.

This paper presents a new local constitutive behavior

for discrete element modelling of concrete structures that

attempts to take into account the influence of free water

into the porous concrete material under very high quasi-

static stress level. The proposed model is based on the use
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of spherical DEs, it was developed for concrete that is a co-

hesive material. Thus, contrarily to models developed for

granular materials [4], cohesive interactions are considered

between elements that are not in contact. As long as the ma-

terial is cohesive, the proposed approach is similar to lat-

tice models [30], [17], [44]. Once fracture and fragmenta-

tion occurs, contact interactions may be created and easily

handled with spherical DEs. The DE model is implanted is

the open source code YADE [15] with the aim of modelling

the behavior of concrete at the macroscopic scale to deal

with impact problems on structures [43], [42]. Thus the in-

ternal structure of concrete (aggregates, cement paste, pores)

is not described like in [16], [21] and [35]. In this study, the

three dimensional DEM constitutive model implemented in

YADE will be described. The model calibration and valida-

tion is based on triaxial compression tests performed with

the large capacity press Giga of 3SR laboratory at the uni-

versity Grenoble Alpes. Numerical simulations of tests per-

formed on ordinary concrete samples at different saturation

ratios including triaxial and oedometric tests will be dis-

cussed.

2 Discrete element background

The DEs are rigid spheres of different radii. Each of them

has a mass and a rotational inertia. Note that DEs do not rep-

resent aggregates, interaction laws between DEs are chosen

to represent the macroscopic behavior of concrete as well

as discontinuities (cracks) that may appear in the medium.

Cohesive interactions are spring-like connections in exten-

sion, shear and rotation. The interaction force F represents

the action between two elements a and b is given in eq.(1).

The interaction stiffness K and displacement U are decom-

posed to Kn, Ks and Un, Us acting in the normal and shear

direction respectively.

F = KU (1)

Using the constitutive model of each interaction, the nu-

merical model solves the equation of motion of the spheres

assembly. The new displacement, velocity and acceleration

for each discrete element are calculated by solving the dy-

namic equilibrium equations based on an explicit time in-

tegration scheme conditionally stable. The condition of sta-

bility applied for motion equations is inspired from [4] and

[27].

3 Constitutive model description

At macroscopic scale, the concrete can be considered as a

homogeneous isotropic material. Under confined compres-

sion and increasing mean stress levels, concrete first follows

a linear behavior, and then its tangent stiffness decreases due

to the damage of cement matrix, which leads to porosity clo-

sure. During the porosity closure, the stiffness of the mate-

rial increases and tends to the elastic stiffness of the fully

consolidated material [19]. This behavior at the macroscopic

scale can be reproduced through simple interaction laws be-

tween the discrete elements. Shiu et al. [32] developed an

interaction law featuring an elastic quasi-brittle behavior in

tension, and a three linear behavior in compression, but this

model does not take into account the effect of the concrete

saturation ratio. In this new model, the effect of free water

is taken into account by introducing a dependency between

water saturation ratio and inelastic deformations due to pore

closure. The porosity closure is defined as a local variable

at the interaction level using the decrease of the distance

between DEs. A maximum shear stress criterion is also in-

troduced to take into account the correlation between limit

shear strength and saturation ratio. The proposed model is

calibrated by means of test results performed on a reference

ordinary concrete named R30A7. Gabet et al. [12], Vu et al.

[39] and Piotrowska et al. [22], studied the triaxial behav-

ior of dry, wet or fully saturated R30A7 concrete under a

confinement stress up to 600 MPa. Experimental results ob-

tained previously emphasized on the fact that the presence of

free water in pores has an effect only when the free poros-

ity (not occupied with water) is closed. According to our

assumptions, if the boundary allows the water outflow, then

the effect of water vanishes and the constitutive behavior of

concrete will be that of dry concrete. Note that differed phe-

nomena due to water migration are not taken into account

in the model since, due to the low loading time, no water

migration is assumed.

3.1 Interaction laws

In this model, interactions between DE neighbors that are

not in contact are allowed by introducing an interaction ra-

dius coefficient (Ir ≥ 1). Two types of interactions are de-

fined: initial links and residual contacts. The value of Ir,which

concerns only initial links, influences directly the number of

interactions per sphere at the beginning of the calculation

(eq.(2)). Rousseau et al. [28] showed that in order to achieve

a realistic isotropic elastic behavior of concrete, this num-

ber should be around 12. The interaction radius coefficient

Ir will be adjusted accordingly. As calculation is proceeded

and due to external loading, changes in DEs arrangement oc-

cur and new contact interactions may be created while others

vanish.

3.1.1 Cohesive interactions

Cohesive interactions are created between DEs within the

same range at the beginning of the simulation. For instance,
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a link is created between elements a, and b of radius Ra and

Rb respectively if:

Ir(Ra +Rb)≥ D0
ab (2)

Where D0
ab is the initial distance between the centroids

of elements a and b. D0
ab is also the reference distance used

later to convert displacement to dimensionless strain. If C0
a

and C0
b are initial centroids position of elements a and b

respectively, then:

D0
ab = |C0

a −C0
b| (3)

Tensile stress appears when the current distance between

elements a and b: Dab = |Ca −Cb| is larger than the initial

distance D0
ab because the interaction is cohesive.

3.1.2 Contact interaction

Contact interactions can be created between DEs after the

beginning of the simulation, either when a cohesive Link in-

teraction is broken or when two DEs that were not in inter-

action are in contact (Ra +Rb)≥ D0
ab.

3.2 Elastic interaction law

Interaction force F can be decomposed in a normal force Fn

and a shear force Fs :

Fn = KnUn (4)

Fs = KsUs (5)

Un and Us are respectively normal and shear displace-

ments. Kn and Ks are respectively normal and shear stiff-

nesses, both expressed using E an equivalent Young modu-

lus and G an equivalent shear modulus for the link:

Kn =
EAeq

D0
ab

(6)

Ks =
GAeq

D0
ab

(7)

The macroscopic elastic properties, here Young modulus

E (GPa) and shear modulus G (GPa), are thus considered to

be an input parameters. Aeq is the interaction cross-section,

and is defined as follows:

Aeq = π ×min(Ra,Rb)
2 (8)

Thus, the forces could be defined from equivalent stresses

as follows:

Fn = σnAeq (9)

Fs = σsAeq (10)

with,

σn = Eεn (11)

σs = Gεs (12)

where εn and εs are the equivalent normal and shear strain

respectively

ε =

[

εn

εs

]

(13)

A fictitious interaction point Pc is defined at a mid-distance

from the two elements and a vector n which is the normal to

the contact plane that passes through Pc (always perpendic-

ular to the contact plane). Un is aligned with n. The shear

displacement Us must be expressed in the global coordi-

nates while satisfying the condition Us ⊥ n. This is due to

the lack of an interaction-local coordinate system. Indeed,

each spherical contact only defines the contact normal and

the contact plane (Figure 1).

Fig. 1 Interaction between two elements. Force and displacement

components

As large strains are expected, logarithmic strains, also

equivalent to the sum of incremental strains are used (eq.

(14)). The strain tends to −∞ if two centers of spheres ap-

proach from one another, which avoid them to penetrate

through each other.

ε =

[

εn

εs

]

=

[

log(Un

D0 )

∑
δUs

D0

]

(14)

For torque computation, the following equations are used:

Mb = ∑δθbKb (15)

Mt = ∑δθtKt (16)

δθb and δθt are the incremental bending and twisting

rotation angle respectively. Kb and Kt bending and twist-

ing stiffnesses that are estimated by considering that a cir-

cular beam, with a section Aeq, connects the two centroids
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of spheres a and b (eq. (8)). To limit the torque, two dimen-

sionless parameters αb,αt ∈ [0,1] are used such that:

Kb = αb Ks Aeq (17)

Kt = αt Ks Aeq (18)

3.3 Nonlinear interaction behavior

As shown in equations (eq. (11) and eq. (12)), σn and σs

are related to εn and εs respectively. This relation between

stress and strain at the link scale characterizes the interaction

behavior in both tension and compression.

3.3.1 Tension

Beyond the elastic limit ε0, a damage behavior in tension is

applied. Normal stress σn is formulated as follows:

σn = [1−ω(κ)H(κ − ε0)]Eεn (19)

κ is the maximum normal strain (κ = max(εn)), ω(κ) is

the damage evolution function, and H is a Heaviside func-

tion that deactivates damage effect if κ < ε0. The damage

evolution function ω is described as follows:

ω(κ) =
1− ε0

κ

1− ε0
ε f

if ε0 ≤ κ ≤ ε f (20)

ε f is the maximum strain corresponding to the maximum

damage (ω = 1 when εn = ε f ). Beyond this point, the link

between the spheres is deleted and a new contact interaction

is created only if these two spheres touch again. Figure 2

shows the evolution of the damage and the tensile stress in

the normal direction.

3.3.2 Compression

The interaction model between DEs is a beam-like model

whose constitutive behavior is phenomenological. It means

that the local constitutive behavior is inspired from obser-

vations at the macro scale, including compaction (pore clo-

sure). Thus, under normal compression the stiffness varies

between the initial elastic stiffness Kn (directly linked to the

Young modulus) and the consolidated material stiffness kh x

kn (kh ¿1 is an non-dimensional parameter). kp and kh val-

ues are calibrated by means of simulation of confined com-

pression tests. Thus, in compression the behavior phases are

defined as follow (see Fig.3):

Phase [A B]: linear zone of the link, characterized by the

initial elastic stiffness of the material. εel is the elastic limit

strain in compression.

σn = Eεn for εn < εel (21)

(a)

(b)

Fig. 2 a Damage evolution ω vs. normal strain εn in a cohesive inter-

action. b Corresponding tensile stress σn vs. εn

Phase [B C]: compaction zone, the elastic stiffness of the

link varies linearly between the initial elastic stiffness and

the consolidated material stiffness. Let us note that at this

point porosity is inherently defined at the link scale since

εpl is the maximum deformation corresponding to a com-

plete porosity closure. kp is the strain hardening modulus

introduced as:

σn =
E

kp

(εn − εel)+σelmax
for εel < εn < εpl (22)

Phase [C D]: consolidated material zone. Beyond this

point, the link is fully compacted and the response is incre-

mentally elastic again as described in (eq. 23). Figure 3 also

shows the cyclic behavior of a link in the normal direction

(interaction level).

σn = Ekh(εn − εpl)+σplmax
for εpl < εn (23)

3.3.3 Shear

As explained in (sec. 3.2) the elastic shear stress σs can be

defined as shown in (eq. (12)). The shear response is then

limited by the maximum shear stress surface (Figure 4). The

shear stress criterion σsmax (see eq. (24)) is characterized by
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(a)

(b)

Fig. 3 Cyclic loading of a single cohesive link. a In the normal direc-

tion. b Zoom of A region

the initial shear cohesion of the link C0, the friction angle

Φ , and a maximum shear stress (1+λ )C0 allowing sliding

(plastic slip) between spheres.

σsmax = (1−ω)C0 +
λC0σntan(Φ)

σntan(Φ)+(λ +1−ω)Ft

(24)

ω is the damage function, Ft the undamaged tensile strength

(Ft=Eε0) and λ a dimensionless parameter that allows con-

trolling the maximum shear stress asymptote.

3.4 Effect of saturation ratio (Sr) on the compressive

behavior

The effect of free water on concrete mechanical behavior has

been widely studied under high or moderate strain rates [29],

[45], [41], [36]. Due to a lack of experimental data, there is

no available discrete element model dealing with free wa-

ter influence on the mechanical behaviour of concrete under

high stress level. The proposed model is the first attempt

aiming at filling this gap.

Fig. 4 Maximum shear stress surface versus uniaxial stress at the link

scale

Saturation ratio is introduced as a local variable at the in-

teraction level between spheres and its evolution is related to

the porosity closure during the compaction phase described

by (eq. (22)). In this paper, an initial homogeneous, satura-

tion ratio distribution is assumed in the sample however the

structural heterogeneity, or a heterogeneity based on the DE

size or position, could easily be taken into account. Note

that, the effect of saturation ratio is taken into account for

compressive stress only. As it was explained in (sec. 3.3.2),

for a dry link (Sr = 0%), the consolidation point is defined

accordingly to normal strain, and it corresponds to a com-

plete porosity closure (εn = εpl). Then, the general idea of

the model is to assure that a smaller deformation is needed

to close a partially saturated porosity as a fraction of it is

already occupied by water. The higher the saturation ratio

is, the earlier the consolidation point will be reached and the

effect of water will begin to appear on the mechanical be-

havior. Thus, the new consolidation point εn,plC is defined

as a linear function of Sr which is the saturation ratio of the

link:

εn,plC = εel +(εpl − εel)(1−Sr) (25)

From equation (eq. (25)), it is clear that if the link is dry

(Sr = 0), εn,plC is equal to εpl while if the link is completely

saturated (Sr = 1) and then εn,plC is equal to εel . A kind of ef-

fective stress concept is then introduced to take into account

the water contribution in the total stress at the link scale us-

ing Biot coefficient assumed to be, at the first order, equal to

the porosity ϕ . The variation of the porosity is defined ac-

cordingly to the volumetric strain εv which is defined from

the normal strain of the unidimensional link as εv = 3εn and

to ϕi which is the initial porosity of the sample. Thus:

σntotal
= σn +3ϕσnwater (26)

One can remark from (eq. (26)) that the water contribu-

tion will increase with the porosity and with the saturation

ratio. Note that a Mie−Gruneisen like equation of state is
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used to take into account water compressibility and to com-

pute the water contribution in the total stress [8] (eq. (27)):

σwater =
ρ0C2

w0(εv − εv,ps)

(1− s(εv − εv,ps))2
[1−

Γ0(εv − εv,ps)

2
] (27)

Where εv,ps is the volumetric strain at the consolidation

point (εv,ps = 3εn,plc), Cw0 is the sound-wave velocity, ρ0 is

the mass density, s and Γ0 are two Mie-Gruneisen coeffi-

cients. The interstitial water pore pressure was recently in-

vestigated and measured experimentally by [1] showing that

it might reach several hundreds of megapascal under high

confinement pressure. Figure 5 shows the normal compres-

sive behavior of a dry link compared to that of a wet link

(Sr = 44%) and the corresponding water pressure. The con-

solidation point (CP) is reached earlier in the wet link hence

the water contribution is added. In the dry link, reaching the

consolidation point does not add any water contribution.

Fig. 5 Effect of the water contribution on the normal compressive

stress-strain law at the link scale for Sr = 44% compare to Sr = 0%

3.5 Effect of saturation ratio on the maximum shear stress

In order to control the plastic sliding threshold of interac-

tions, a coefficient λ was introduced in eq. (24). This coeffi-

cient control the maximal limit shear strength of a link (λC0)

once the material is fully consolidated as observed experi-

mentally by [38]. Two parameters λ0 and λ100, are calibrated

for a dry and saturated links respectively and introduced to

express λ as a linear function of the saturation ratio:

λ = (λ0 −λ100)(1−Sr)+λ100 (28)

Thus, when λ = λ0 then εn,plC = εpl and when λ = λ100

then εn,plC = εel . Figure 6 shows the dependency of the cri-

terion on the saturation ratio. We can observe that the higher

the saturation ratio is, the lower is the shear stress limit.

Fig. 6 Maximum shear stress surface for different saturation ratios

(Sr = 0%, Sr = 44%, Sr = 78% and Sr = 100%) at the link scale

4 Model calibration and validation

4.1 Numerical tests preparation and monitoring

The calibration is done by running simulations on sufficiently

large numerical specimens to give continuum-like behavior.

Samples, made of spheres, have to be isotropic to ensure a

homogeneous interaction distribution in the sample and to

prevent the forces from being in privileged directions [28],

[10]. The isotropy of the numerical medium is verified by

plotting the cumulative orientation distribution of interac-

tions (Figure 7).

The histogram of the size distribution obtained for a spec-

imen is shown in Figure 8(a). The size distribution goes from

2 to 4 mm and is homogeneously distributed between these

extremum. The numerical compacity of the sample is about

0.6 and the interaction radius Ir is chosen in order to have an

average of 12 interactions per element (Ir = 1.5). Figure 8(b)

shows the numerical sample. It is a cuboid-shaped packing

(70mm×70mm×140mm) of approximately 4000 spheres. It

was checked that the shape of the numerical specimen does

not affect the results since the stress state is homogeneous

across the specimen.

Fig. 7 Initial distribution of the interaction links’ orientations in the

numerical sample

Uniaxial and triaxial tests are then simulated in order to

calibrate the model parameters. The calibration process, de-

scribed in the next section, aims at identifying the model

parameters values that allow reproducing the macroscopic

behavior obtained in the tests performed on the R30A7 refer-
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(a) (b)

Fig. 8 Size distribution of the sphere diameters in the numerical sam-

ple. a Histogram. b Numerical sample

ence concrete (unconfined compressive strength of 34 MPa,

7 cm slump, w/c = 0.64, 12% porosity accessible to water,

see [11] for more details).

4.2 Model calibration and comparison with experiments

4.2.1 Uniaxial compression and tensile tests

Uniaxial tension or compression tests allow determining elas-

tic parameters E, ν , initial cohesion C0, limit elastic strain in

tension ε0 and the limit failure strain ε f . The displacement

is applied on boundary particles symmetrically on both ends

of the specimen while restraining their other degrees of free-

dom. Average axial stress is obtained by averaging forces

on both boundary particles divided by the specimen cross-

section (assumed constant during the test). Figure 9 shows

the numerical stress-strain curve in uniaxial compression, it

is compared with a cyclic test result [23]. The stress-strain

curve in tension is not available, only the tensile strength

(3.2 MPa) could be obtained experimentally. Figure 10 shows

a comparison between numerical and experimental failure

patterns in the sample for uniaxial tension and compres-

sion tests respectively. In tension, a single crack appears; the

stress state is homogeneous far from the ends of the speci-

men so its location depends on the statistical distribution of

spheres into the sample. In compression, the ends are fixed

then a typical cone failure pattern can be observed in the

central part of the specimen. Benniou [2] has shown in his

PhD that there is no mesh dependency for a moderate vari-

ation of DE sizes; this result was also shown in [26]. Note

that Benniou [2] has also verified that uniaxial compresssion

and tensile test results do not depend on the initial saturation

ratio of concrete samples.

4.2.2 Triaxial compression tests at high level of

confinement (600 MPa)

Tests at 600 MPa of confinement are used to calibrate pa-

rameters given in Table 2. It has been checked experimen-

tally that the stress state during confined compression tests

Fig. 9 Numerical stress-strain curve in uniaxial compression and com-

parison with experimental curve of a cyclic test [23]

(a) (b) (c) (d)

Fig. 10 Comparison between numerical and experimental damage af-

ter uniaxial test: blue elements links are undamaged, red elements links

are completely damaged. a,b Tension [11]; c,b Compression test [23]

Table 1 Model parameters calibration values from uniaxial tests

Parameters Physical meaning Values

E (GPa) Young modulus 30

ν Poisson ratio 0.2

ε0 limit elastic strain in tension 1e−4

ε f limit failure strain 20ε0

Φc (radians) contact friction angle 0.8

C0 (MPa) shear cohesion 4

is homogeneous in the circular section specimens [37]. In a

sake of simplicity, the DE specimen has a parallelepipedic

shape with 6 contacts surfaces. This choice allows prescrib-

ing simple boundary conditions by means of six rigid walls;

it has no influence since the obtained stress state is homoge-

neous. Triaxial calibration tests are run on dry (Sr = 0%) and

completely saturated (Sr = 100%) numerical sample. These

tests are conducted in two steps. The first phase is the hydro-

static compression, for which all the wall displacements are

the same with a controlled velocity until the target confine-

ment pressure Pc is reached σx = σy = σz = σm =−Pc. This

step allows the calibration of non-linear parameters kp, kh,

εel and εpl , (see Table 2, left part). The second phase is the

deviatoric compression, for which the axial displacement is

controlled on the top and bottom wall whereas all four other
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walls are monitored by their normal stress so that constant

σy = σz = −Pc. This step allows the calibration of the two

last parameters λ100 and λ0, (see Table 2).

Table 2 Model parameters calibration values from triaxial compres-

sion tests at 600 MPa

Parameters Physical meaning Values

kp strain hardening modulus 2

kh consolidated material parameter 1

εel limit elastic strain in compression 20ε0

εpl maximum compaction strain 200ε0

λ100 saturated sliding threshold coefficient 1

λ0 dry sliding threshold coefficient 5

Figures 11 and 12 display the results of experimental

tests carried out by [18] and of numerical simulations ob-

tained for an hydrostatic and deviatoric compression phase

respectively for (Sr = 0%) and (Sr = 100%). Numerical sim-

ulations show a good agreement with experimental tests and

the capability of the model to reproduce results at the macro-

scopic scale. The effect of saturation ratio is pronounced for

hydrostatic phase as shown in Figure 11, a relative differ-

ence of about 25% between the volumetric strains of dry and

saturated samples at a mean stress of 600 MPa is observed.

For deviatoric phase, the saturation ratio notably affects the

shear limit as shown in Figure 12. At 600 MPa of confine-

ment pressure, the shear resistance drops from 800 MPa for

a dry sample to 250 MP for a saturated sample which is only

due to the presence of free water in the saturated sample.

Note on Figure 12 that the comparison between the experi-

mental and numerical results is not perfect for dry concrete

and an axial strain greater than 8%; it is a minor drawback

of the DE model that the authors did not try to fix because

the maximum deviatoric stress varies slightly for different

tests performed on dry concrete [12].

Fig. 11 Hydrostatic compression test; mean stress vs. volumetric

strain: comparison between experiment and modelling for Sr = 0% and

Sr = 100%

Fig. 12 Deviatoric phase of triaxial test at Pc=600 MPa, deviatoric

stress vs. axial strain: comparison between experiment and modelling

for Sr = 0% and Sr = 100%

4.3 Model validation

4.3.1 Hydrostatic tests at different saturation ratio (600

MPa)

Figure 13 presents simulation results for hydrostatic com-

pression tests at different saturation ratios. This figure shows

that beyond the consolidation point, the mean stress increases

and the volumetric strain decreases for higher saturation ra-

tios.

Fig. 13 Simulation of hydrostatic compression test; mean stress vs.

volumetric strain for different saturation ratios (Sr = 0%, Sr = 44%,

Sr = 78%, Sr = 93% and Sr = 100%)

4.3.2 Triaxial tests at moderate confining pressure (at 100

and 200 MPa)

Figure 14 shows simulation results of the deviatoric phase

of triaxial tests at 100 MPa and 200 MPa compared to ex-

perimental results obtained by [18] for different saturation

ratios. Triaxial tests at moderate confining pressures are dif-

ficult to simulate because these mean stress levels corre-

spond to the transition from brittle to ductile behavior, which

means, to have in the same time a significant effect of both

damage and plasticity. However, Figure 14 shows that the
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simulation results are in good agreement with the experi-

mental ones.

From the one hand, Fig. 12 and 14 indicate that the de-

viatoric behavior of dry concrete is highly influenced by the

confining pressure since as the confining pressure increases

from 100 to 600 MPa the deviatoric stress increases from

250 to 800 MPa. From the other hand, for a given confine-

ment pressure and for intermediate saturation ratios (Fig.

14(a) and 14(b)), the peak deviatoric stress lies between the

dried and saturated limit cases and seems to be associated di-

rectly to the saturation ratio. Thus the limit stress decreases

when the saturation ratio increases. Fig. 14(b)) shows non-

satisfying agreements for the 200 MPa confinement triaxial

tests with initial saturation ratio Sr equal to 78% and 100%;

all other results are very good. The authors explain these

results by a possible overestimation of Sr [38], the two sam-

ples might have slightly dried just before the tests.

(a)

(b)

Fig. 14 Deviatoric phase of triaxial tests, deviatoric stress vs. axial

strain for different saturation ratios (Sr = 0%, Sr = 44%, Sr = 78% and

Sr = 100%): comparison between experiment and modelling. a 100

MPa confinement. b 200 MPa of confinement

4.3.3 Oedometric tests

The static quasi oedometric compression (QOC) test allows

testing the mechanical response of the material under a quasi-

uniaxial strain loading path while applying a passive con-

finement. The difference between hydrostatic and quasi oe-

dometric tests lies mainly in the volumetric strains reached

for the same mean stress. During this test, a cylindrical spec-

imen, tightly enclosed in a confinement vessel, is axially

compressed by means of high strength compression plugs as

stated by [3]. To simulate the quasi oedometric test, the sam-

ple is placed between six rigid walls. The axial displacement

of both top and bottom walls are controlled while blocking

all four other walls to simulate a uniaxial confined compres-

sion test under uniaxial strain. Figure 15 shows predictive

mean stress evolution obtained for different saturation ra-

tios. An experimental result obtained on a dry sample is also

shown. The behavior of the numerical sample for Sr = 0%

is very close to the experimental behavior. The effect of free

water is also shown by means of numerical simulations. As

expected, the results reveal that when the sample saturation

increases, its oedometric stiffness also increases.

Fig. 15 Simulation of oedometric compression tests: mean stress vs.

volumetric strain for different saturation ratios (Experiment Sr=0%;

Numerical simulation Sr = 0%, Sr = 44%, Sr = 78% and Sr = 100%)

5 Conclusion

The DE model presented in this paper is dedicated to the

modelling of concrete behavior at very high stress level. To

take into account the influence of free water during porosity

closure that is observed in experiments, a new behavior law

was developed at the scale of links between DEs. This con-

stitutive behavior is based on a dependency of inelastic de-

formations of concrete and maximum shear stress criterion

with the saturation ratio. The results show that the model

is able to well reproduce the behavior of concrete samples

on a wide range of stress levels (triaxial compression with

a confining pressure up to 600 MPa) and on a wide range

of saturation ratios (Sr = 0 to 100%). The identification of

parameters is carried out thanks to tests performed on dry

samples. The simulation results obtained for various load-

ing paths and saturation ratios demonstrate the efficiency of

the approach to take into account the influence of free water
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at very high stress level. As a perspective, simulations at a

larger scale on concrete structures are feasible and will al-

low the evaluation of saturation ratio effects at a structural

scale. The effect of saturation ratio on the behavior of con-

crete structures submitted to penetration or perforation tests

will be evaluated thanks to this model.
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