
HAL Id: hal-03131334
https://hal.univ-grenoble-alpes.fr/hal-03131334v1

Submitted on 4 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ERA: Extracting planning macro-operators from
adjacent and non-adjacent sequences

Sandra Castellanos-Paez, Romain Rombourg, Philippe Lalanda

To cite this version:
Sandra Castellanos-Paez, Romain Rombourg, Philippe Lalanda. ERA: Extracting planning macro-
operators from adjacent and non-adjacent sequences. 2020 Principle and Practice of Data and Knowl-
edge Acquisition Workshop, Jan 2021, Yokohama, Japan. �hal-03131334�

https://hal.univ-grenoble-alpes.fr/hal-03131334v1
https://hal.archives-ouvertes.fr

ERA: Extracting planning macro-operators from
adjacent and non-adjacent sequences

Sandra Castellanos-Paez[0000−0002−6241−7974], Romain Rombourg, and Philippe
Lalanda

Univ. Grenoble Alpes, CNRS, Grenoble INP??, LIG, 38000 Grenoble, France
sandra.castellanos@univ-grenoble-alpes.fr

Abstract. Intuitively, Automated Planning systems capable of learn-
ing from previous experiences should be able to achieve better perfor-
mance. One way to build on past experiences is to augment domains
with macro-operators (i.e. frequent operator sequences). In most existing
works, macros are generated from chunks of adjacent operators extracted
from a set of plans. Although they provide some interesting results this
type of analysis may provide incomplete results. In this paper, we pro-
pose ERA, an automatic extraction method for macro-operators from
a set of solution plans. Our algorithm is domain and planner indepen-
dent and can find all macro-operator occurrences even if the operators
are non-adjacent. Our method has proven to successfully find macro-
operators of different lengths for six different benchmark domains. Also,
our experiments highlighted the capital role of considering non-adjacent
occurrences in the extraction of macro-operators.

Keywords: Automated Planning · Macro-operators · Learning · Data
Mining.

1 Introduction

Planning systems have long been the subject of important research activities in
the AI community, be it industrial or academic [8, 12]. They are actually key
components of intelligent agents that need to make timely decisions in complex
environments, like for instance autonomous robots, smart vehicles, or pervasive
systems supporting human beings. Developing such systems however remains
challenging for a number of reasons. Performance is one of the main challenges.
Indeed, despite remarkable progress in recent years, many planning systems fail
to meet timing requirements imposed by demanding domains.

We believe that an interesting approach to improve performance is to use
past experiences. With the development of pervasive applications, for instance,
large organised collections of plans are available. They can then be inspected,
analysed, evaluated and even modified by human experts or automated reasoning
systems if needed. Knowledge extracted in those plans repositories can be used
to speed up and improve the quality of the planning process in a given domain.

?? Institute of Engineering Univ. Grenoble Alpes

2 S.Castellanos-Paez et al.

In some domains, especially in industry, plans are stored. So, they can be
used to extract knowledge about the system. A particular type of knowledge
that can be extracted are the routines, i.e. sequences of actions regularly used
by the system. Routines are present in real-life applications or closely related
systems.

In AI planning, macros can model system routines. A macro consists of a
sequence of actions that occurs frequently in solution plans. Once learned, they
can be re-injected directly into the planning domain. Thus, the domain benefits
from the knowledge extracted from previous problem solving. The system applies
a macro in the same way that a primitive action. However, macros allow jumping
into the search space by building deep and promising states to reach a goal state.
Learning macros from previously acquired knowledge has proven to be beneficial
for improving a planner’s performance [2–4].

Macros have been widely studied to speed-up planning processes [1, 3, 5, 10,
11]. These approaches consist of two main phases: extraction and selection. Ex-
traction consists in identifying sequences of actions that could be potential candi-
dates to augment the domain. The selection phase must find a trade-off between
the benefit expected by adding macros and the additional cost induced by the
branching factor increase.

Literature about macros presents various techniques to build them, ranging
from simple combination of primitive actions and the use of chunks of plans to
the use of genetic learning algorithms or statistical analyses based on n-grams.

In this paper, we investigate an automatic extraction of macro-operators
from a set of solution plans. This approach should be domain-independent and
particularly adapted to the extraction of recurrent patterns (i.e. the routines).
Besides, we want to exploit the extraction of sequences of non-adjacent actions.
Only a few works have explored this path [2, 3]. Interestingly, they have shown
that this allows more routines to be extracted and therefore, would be more
profitable for the system.

Precisely, we propose ERA, a pattern mining inspired algorithm to mine
macro-operators directly from a set of solution plans. This algorithm allows to
find all macro-operators satisfying a set frequency threshold even if its actions
are non-adjacent in some or all of its occurrences. We see this work as a first step
towards a macro-learning method allowing to exploit a large amount of solution
plans.

The paper is structured as it follows. First, we introduce the concepts of clas-
sical planning, macro-operators and sequential pattern mining. Then, we present
the ERA algorithm, describe each of its steps and analyse its complexity. We
then present an evaluation of our method quantifying the impact of a gap param-
eter over six benchmark domains. After, we discuss our results and compare our
method to other works. Finally, we provide a conclusion and some perspectives.

ERA: Extracting macros from adjacent and non-adjacent sequences 3

2 Background Theory

We are interested in plan synthesis, a particular form of planning which takes a
description of the world state, all its known actions and a goal[8]. As a result,
we get an organised set of actions whose execution makes it possible to solve
the planning task. In this work, we address sequential planning in the STRIPS
framework [6].

A state is defined as a set of predicates. A planning task is composed of a
planning domain and a planning problem and the purpose of this task is to find a
plan to solve this problem. A planning domain describes the world through a set
of predicates and a set of planning operators. A planning problem describes the
initial state of the world and the goal state to be attained. A planning operator
is a triple o = (name(o), pre(o), effects(o)) where its elements are defined as
follows:

– name(o) is in the form name(x1, ..., xn) where x1, ..., xn are the object vari-
able symbols that appear in o.

– pre(o) is the set of predicates involving the variables of o and that must be
satisfied when o is instantiated.

– effects(o) is the set of predicates involving the variables of o to be applied
to a state when o is instantiated.

A grounded operator is an instance of a planning operator (i.e. a lifted op-
erator for which variables are instantiated). A ground operator a is applicable
in a state s if and only if all predicates in the preconditions of a belong to s.
A state s′ is reached from s if a grounded operator can be applied. Finally, a
(solution) plan π is an ordered sequence of grounded operators to reach a goal
state sg from an initial state si.

Macros are based on the idea of composing a sequence of primitive operators
and viewing the sequence as a single operator. For our purposes, we distinguish
two related but different terms: grounded macros and lifted macros. A grounded
macro is related to a lifted macro as a ground operator is related to a lifted
operator. We use these terms according to literature common terminology.

The problem of identifying recurrent sequences of grounded operators in AI
planning is analogous to the sequential pattern mining problem. Sequential pat-
tern mining (SPM) is a sub-field of data mining that consists in analysing data,
encoded as sequences of symbols, to detect sub-sequences of symbols[7, 9]. SPM
is commonly used to detect recurrent sub-sequences.

In the following, we define a set of concepts (borrowed from SPM) necessary
for the understanding of this work.

A sequence database C is a set of pairs < sid, s >, where sid is a sequence
identifier and s is a sequence.

A sequence SA = X1, X2, . . . , Xk, where X1, . . . , Xk are ground operators, is
a sub-sequence of another sequence SB = Y1, Y2, . . . , Ym, where Y1, . . . , Ym are
ground operators, if and only if there exists integers 1 ≤ e1 < e2 · · · < ek ≤ m
such that X1 = Ye1 , X2 = Ye2 , . . . , Xk = Yek .

4 S.Castellanos-Paez et al.

The absolute support of a sequence S is the number of sequences Si, in the
sequence database C, where S is a sub-sequence of Si. The relative support of a
sequence S is the absolute support of S divided by the total number of sequences
in C. A frequent sequence is a sequence whose relative support satisfies a given
relative support threshold. Thereafter, we will call this threshold minsup.

Besides, notice that a frequent sequence can occur in several other sequences
but not necessarily in a contiguous fashion, as the definition of sub-sequence
implies. So, we define a gap as the number of operators allowed between two
consecutive operators of a sequence and it can take values in [0,∞]. A sub-
sequence S = Ye1 , Ye2 , . . . , Yek satisfies a gap constraint g if ∀i ∈ [2, k], ei−ei−1 ≤
g + 1.

3 ERA

In the following, we will present ERA, our pattern mining inspired algorithm to
mine macro-operators (lifted macros) directly from a set of solution plans. ERA
stands for Extraction of Rich patterns with Attribute structures.

3.1 Overview

In planning, each plan is composed of an ordered sequence of grounded operators
which in turn are composed of parameters (objects). An example of plan is:
π = 〈 pick-up blockA, put-down blockA, pick-up blockB, stack blockB

blockA〉.
Mining macro-operators from a set of plans requires an approach which en-

sures to find the frequent sequences of operators without a loss of information
about their characteristics. Then, neither an operator can be dissociated from
its objects nor a sequence of operators can disregard the relationship between
operators’ objects. In other words, the problem is to look for the most frequent
sequences of operators with a specific set of object relationships. Thus, it should
be noted that for a same sequence of operators, different sets of object relation-
ships lead to the construction of different macro-operators.

Our approach extracts (lifted) macro-operators from a set of sequences of
grounded operators (See Figure 1). Besides, it can detect the occurrence of a
macro-operator even if the actions composing it are not adjacent.

3.2 ERA Algorithm

ERA mines all macro-operators (regardless of their length or up to a maximum
length) satisfying a frequency threshold and under a gap constraint from a set
of solution plans. Additionally, for each macro-operator m, this algorithm yields
the following characteristics:

– support [integer]: the number of plans containing at least one occurrence
of m.

ERA: Extracting macros from adjacent and non-adjacent sequences 5

Fig. 1: A sample of extracted macro-operators from a set of plans

– sequence ids [list]: the plan identifiers where m appears.
– number of occurrences [list]: the number of occurrences of m in each plan.

For processing purposes, plans are encoded into a sequence database in two
different ways. First, an action wise encoding where each distinct action is as-
signed a single number, yielding a dictionary A (for example {1:pick-up b, 2:stack
b a, 3:pick-up c, ...}) and second an element wise encoding where every single
element is assigned a single number, yielding a dictionary E (for example {1:pick-
up, 2:b, 3:a, ...}.

ERA pseudo code is described in Algorithm 1. It takes as input the two
previously described encodings A and E of the set of plans, a minsup threshold,
a gap g, and the maximal length of sequences to extract.

First, it searches the set of macro-operators of length two in A by using the
procedure MINE (line 6, described in Algorithm 2). Second, for each macro-
operator of this set, if it does not satisfy the minsup threshold it is removed,
otherwise the macro-operator and its characteristics are kept (line 11,12,13).
Finally, if no macro-operator has been found for the current length, it stops.
Otherwise, it increases the length by one (line 14) and it continues to loop until
it reaches the maximal length (line 5). It gives as a result a set of frequent
macro-operators of different lengths with their respective characteristics.

3.3 Mining procedure

The objective of the mining procedure is to obtain the set of macro-operators
of length l and their characteristics from the set of solution plans. To do so, it
analyses for each plan all sub-sequences of length l satisfying the gap constraint g
and determines if the sub-sequence is a valid occurrence1 of a macro-operator. If
the algorithm finds a valid macro-operator occurrence, it stores this occurrence
and updates the characteristics related to this macro-operator. To speed up its
computation, it uses previous information obtained when mining length l − 1.

1 The operators of the macro can be moved contiguously in the plan without an impact
on the final state or without impeding its execution.

6 S.Castellanos-Paez et al.

The pseudo code of this procedure, called MINE, is described by algorithm
2. It takes as input both sequence databases A and E from the main algorithm,
the gap parameter g, the length l to be evaluated and a dictionary M of all
found macro-operators (of different lengths less than l) and their support. The
purpose of the first loop (line 3) is to go through all combinations of ordered
sub-sequences satisfying the gap constraint for each sequence in A (line 7) and
for each sub-sequence, determine if it is a valid macro-operator and if it is valid
in a number of sequences greater than the minsup parameter. To accomplish
this, the following steps are performed:

– It moves on to the next sub-sequence,
• if the sub-sequence of length l− 1 does not satisfy the minsup. For that,

the current sub-sequence length should be greater than two in order to be
able to build its identifier2 of length l−1. Then, it checks if this identifier
is found in the general dictionary of pairs <macro-operator,support>
(line 10).

• if there are not enough plans left to ensure that the sub-sequence is valid
in a number of sequences greater than the minsup (line 13).

– Otherwise,
• it removes from the current plan δ the individual grounded operators of

the sub-sequence sp, it builds a grounded macro-operator from sp (line
14) and puts it, each time, at a different position in the plan (line 20,21).
It tries δ (line 22) from the calculated initial state Si for the original plan
ρ (line 6). If the result state ε is a superset (line 23) of the calculated final
state Sg from the original plan ρ (line 6), then it stops trying positions
for this sub-sequence. If it finds at least one valid position for the built
grounded macro-operator, it stores the modified plan with the lifted
macro-operator identifier µ as the key access (line 26) and µ is added to
the list of the macro-operators found in the plan (line 27). To analyse
new occurrences of an already found macro-operator, the algorithm uses
the corresponding modified plan (line 16,17).

Once it has analysed all combinations of sub-sequences of length l from ρ, it
moves to the second loop (line 28). The purpose here is to compute and save or
update, the characteristics of each found macro-operator. Thus, it updates the
set of plans where the macro-operator with identifier µ appeared (denoted Ko)
by adding the index of the current plan indexP lan (line 29). Also, it computes
and stores the number of occurrences in the plan for the analysed macro-operator
(line 30,31). Finally, if the current macro-operator appears in the plan at least
once, the support value is incremented by one (line 33) or added with a value of
1 if it did not appear before (line 35).

The mining procedure gives as a result a set of frequent macro-operators of
length l with its respective characteristics. They will be filtered, by using the
minsup parameter in the main algorithm, before being added to the final set of
mined macro-operators.

2 See description in the subsection Identifier construction

ERA: Extracting macros from adjacent and non-adjacent sequences 7

Algorithm 1 ERA algorithm - Main algorithm

Input A sequence database A of grounded operators, a sequence database E of el-
ements of an operator, a minsup parameter, a gap parameter g and a maximal
length maxLength.

Output A dictionary M of pairs <m, s>, m is a macro-operator and s is its support;
a dictionary K of pairs < m, k > k is the id of the sequence where m appears; a
dictionary J of pairs <m, j>, j is the number of occurrences of the macro-operator
m for each sequence.

1: function miningMacros(A,E,minsup, g,maxLength)
2: Mo, Ko, Jo ← empty dictionaries
3: M, K, J ← empty dictionaries
4: stop← False, l← 2
5: while (l ≤ maxLength) ∧ (stop is False) do
6: Mo, Ko, Jo ← MINE(A,E,M,l)
7: stop← True
8: for each macro-operator m in Mo do
9: if support(m) ≥ minsup then

10: stop← False
11: add the key m with value s to M
12: add the pair <m, k> to K from Ko
13: add the pair <m, j> to J from Jo

14: increase l by one

15: return M,K,J

Identifier construction The identifier construction procedure takes as input a
sub-sequence of grounded operators sp and a length l. Only the first l elements
of sp are kept in this procedure. A string identifier is built as follows. First,
each element e is translated by using E. Next, the first sub-element of each e is
used together with a character representing the operators. After, we use another
character and a incremental number for each other sub-element of e because
they represent the parameters. Notice that the incremental number is reset to
zero with each new identifier construction and a same parameter will have the
same incremental number.

Example 1. Let us consider the length l = 2, the sub-sequence {pick-up b, stack
b a, pick-up c} and the element encoding E = {1 : pick − up, 2 : b, 3 : stack, 4 :
a, 5 : c}. We only keep the first two operators since l = 2 and by using E,
we translate them into {1 2, 3 2 4}. We chose the character ’o’ to represent
operators and the character ’p’ to represent parameters. We obtain the identifier
{o1p0o3p0p1}.

3.4 Complexity analysis

The main task of the ERA algorithm is the analysis of a sub-sequence which in
the worst case has a complexity O(l(ρ)) where l(ρ) is the length of the plan ρ.
In the case of an infinite gap, this task is repeated for each sub-sequence in a

8 S.Castellanos-Paez et al.

Algorithm 2 Mining macro-operators of length l

Input The sequence database A, the sequence database E, a dictionary M of pairs
< m, s >, m is a macro-operator and s is its support and a length l and a gap
parameter g.

Output A dictionary Mo of pairs < m, s >, m is a macro-operator of length l and s
is its support; a dictionary Ko of pairs < m, k >, k is the id of the sequence where
m appears; and a dictionary Jo of key <m, iP >, iP is the index of the sequence
where m appears, and value j, the number of occurrences of the macro-operator
m in each sequence.

1: function mine(A,E,M, g, l)
2: Mo, Ko, Jo ← empty dictionaries
3: for each plan ρ in A do
4: D,macroP lan← empty dictionaries
5: idsP lan← {∅}
6: Si, Sg ← calculate initial and final state from ρ
7: P ← all combinations of sub-sequences of length l from ρ . †
8: for each ordered sub-sequence sp in P satisfying g do
9: if l > 2 then

10: if computeId(sp, l − 1) /∈M then skip sp

11: else µ← computeId(sp, l)
12: if len(A)-indexP lan<minsup−supp(µ) then skip sp
13: else
14: add the key-value <k, {actions(sp)}> to D . k ∈ Z∗

−
15: i← 0
16: if µ ∈ macroP lan then
17: δ ← macroP lan[µ]
18: else δ ← ρ

19: while (not ok)∧(i < len(δ)− len(sp) + 1) do
20: remove sp from δ
21: insert k in δ in position i
22: ε← execute(Si, δ)
23: if Sg ⊂ ε then ok ← True

24: reset δ
25: if ok then
26: add < µ, δ > to macroP lan
27: add µ to idsP lan

28: for each identifier µ in idsP lans do
29: add the key µ with value indexP lan to Ko
30: nbA← (len(ρ)−len(macroPlan[µ]))

(l−1)

31: add <µ, indexP lan> with value nbA to Jo
32: if (nbA > 0) ∧ (µ in Mo) then
33: increase support of µ by one
34: else
35: if nbA > 0 then add the key µ with value nbA to Mo

36: return Mo,Ko,Jo
† : the combinations keep the order of appearance in the original plan.

ERA: Extracting macros from adjacent and non-adjacent sequences 9

plan, for each plan in the set of solution plans and for each sub-sequence length.
In Equation (1), we first compute the number of sub-sequences nsp of length k
in a plan ρ of length l(ρ).

nsp =

(
l(ρ)

k

)
(1)

Then, if nMINE is the number of sub-sequences analysed in a execution of the
MINE procedure at length k, we have:

nMINE =
∑
ρi∈C

(
l(ρi)

k

)
(2)

In the worst case, the ERA algorithm will mine up to the maximal length lmax.
Considering that all plan lengths are equal to the maximum plan length L, i.e.
L = max

ρi∈C
l(ρi), we have N , the total number of sub-sequences analysed given by

Equation (3).

N =
∑
ρi∈C

lmax∑
k=2

(
L

k

)
(3)

N = O

(
|C|

lmax∑
k=2

O
(
Lk
))

(4)

N = O
(
|C|Llmax

)
(5)

From Equation (4), we show in Equation (5) the number of sub-sequences
to be analysed. Then, in the worst case with an infinite gap, the complexity is
O
(
|C|Llmax+1

)
, i.e. polynomial in L and linear in the size of the solution plan

set C.
In the case of a finite gap g, the analysis of a sub-sequence is repeated for

each sub-sequence in a plan satisfying the gap constraint and for each plan and
sub-sequence length.

We recall that a sub-sequence SA = Ye1 , . . . , Yek of a sequence SB = Y1, . . . , YL
satisfies a gap constraint g if ∀i ∈ [2, k], ei − ei−1 ≤ g + 1. Notice that the
sub-sequence SA can be uniquely identified by the list of indices {e1, . . . , ek}
of the elements in SB , but it can also be equivalently represented as a list
{e1, e2 − e1, . . . , ei − ei−1, . . . , ek − ek−1}. Under this last representation, one
can easily see if a given sub-sequence satisfies the gap constraint. Then the max-
imal number of sub-sequences Ngap with first element Ye1 and length k, can be
computed as one plus the biggest number in base g + 1 with k − 1 digits (see
Equation (6)).

Ngap = 1 + g

k−2∑
i=0

(g + 1)i = (g + 1)k−1 (6)

10 S.Castellanos-Paez et al.

In the worst case, the ERA algorithm will mine up to the maximal length
lmax. Similar to the infinite gap case, we consider that all plan lengths are equal
to the maximum plan length L.

In Equation (7), we show that an upper bound on the number N of sub-
sequences to be analysed can be computed by considering that for each possible
first element Yi, i ∈ [1, L − k], k the sub-sequence length, the maximal number
of sub-sequences Ngap will be analysed.

N <
∑
ρi∈C

lmax∑
k=2

(L− k)Ngap (7)

N = O
(
|C|L(g + 1)lmax−1

)
= O (|C|L) (8)

We show in Equation (8) an upper bound on the number of sub-sequences
to be analysed. Then, in the worst case with a finite gap, the complexity is
O
(
|C|L2

)
, i.e. quadratic in L and linear in the size of the solution plan set C.

4 Evaluation

In the following, we aim to show the impact of the gap when extracting macro-
operators with ERA. For this purpose, we used six benchmarks domains3 taken
from the International Planning competition (IPC-2011): barman, blocksworld,
depots, gripper, rover and satellite.

4.1 Experimental setup

To the best of our knowledge, no open plan database is available. Thus, for each
benchmark domain, we generated a set of 50 distinct problem instances using
the generators4 from the International Planning Competition. Then, we solved
the problems by using the FastDownward planner with an A* search strategy
and the FF heuristic as the evaluator for the h-value. As a result, we obtained a
set of 50 sub-optimal solution plans, for each benchmark domain, with a length
between 20 and 50 ground operators.

To evaluate the gap impact, for each benchmark, we used ERA with a fixed
frequency threshold minSup of 0.85, an infinite maximum length and a finite gap
varying between 0 and 15 plus the infinite gap case. Experiments were performed
on an Intel Core i7-4710MQ quad-core CPU clocked at 2.5GHz and with 8GB
of RAM.

3 Further details can be found at http://www.plg.inf.uc3m.es/ipc2011-
learning/Domains.html

4 https://bitbucket.org/planning-tools/pddl-generators

ERA: Extracting macros from adjacent and non-adjacent sequences 11

4.2 Results of the ERA algorithm

We present in Figure 2, for each domain, the number of extracted macro-operators
as a function of the gap. We observe that the number of extracted macro-
operators increase consistently with the gap for all domains. In most domains, a
gap of at least 9 was necessary to extract all macro-operators, i.e. the number of
extracted macro-operators with an infinite gap. Among the six domains, Barman
and Satellite were exceptions. For Barman, all macro-operators were found for
all gaps greater or equal to 1. And for Satellite, not all macro-operators were
found even with a gap of 15.

We show in Figure 3, for each domain, the length of the longest macro-
operator found as a function of the gap. We observe that our method is able
to recover long macros (e.g. a size of 6 for the longest macro in Barman and a
size of 5 for the longest macro in Satellite) since we did not have any restriction
on macro length. Also, similar to the number of extracted macros, higher gap
values allow for longer macros.

Finally, we have in Figure 4 the time used by ERA to extract macro-operators
for each domain, as a function of the gap. We observe that the time increases with
the gap. Also, we find two different behaviours: either polynomial, for barman,
blocksworld, depots and satellite or almost linear, for gripper and rover. Notice
that this behaviour is unrelated to the complexity shown in Section 3.4, since
the complexity was given in terms of plan length and plan set size.

5 Discussion

The ERA algorithm checks every sub-sequence satisfying the gap constraint.
Thus, by construction, it is guaranteed to find all macro-operators satisfying
the frequency threshold. Also, macro-operator occurrences (even non-adjacent)
registered by ERA are valid. Indeed, to be registered, an occurrence must be
composed of grounded operators that can be moved contiguously in the plan
without an impact on the final state or without impeding its execution.

Intuitively, one could think that high gap values would not impact signif-
icantly the mining results since two distant operators should be less related
than two close operators. Indeed, that would be true if the planning system
was focused on accomplishing sequentially disconnected groups of sub-goals, e.g.
preparing and serving a specific cocktail in barman. However, every plan (even
optimal) can be reordered in hundreds or even thousands of different ways from
which only a few correspond to a configuration where all disconnected goals are
accomplished sequentially. Our results clearly show that mining with a non-zero
gap allows to extract much more information. Precisely, in five domains out of
six, to extract as much information as an infinite gap, a gap value ranging from
9 to 14 was needed. To the best of our knowledge, our work is the only one
focused on the extraction of macro-operators from a set of plans by considering
adjacent and non-adjacent operators. Other works also included an approach to
handle non-adjacent operators to build macro-operators [2, 3]. Botea et al. [2]

12 S.Castellanos-Paez et al.

(a) Barman (b) Blocksworld

(c) Depots (d) Gripper

(e) Rover (f) Satellite

Fig. 2: Number of macro-operators extracted for each benchmark domain.

ERA: Extracting macros from adjacent and non-adjacent sequences 13

(a) Barman (b) Blocksworld

(c) Depots (d) Gripper

(e) Rover (f) Satellite

Fig. 3: Maximum length of macro-operators extracted for each benchmark do-
main.

14 S.Castellanos-Paez et al.

(a) Barman (b) Blocksworld

(c) Depots (d) Gripper

(e) Rover (f) Satellite

Fig. 4: Time to extract macro-operators using ERA for each benchmark domain.

ERA: Extracting macros from adjacent and non-adjacent sequences 15

extract macros from solution graphs of training problems. They enumerate and
select sub-graphs from the solution graphs and build one macro for each selected
sub-graph. They introduce a k parameter as the maximal number of operators
that can be skipped between the first and the last element of the sub-graph (we
can roughly see a sub-graph as a sub-sequence). Their work differs from ours
because their handling of the gap does not allow an exhaustive search and can
then miss many macro-operator occurrences. Also, they set a hard limit on the
upper bound of the maximal length of the extracted macro-operators. Chrpa et
al.[3] extract macros by iteratively combining operators (even non-adjacent) in
plans that share some parameters while keeping the plan valid. However, their
technique is not guaranteed to find all macro-operator occurrences.

The macro-operators extracted by ERA can be composed either by repeated
operator sequences, e.g. in Depots a macro-operator of length 4 is composed of
a repeated sequence of lift and load operators, or by different operators, e.g.
in Barman a macro-operator of length 5 is composed of five different operators.

6 Conclusion

We provided an algorithm to analyse sequences of operators (even non-adjacent)
from past solution plans. Precisely, ERA algorithm extracts all macro-operators,
satisfying a frequency threshold parameter and under a gap constraint, from
existing plans. Our algorithm has a quadratic complexity with a finite gap and a
polynomial complexity with an infinite gap. Below, we highlight the advantages
of our work:

– Planner independent, our algorithm can be used on existing plans from a
given domain regardless any domain characteristic or the planner used to
obtain those plans.

– Domain-independent, our method does not need a priori knowledge on the
domain.

– Non-adjacent operators, we can identify macros from a sequence of adjacent
and non-adjacent operators.

– Completeness, with an infinite gap our algorithm is guaranteed to find all
occurrences of any macro-operator.

Our method has proven to successfully find macro-operators of different
lengths for six different benchmark domains. Also, our experiments highlighted
the capital role that plays the gap in the extraction of macro-operators.

We see this work as a first step towards a macro-learning method allowing to
exploit solution plans. As a future work, we would like to analyse the link between
the gap and (1) the correctness of the support and (2) the number of occurrences.
More precisely, we would like to investigate if a finite gap could ensure in most
cases that all occurrences were found. Another interesting perspective would
be to analyse the effect of the gap with plans obtained through different search
strategies. Finally, we would like to include ERA in a full macro-learning method
including a macro selection phase.

16 S.Castellanos-Paez et al.

References

1. Botea, A., Enzenberger, M., Müller, M., Schaeffer, J.: Macro-FF: Improving AI
planning with automatically learned macro-operators. Journal of Artificial Intelli-
gence Research 24, 581–621 (2005)

2. Botea, A., Müller, M., Schaeffer, J.: Learning partial-order macros from solutions.
In: Proceedings of the Fifteenth International Conference on International Confer-
ence on Automated Planning and Scheduling. pp. 231–240. AAAI Press (2005)

3. Chrpa, L., Vallati, M., McCluskey, T.L.: MUM: A technique for maximising the
utility of macro-operators by constrained generation and use. In: Proceedings of the
Twenty-Fourth International Conference on Automated Planning and Scheduling
(2014)

4. Coles, A., Smith, A.: Marvin: A heuristic search planner with online macro-action
learning. Journal of Artificial Intelligence Research 28, 119–156 (2007)

5. Dulac, A., Pellier, D., Fiorino, H., Janiszek, D.: Learning useful macro-
actions for planning with n-grams. In: 2013 IEEE 25th International
Conference on Tools with Artificial Intelligence. pp. 803–810 (11 2013).
https://doi.org/10.1109/ICTAI.2013.123

6. Fikes, R., Nilsson, N.: STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 3-4(2), 189–208 (1971)

7. Fournier-Viger, P., Lin, J.C.W., Kiran, R.U., Koh, Y.S., Thomas, R.: A survey
of sequential pattern mining. Data Science and Pattern Recognition 1(1), 54–77
(2017)

8. Ghallab, M., Nau, D., Traverso, P.: Automated planning: theory and practice
(2004)

9. Han, J., Pei, J., Kamber, M.: Data mining: concepts and techniques. Elsevier (2011)
10. Hofmann, T., Niemueller, T., Lakemeyer, G.: Initial results on generating macro ac-

tions from a plan database for planning on autonomous mobile robots. In: Twenty-
Seventh International Conference on Automated Planning and Scheduling (2017)

11. Newton, M.A.H., Levine, J.: Implicit learning of macro-actions for planning. In:
Proceedings of the 19th European Conference on Artificial Intelligence (ECAI
2010) (2010)

12. Vukovic, M., Gerard, S., Hull, R., Katz, M., Shwartz, L., Sohrabi, S., Muise, C.,
Rofrano, J., Kalia, A., Hwang, J., et al.: Towards automated planning for enterprise
services: Opportunities and challenges. In: International Conference on Service-
Oriented Computing. pp. 64–68. Springer (2019)

