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Abstract 

In this work, an overview of the Weiss molecular mean-field theory, the Bean-Rodbell 

model, and the Landau theory is presented, providing the theoretical background for 

simulating the magnetocaloric properties for La0.6Ca0.2Na0.2MnO3 manganite. Results showed 

that sample exhibits second order ferromagnetic (FM) – paramagnetic (PM) magnetic phase 

transition and relatively higher values of magnetic entropy change (-∆SM). In application point 

of view, this material can be used in magnetic refrigeration technology. The theoretical values 

of -∆SM determined using each theory agree well with the experimental ones estimated from 

Maxwell relations. In other part, a good agreement in the spontaneous magnetization values, 

Mspont(T), estimated from (-∆SM vs. M2) and (H/M vs. M2) data was found. Also, the values of 

the critical exponent (β) found from both methods are close and check that the mean field 

model is adequate to study the MCE in La0.6Ca0.2Na0.2MnO3 sample. 
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1. Introduction 

The current refrigeration machines are based on the well known and well mastered 

conventional principle of compression/expansion of gas. But this universally widespread 

technology generates significant CO2 emissions and involves leaks of refrigerants such as 

CFCs (chlorofluorocarbons) and HCFCs (hydrochlorofluorocarbons) contributing to the 

destruction of the ozone layer and to the greenhouse effect in general [1]. In reality, traditional 

refrigeration production has reached its limits in the context where refrigerant gases are 

subject to environmental restrictions, and today the need to find new, less polluting 

refrigeration systems is therefore becoming priority. Research in this area is therefore 

exploring new technics. One of the most promising alternatives is the magnetic refrigeration; 

an emerging technology that uses compact systems (solid and non-volatile materials as active 

components), quiet, clean and energy efficient [2-7]. This technology, credible for producing 

"ecological" and energy efficient cooling, is based on the magnetocaloric effect (MCE) 

presented by certain magnetic materials. During the last years, numerous prototypes of 

magnetic refrigeration have been produced, but there is still progress to be made both at the 

fundamental and practical levels to make this technology industrializable and commercially 

competitive compared to the conventional refrigeration. 

As a result, current research has mainly turned to several families of ferromagnetic 

materials having giant MCE. Manganites having general formula of Ln1-xMxMnO3 (Ln and M 

are rare earth element and alkaline earth ion, respectively) represent one of the studied 

families due to their remarkable MCE [8-16]. Among manganite systems, the parent 

La0.8Ca0.2MnO3 compound is one of the extensively studied manganite in the literature. This 

sample possesses a Curie temperature (TC) relatively lower than room temperature [17-20] 

which limits the possibility of its applications in the magnetic refrigeration field. This 

motivated us, in this work, to seek improvements in the magnetocaloric properties of the 
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La0.8Ca0.2MnO3 compound. Based on some previous works, we have observed that the 

substitution of the rare earth (La) by a monovalent cation such as Na leads to the increase of 

the Curie temperature of La-based manganites (see [1] for a review). Therefore, the Curie 

temperature for La0.8Ca0.2MnO3 sample can be adjusted to the room temperature by partial 

replacement of La3+ by Na+. Consequently, we have presented in this work a manganite 

system having La0.6Ca0.2Na0.2MnO3 as composition. 

In a previous work [21], we have investigated the structural, magnetic, critical and 

magnetocaloric properties of La0.6Ca0.2Na0.2MnO3 manganite. The main experimental results 

of this study are: 

i) The sample crystallizes in the rhombohedral structure with 𝑅3𝑐 space group. 

ii) The sample undergoes a second order FM – PM magnetic phase transition around 

its Curie temperature TC = 275 K. 

iii) The magnetic entropy change (-∆SM) estimated from maxwell relation and the 

relative cooling power (RCP) are relatively higher making the sample promising 

candidate for the magnetic refrigeration technology. 

iv) The estimated critical exponents are in good agreement with the mean-field model. 

However, the optimization and development of magnetic refrigeration materials 

requires an in-depth thermodynamic description. In this case, significant progress has been 

made in the interpretation of magnetocaloric properties of materials. The overview on the 

mean-field theory provides us with the basic theoretical notions to simulate the magnetic and 

magnetocaloric properties of manganite materials. The thermodynamics of the mean-field 

model presents an efficient method for estimating the MCE from experimental data of 

magnetic isotherms. The generalized formulation of the molecular interaction according to the 

mean-field leads to a scaling method [22-24], which allows the direct estimation of several 

magnetic parameters from experimental data. The Weiss molecular mean-field theory 
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combined to the Bean-Rodbell model [25, 26], also allow to adequately simulate the magnetic 

and magnetocaloric properties and to verify the type of FM-PM phase transition of the 

magnetic system. In addition, the Landau's theory is able to study the MCE in ferromagnetic 

systems with magneto-elastic and magneto-electronic couplings [27-30]. Also, the study of 

critical phenomena shows an universal magnetocaloric behavior in materials with second-

order magnetic phase transitions (SOMPT) [31, 32]. 

Our study in this work falls within this context. The molecular mean-field theory, 

Bean-Rodbell model and Landau theory are exploited to study the MCE in 

La0.6Ca0.2Na0.2MnO3 manganite. The theoretical values of magnetic entropy change and 

spontaneous magnetization are compared to those determined experimentally. 

2. Experimental 

To prepare La0.6Ca0.2Na0.2MnO3 manganite, we have used the sol-gel method. The 

different precursors used for the production of this sample are the lanthanum, calcium, sodium 

and manganese nitrates. These nitrates were weighed in stoichiometric quantities and then 

dissolved in distilled water with thermal stirring at 90 ° C to obtain mixed solution. Following 

this step, we have added into the solution the citric acid as complexing agent for the different 

cations. Subsequently, the pH of the solution was adjusted to around 7 by adding the 

ammonia. After this step, we have added the ethylene glycol which has been used as a 

polymerization agent. After approximately 4 h, the formation of a viscous liquid (gel) is 

observed, which was subsequently dried in an oven at 200 °C (for 6 h). The resulting 

precursor was ground and the obtained powder was undergone a few cycles of grinding, 

pelleting and sintering. Finally, the structure of the sample was well formed at 1100 °C (for 

24 h). 
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The M(H, T) isotherm measurements were performed using BS1 and BS2 linear 

extraction magnetometers near the Curie temperature (TC) as a function of magnetic field and 

temperature in 0 T ≤ H ≤ 5 T and 235 K ≤ T ≤ 320 K intervals, respectively. 

3. Results and discussion 

Fig. 1a shows isotherms M(H, T) taken near TC= 275 K for La0.6Ca0.2Na0.2MnO3 

manganite. From this experimental data, the variation of −∆𝑆𝑀 is given according to the 

following Maxwell relations as follows [1]: 

(
𝜕𝑆

𝜕𝐻
)

𝑇
= (

𝜕𝑀

𝜕𝑇
)

𝐻
          (1) 

(
𝜕𝑆

𝜕𝑀
)

𝑇
= − (

𝜕𝐻

𝜕𝑇
)

𝑀
          (2) 

Using Eq. (1), the −∆𝑆𝑀 values can be estimated from the M (H, T) data as: 

−∆𝑆𝑀(𝑇,𝐻) = − ∫ (
𝜕𝑀

𝜕𝑇
)

𝐻

𝐻

0
𝑑𝐻        (3) 

Using the isotherms M(H, T), the −∆𝑆𝑀(𝑇, 𝐻) curves are estimated using Eq. (3) and 

presented in Fig. 1b. The curves show peaks defined as maximum entropy change (∆𝑆𝑀
𝑚𝑎𝑥) 

around TC. At applied magnetic field of 5 T, the ∆𝑆𝑀
𝑚𝑎𝑥 reachs value of about 3.09 Jkg−1 K−1. 

For a ferromagnetic material, the magnetization (M) is linked to the applied magnetic 

field H, the temperature T and the exchange field Hexch= λM (here λ is the mean-field 

exchange parameter). Also, it can be modeled by the Brillouin function BJ(x) as [33]: 

𝑀 = 𝑓(
𝐻+𝐻𝑒𝑥𝑐ℎ

𝑇
) = 𝑀0𝐵𝐽(𝑥)         (4) 

where M0 = saturation magnetization, and 𝐵𝐽(𝑥) can be expressed as: 

𝐵𝐽(𝑥) =
2𝐽+1

2𝐽
coth (

2𝐽+1

2𝐽
𝑥) −

1

2𝐽
 coth (

𝑥

2𝐽
) with 𝑥 =

𝐽𝑔𝜇𝐵

𝑘𝐵
(

𝐻+𝐻𝑒𝑥𝑐ℎ

𝑇
)   (5) 

Here g, J, 𝜇𝐵 and kB are the gyromagnetic factor, the spin momentum, the Bohr magneton and 

the Boltzmann constant respectively. By applying the reciprocal function 𝑓−1  of 𝑓 on the first 

member of Eq. (4), we may get: 
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𝐻

𝑇
= 𝑓−1(𝑀) −

𝐻𝑒𝑥𝑐ℎ

𝑇
= 𝑓−1(𝑀) −

𝑀

𝑇
.       (6) 

In order to determine the dependence of Hexch on M, Fig. 1a was analysed to follow the 

variation of 
𝐻

𝑇
 vs. 

1

𝑇
 at constant magnetization values (M= 2.5 emu.g-1 by step) as depicted in 

Fig. 2a. Then, to obtain the Hexch values, each curve was adjusted by a linear adjustment (red 

lines in Fig. 2a) according to Eq. (6). The Hexch parameter is defined as the slope of each 

curve. Fig. 2b indicates the Hexch vs. M curve fitted by 𝐻𝑒𝑥𝑐ℎ = 1𝑀 + 3𝑀3 equation [34, 

35]. This adjustment shows negligible value of 3 parameter (3 = −0.0003 (Temu−1g)3), 

so Hexch is approximately as 𝐻𝑒𝑥𝑐ℎ = 1𝑀 ≈ 𝑀, with 1 = 1.37 T emu−1g. Then, the 

building of scaling plot of 𝑀 vs.
𝐻+𝐻𝑒𝑥𝑐ℎ

𝑇
 is showed in Fig. 3 (black symbols). From Fig. 3, we 

noted the overlay of all the curves along one curve. Using Eq. (4), the fit of these curves leads 

to the determination of the experimental values of J, g and M0 parameters which are found 

respectively as 2.02, 1.98 and 55.2 emu.g-1. Based on the Hund rules and taking into account 

that orbital momentum is quenched for transition metals [36], only the contributions of 𝑀𝑛3+ 

and 𝑀𝑛4+ take place in 𝐿𝑎0.6
3+𝐶𝑎0.2

2+𝑁𝑎0.2
2+𝑀𝑛0.2

3+𝑀𝑛0.8
4+𝑂3

2− system, giving J = g =2. A good 

agreement between the theoretical and adjusted values is clearly observed. The adjusted 

values of , J, g and M0 are reinjected in Eq. (4) to generate the M(H) curves (red lines), 

which are correlated well with the experimental curves (black symbols) as shown in Fig. 4a. 

On the other hand, from the Bean-Rodbell model the reduced magnetization 𝜎 is linked to to 

the brillouin function as [37, 38]: 

𝜎(𝑌) = 𝐵𝐽(𝑌),          (7) 

with 𝑌 =
1

𝑇
[3𝑇0 (

𝐽

𝐽+1
) 𝜎 +

𝑔𝐽𝜇𝐵

𝑘𝐵
𝐻 +

9

5

(2𝐽+1)4−1

[2(𝐽+1)]4 𝑇0𝜂𝜎3], T0 is the Curie temperature if the 

magnetic interactions are considered and 𝜂 is a parameter that checks the order of magnetic 

phase transitions. The first order magnetic phase transition occurs if 𝜂 > 1, while the SOMPT 

arises if 𝜂 < 1. By replacing x in Eq. (4) by Y (see Eq. (7)), the generated M(T) curves (red 
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lines) match well with the experimental ones (black symbols) as indicated in Fig. 4b for 𝜂 =

0.08 and T0 = 275 K. Since 𝜂 < 1, the SOMPT is checked. Eqs. (7) and (2) lead to the 

estimation of −∆𝑆𝑀 as: 

−∆𝑆𝑀(𝑇)𝐻1⟶𝐻2
= ∫ (𝑓−1(𝑀) − (

𝜕(𝑇)

𝜕𝑇
)

𝑀
𝑀) 𝑑𝑀

𝑀|𝐻2

𝑀|𝐻1
.     (8) 

The resolution of Eq. (8) is achieved with the Mean-Field Simulation software. This allows us 

to set the evolution of −∆𝑆𝑀 vs.  𝑇 curves under various ∆𝐻 as represented in Fig. 5. 

To model the magnetic entropy change, described by the spin fluctuations, we have 

expanded the development of the Landau free energy, including the magnetic energy 𝑀𝐻, to 

the eighth order as in our previous work [39]: 

𝐹(𝑇, 𝑀) ≅ 𝐹0 +
1

2
𝐴(𝑇)𝑀2 +

1

4
𝐵(𝑇)𝑀4 +

1

6
𝐶(𝑇)𝑀6 +

1

8
𝐷(𝑇)𝑀8 + ⋯ − 𝑀𝐻,  (9) 

here the Landau coefficients 𝐴(𝑇), 𝐵(𝑇), 𝐶(𝑇) and 𝐷(𝑇) are temperature-dependent 

parameters which represent the magnetoelastic coupling and electrons interaction [40]. At TC 

and from the equilibrium condition, 
∂F

∂M
= 0, the magnetic equation state obtained from Eq. 

(9), is given as: 

𝐻

𝑀
= 𝐴(𝑇) + 𝐵(𝑇)𝑀2 + 𝐶(𝑇)𝑀4 + 𝐷(𝑇)𝑀6.      (10) 

The Landau coefficients are determined from the polynominal fit of Arrott plots (
H

M
  𝑣𝑠. M2) 

using Eq. (10) as shown in Fig. 6a. The evolution of A, B, C, and D coefficients are shown in 

Fig. 6b and c as a function of temperature. The results cleary indicate that 𝐴(𝑇) has a positive 

sign with a minimum around TC and 𝐵(𝑇𝐶) is positive confirming the SOMPT for the 

La0.6Ca0.2Na0.2MnO3 sample. In other hand, the differentiation of the Landau free energy in 

Eq. (9) allows us to estimate the −∆𝑆𝑀(𝑇) variation as: 

−∆𝑆𝑀(𝑇) = − (
𝜕𝐹(𝑀,𝑇)

𝜕𝑇
)

𝑀
=

1

2
𝐴′𝑀2 +

1

4
𝐵′𝑀4 +

1

6
𝐶′𝑀6 +

1

8
𝐷′𝑀8 ,   (11) 
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where 𝐴′ =
𝜕𝐴

𝜕𝑇
, 𝐵′ =

𝜕𝐵

𝜕𝑇
, 𝐶′ =

𝜕𝐶

𝜕𝑇
 and 𝐷′ =

𝜕𝐷

𝜕𝑇
. After deriving A, B, C and D parameters, the 

temperature dependence of (−∆𝑆𝑀) under various ∆𝐻 is estimated from Eq. (11) and plotted 

in Fig. 7. The estimated (−∆𝑆𝑀 vs.  𝑇) curves under ∆𝐻 varying from 0 to 5 T, from the the 

molecular mean-field theory (Fig. 5) and the Landau theory (Fig. 7) are well compared to 

those experimentaly estimated using the Maxwell relation (Fig. 1b). 

Below 𝑇𝐶, each ferromagnetic material has a spontaneous magnetization, 𝑀𝑠𝑝𝑜𝑛𝑡, and 

consequently the state 𝜎 =  0 is never reached, so it is necessary to add the contribution of the 

reduced spontaneous magnetization 𝜎𝑠𝑝𝑜𝑛𝑡 =
𝑀𝑠𝑝𝑜𝑛𝑡

𝑀0
. So [41, 42], 

−∆𝑆𝑀(𝜎) =
3𝐽

𝐽+1
𝑁𝑘𝐵(𝜎2 + 𝜎𝑠𝑝𝑜𝑛𝑡

2) =
3𝐽

𝑀0(𝐽+1)
𝑁𝑘𝐵(𝑀2 + 𝑀𝑠𝑝𝑜𝑛𝑡

2)   (12) 

To estimate the spontaneous magnetization 𝑀𝑠𝑝𝑜𝑛𝑡 vs. 𝑇 for La0.6Ca0.2Na0.2MnO3 sample, the 

linear parts of Arrott plots (
H

M
  𝑣𝑠. M2) at 𝑇 < 𝑇𝐶 were fitted in Fig. 8a. On the other side, a 

linear fit serial of the linear regions of (−∆𝑆𝑀) vs. 𝑀2 allows us to determine the values of 

𝑀𝑠𝑝𝑜𝑛𝑡 vs. 𝑇 as shown in Fig. 8b. An ecxellent agreement between 𝑀𝑠𝑝𝑜𝑛𝑡 vs. 𝑇 curves 

estimated from 
H

M
  𝑣𝑠.  M2 (black symbols) and −∆𝑆𝑀 vs. 𝑀2 (red symbols) has been found 

(see Fig. 8c). This result confirms the validity of the magnetic entropy change to estimate the 

values of the spontaneous magnetization. 

The critical exponent β, which describes how the ordered moment grows below TC, 

can be estimated from the following relation [43]: 

𝑀𝑠𝑝𝑜𝑛𝑡 ≈ 𝑙𝑜𝑔(𝑀0)  +  𝛽𝑙𝑜𝑔(−𝜀)         (13) 

where 𝜀 =
𝑇−𝑇𝐶

𝑇𝐶
 is the reduced temperature. The linear fit of log(Mspont) vs log(-𝜀) shows that 

β value calculated when 𝑀𝑠𝑝𝑜𝑛𝑡 values are estimated from −∆𝑆𝑀 vs. 𝑀2 curves is equal to 

0.514 (Fig. 9a) and the one deduced when 𝑀𝑠𝑝𝑜𝑛𝑡 values are estimated from 
H

M
  𝑣𝑠.  M2 curves 
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is equal to 0.510 (Fig. 9b). These two values resulted from these different approximations 

agree well with the one predicted by the mean field model (β= 0.5). 

4. Conclusion 

The molecular mean-field, Bean Rodbell and Landau theories, were used successfuly 

to modeled the 𝑀 𝑣𝑠. 𝐻, 𝑀 vs.  𝑇 and −∆𝑆𝑀 vs.  𝑇 curves for La0.6Ca0.2Na0.2MnO3 manganite. 

The results show good concordance between the theoretical and experimental values. With 

each model, the second order nature of the FM-PM phase transition has been checked. We 

have also confirmed the validity of −∆𝑆𝑀 to estimate the 𝑀𝑠𝑝𝑜𝑛𝑡(𝑇) values. We found that 

the 𝑀𝑠𝑝𝑜𝑛𝑡 vs.  𝑇 curves deduced from −∆𝑆𝑀 vs.  M2 agree well with the ones obtained from 

H

M
  vs.   M2 plots. In addition, we found that the estimated critical exponent (β) for the studied 

sample is close to that of the mean field model. 
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Figures captions 

 

Fig. 1: (a) M(H, T) isothermal magnetizations. (b) Temperature and applied magnetic fields 

dependence of the magnetic entropy change estimated from the Maxwell relation. 
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Fig. 2: (a) 
𝐻

𝑇
  vs. 

1

𝑇
 curves under constant magnetization (𝑀 = 2.5 emu. g−1 ). (b) 𝐻𝑒𝑥𝑐ℎ vs. 𝑀 

fitted by 1𝑀 + 3𝑀3 function. 
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Fig. 3: 𝑀 vs. 
𝐻+𝐻𝑒𝑥𝑐ℎ

𝑇
 scaling plots fitted using Brillouin function. 
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Fig. 4: (a) 𝑀 vs. 𝐻 curves (black symbols) with the interpolation using the mean-field method 

(red lines). (b) 𝑀 vs. 𝑇 curves (black symbols) with the interpolation using the Bean- Rodbell 

model (red lines). 
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Fig. 5: Temperature and applied magnetic fields dependence of the magnetic entropy change 

estimated from the molecular mean-field model. 
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Fig. 6: (a) Quadratic fit (red lines) of 
H

M
 𝑣𝑠. M2 (black symbols). (b) Variations of Landau 

parameters A, B vs. T. (c) Variation of Landau parameters C and D vs. T. 
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Fig. 7: Temperature and applied magnetic fields dependence of the magnetic entropy change 

estimated from Landau theory. 
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Fig. 8: (a) Linear fits (red lines) for 𝑇 < 𝑇𝐶 of Arrott plots (
H

M
 𝑣𝑠.M2). (b) Linear fits (red 

lines) of −∆𝑆𝑀 vs. 𝑀2 curves. (c) 𝑀𝑠𝑝𝑜𝑛𝑡 vs. 𝑇 deduced from −∆𝑆𝑀 vs. 𝑀2 curves (black 

symbols) and from the Arrott plots 
H

M
 𝑣𝑠. M2 (red symbols). 
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Fig. 9: Linear fit of 𝑙𝑜𝑔 𝑀𝑠𝑝𝑜𝑛𝑡  𝑣𝑠.  𝑙𝑜𝑔 (−𝜀) deduced from : (a) −∆𝑆𝑀 vs. 𝑀2 curves and 

(b) from the Arrott plots 
H

M
 𝑣𝑠. M2. 


