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Abstract—This article tackles the topic of performance anal-
ysis for Spectrum Sensing based on Compressive Sampling
(CS). More precisely, the lower bound on the variance of
any unbiased estimator, the Cramér-Rao Bound (CRB), is
investigated in the context of spectral parametric estimation.
Compressed samples are obtained from a multiband architecture
like the Modulated Wideband Converter, the Quadrature-Analog-
to-Information Converter or the Periodic Non Uniform Sampler.
An expression of the Fisher information matrix, which allows to
compute the CRB, is established for a compressive multiband
architecture assuming a disjoint spectral subband model. The
relationships between Fisher matrices in a generic framework are
exposed: first between compressive multiband and subsampling
architectures, then between subsampling and Nyquist sampling
architectures. Based on these new considerations, the issue of
interferer detection, a canonical case and also a huge thorn in the
side of wideband radiofrequency receivers is tackled. A bench-
mark between Nyquist, Subsampling and Compressive Multiband
Sampling approaches is provided for frequency and amplitude
estimation of dual-tone signals. This analysis illustrates the way in
which interferences between parameters occur in estimation with
Compressive Sampling. It is then shown how properties of the
sensing matrix for popular compressive architectures enable to
control the precision of spectral parametric estimation in specific
subbands. This control opportunity opens the door to adaptive
methods.

Index Terms—Compressive Sensing, Parametric estimation,
Cognitive Radio, Cramér-Rao Bound, Modulated Wideband
Converter, Interferer detection

I. INTRODUCTION

THE Compressive Sensing (CS) theory introduced in 2006
by Candès et al. [1] represents a paradigm shift able

to cope with the acquisition rate deadlock presented by the
Nyquist rate. By focusing instead on the concept of infor-
mation, CS is foreseen to disrupt the usual trade-off between
bandwidth, noise figure and energy consumption in Analog-
to-Digital Converters conception. The key assumption for
its applicability is sparsity, the existence of a representation
space in which few coefficients are sufficient to describe the
signal. This is true for the radiofrequency spectrum which is
mostly empty at a given time and space, meaning that the
wideband radiofrequency signal is sparse in the frequency
domain (with e.g. a Fourier matrix as the sparsity matrix).
Instead of acquiring redundancies at Nyquist rate, only the
relevant information is captured and the sparsity hypothesis
suffices to enable recovery if enough diversity is created

between the measures.
However the complete reconstruction of the signal is a non-
linear optimization process, inducing high computational costs
and hence not compatible with the context of embedded radio
solutions. Yet reconstruction is not always necessary and a
promising remedy to this drawback is to perform the extrac-
tion of the features of interest directly from the compressed
samples. Due to its low computational cost, this approach is
relevant for various applications. The authors of [2] detailed
in particular the potential for Cognitive Radios (CR), radios
that are configured dynamically based on available information
and which only require a certain understanding of the spectral
environment. Applications described in [2] include wideband
Spectrum Sensing (energy level, power spectrum, ...), wire-
less channel parameter estimation (channel state information,
direction of arrival, signal to noise ratio, sparsity order, ...)
and radio environment map construction. Proposed wideband
compressive radiofrequency (RF) receivers for CR applications
(Modulated Wideband Converter [3], Periodic Non Uniform
Sampler [4], Nyquist Folding Receiver [5], Non Uniform
Wavelet Bandpass Sampling [6]) are essentially based on
controlled spectrum folding operations.
A critical issue in compressive Spectrum Sensing, which is
pinpointed by [7] and [8], is that wideband compressive
architectures must account for possible interferences across
the whole input range and hence strong out-of-band blockers
limit the dynamic range. Easily detecting these blockers and
potentially taming their effect is therefore a topic of high
interest on which we will focus the application case.
Compared to parametric estimation based on samples acquired
at the Nyquist frequency, parametric estimation based on com-
pressed samples is a domain of growing interest. A convenient
performance evaluation tool is the Cramér-Rao lower Bound
(CRB) on the variance of any unbiased estimator. The CRB on
the variance of the estimated coordinates of a sparse parameter
vector was derived in [9], which is of major interest for signal
reconstruction in the CS framework. In [10], a parametric
estimation based on compressed samples is developed, with
a specific focus on frequency estimation. Bounds are derived
and asymptotic results are given as a function of the statistical
properties of the sensing matrix. However in order to size
an architecture according to specifications, a more thorough
framework is needed: with asymptotic constraints on each
parameter to estimate instead of global guarantees, and with
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bounds straightforwardly computable from the coefficients of
the sensing matrix instead of statistical guarantees.
In this paper, a framework for parametric estimation based
on the samples of a multiband compressive RF receiver is
presented for interferer detection applications. Assuming a
disjoint subband spectrum model, the Cramér-Rao Bound for
each parameter is derived based on the deterministic sensing
matrix. This assumption enables the estimation of performance
in this context to be more accurate than aforementioned results.
The closed form expression established in a generic framework
is then illustrated in a concrete case to highlight the role
of interferences in parametric estimation from compressed
samples.
This article is organized as follows. In Section II, notations and
framework are introduced. In Section III, a State-of-the-Art
of compressive parameter estimation and the corresponding
Cramér-Rao Bound is sketched. The next two Sections contain
our contributions. In Section IV, a new theoretical result on
the Fisher information matrix with samples from a compressed
multiband architecture is established assuming a spectral dis-
joint subband model. In Section V, the interferer detection
issue is tackled through two detailed and benchmarked appli-
cation cases: for a real dual-tone signal, amplitude estimation
then frequency estimation are carried out. In Section VI,
conclusions and perspectives are drawn.

II. FRAMEWORK

A notation table is provided in Appendix E. Matrices and
vectors will be written with uppercase and lowercase boldface
letters respectively. b.c will denote the floor operator, mod (.)
the modulo operator, .∗ the conjugate, .H the conjugate trans-
pose and [[. . . ; . . .]] an interval of integers. The tilde .̃ will refer
to the continuous Fourier Transform (of an analog or discrete
time signal). Indices of a vector are noted with [.] in both time
and frequency domains
A. Compressive Sensing

Let x ∈ Cν be a vector of length ν containing the time
series or sampled representation of a continuous complex
signal x(t). In Compressive Sensing x is assumed to be sparse
with respect to Ψ ∈ Cν×ξ in the sense that it exists s such that
x = Ψs with ||s||0 � ν, i.e. s has few non zero components.
The columns of Ψ represent dictionary elements and in general
ξ ≥ ν. Let Φ denotes the acquisition matrix acting on the
noisy input signal x+ = x+w:

y+ = Φ(x+w) = y +wCS (1)

y = ΦΨs (2)

where w and wCS = Φw are respectively the noise in input
and after compression and y and y+ the noiseless and noisy
output signal. It is assumed that Φ ∈ Cµ×ν and µ < ν. In
this paper focused on Cognitive Radio applications, x will
be assumed to be sparse in the frequency domain. Thus x
is the signal at the receiver input sampled at Nyquist rate
fNyq = 1

TNyq
during the acquisition time Tacq = ν.TNyq ,

ξ = ν, Ψ is the Discrete Fourier Transform (DFT) matrix F
with generic term [F ]k,i = e−j2πki and s = x̃ = DFT (x).
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Fig. 1: Time and frequency correspondence.

We will consider that the Nyquist band defined by the receiver
[− fNyq2 ;

fNyq
2 ] is split into N subbands so that fNyq = N.fp,

where fp = 1
Tp

is the subband spacing. The acquisition length
is then set to be ν = NL where L is the number of bins per
subband. The frequency resolution is thus given by δf =

fNyq
NL .

The output dimension is µ = ML where M is typically the
number of channels. In this paper the vector ỹ concatenates
the spectrum components of the M acquisition channels, each
channel having L components. It will be useful to introduce
the global frequency index ñ = (n − 1)L + l, to index the
bin l in the frequency subband n, where n ∈ [[1;N ]] and
l ∈ [[1;L]]. An illustration of time frequency correspondence
is given in Fig. 1. In this study, the number K of active
frequency subbands will be assumed to satisfy K � N
and will abusively be referred to as the sparsity degree. The
frequency support of x is given by:

Λ = {n ∈ [[1;N ]]| ∃(n, l) satisfying |s[ñ]| > 0} (3)

Λ(f) denotes the index n corresponding to the subband
containing frequency f . Although there is no straightforward
way to evaluate the quality of a sensing matrix, norm and
orthogonality preservation are two helpful metrics.
• A matrix Φ is said to satisfy the Restricted Isometry

Property (RIP) [1] with parameters (K, δK) if:

(1− δK) ‖Ψs‖22 ≤ ‖ΦΨs‖22 ≤ (1 + δK) ‖Ψs‖22 (4)

for all K-sparse vectors x = Ψs ∈ Cν . The RIP
measures the norm deformation by the projection.

• The coherence [1] of the matrix B = ΦΨ is the
largest absolute Hermitian inner product between any two
different normalized columns:

coherence(B) = max
i 6=j

(
| < B.,i,B.,j > |
‖B.,i‖ ‖B.,j‖

)
(5)

where B.,i is the ith column of B. Coherence measures
a deviation from the orthogonality condition between
the columns of the matrix. This quasi orthogonality
ensures that the input information is spread among all
the measurements.

• The Gramian of a matrix B is given by BHB. Note
that for a normalized sensing matrix (with unitary column
energy), the maximum magnitude of the Gramian outside
the diagonal corresponds to the coherence. The K-RIP
property is given by extremal eigenvalues over all support
Λ of cardinal K.
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If the input noise is assumed to be a white (complex cir-
cular) Gaussian noise, w ∼ N (0, σ2INL), the noise after
compression is then Φw ∼ N (0, σ2ΦΦH). If Ψ is orthog-
onal and Φ satisfies to an acceptable degree the properties
of coherence and RIP, it is shown in [11] that assuming
Φw ∼ N

(
0, NM σ2IML

)
is an accurate approximation. Hence

in the rest of the paper the model of wCS in eq. (1) is assumed
to be white Gaussian:

wCS ∼ N
(

0,
N

M
σ2IML

)
(6)

B. Compressive multiband architectures

Multiband architectures will refer to devices that process
identically all frequency bins within the same subband. Then
instead of considering the architecture-agnostic B, the acqui-
sition operations between the input and output spectra

ỹ = B̌x̃ (7)

can be described, as illustrated in Fig. 2a, by a M.L×N.L
block matrix B̌ = B⊗ IL where ⊗ stands for the Kronecker
product, B ∈ CM×N and IL is the identity matrix of
size L×L. This formalism will be helpful for generalized
demonstrations in the next sections.In order to get a multiband
sensing matrix that does not depend on the acquisition length
NL, it is usually preferred as in [3] to consider the sensing ma-
trixB ∈ CMtimesN , and x̃] and ỹ] so that input x̃ is reordered
in a matrix x̃] of N rows of L bins, and output ỹ is reordered
in a matrix ỹ] of M rows of L bins. B is illustrated in Fig. 2b.
As the considered frequency band is zero-centered, it finally
yields, for odd N and (m,n, l) ∈ [[1;M ]]×[[1;N ]]×[[1;L]]:

x][n, l] = x̃

((
n− bN

2
c − 3

2

)
fp + (l − 1)δf

)
(8)

y][m, l] = ỹm

(
(l − 1)δf − fp

2

)
(9)

Then eq. (7) transforms into the simpler formalism:

ỹ] = Bx̃] (10)

Multiband architectures are particularly well suited for multi-
band signals but also for multitones. A typical example of
those architectures is the Modulated Wideband Converter
(MWC) introduced by Mishali and Eldar [3], pictured in
Fig. 3. In a MWC the input signal is mixed in each of the
M parallel branches with Tp-periodic functions. For each
branch m ∈ [[1;M ]], the mixing function pm(t) consists,
within each period, of a code αm of N elements shaped
by e.g. rectangular chip pulses. As seen in Fig. 3, in the
frequency domain this amounts to a convolution with a fp-
spaced Dirac comb distribution so that each band is weighted
by the corresponding Fourier coefficient of the code and the
whole spectrum is aliased at baseband. The next step consists
in low-pass filtering with cut-off frequency fc = 1/2Ts
and uniform sampling at fs (by default fs = 1/Ts = fp).
Appendix A demonstrates anew that for a Modulated Wide-
band Converter bm,n corresponds to the Fourier coefficients
of the time domain mixing codes pm(t) in the mth branch,

(a) Multiband architecture, formalism B̌.

(b) Multiband architecture, formalism B.

Fig. 2: Sensing matrix of a multiband architecture for two
different formalisms.
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Fig. 3: Block diagram of a Modulated Wideband Converter
Architecture.

indexed by n−bN2 c−1. Bandpass Sampling (BP) [12] which
is a controlled undersampling causing folding of multiband
components into the lowpass region also known as harmonic
sampling, Multirate Sampling (MRS) [13] and Periodic Non
Uniform Sampling (PNUS) [4] can be seen as particular cases
of multiband architectures and fit under the same multiband
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formalism, with different matrices B:

For Bandpass: b1,n = 1 (M=1) (11)
For PNUS: bm,n = e−2jπnp[m]δf (12)

For MRS: bm,n = 1, variable L in each branch (13)

where p[m] ∈ [[1;N ]] is a pattern of M among N samples.
The compression ratio is given by M/N , so that at fixed
number of samples the equivalent observable bandwidth is
N/M times wider.
The Quadrature-Analog-to-Information-Converter (QAIC)
proposed in [14] is a variation of the MWC that performs
frequency down-conversion of the real-valued signal into
a baseband complex signal before analog mixing with
the pseudorandom codes. The QAIC showed appealing
performances for interferer detection [15]. To generalize the
results to downconverted signals, both complex and real-
valued cases for signal x will be considered. Our working
scenario is focused on interferer detection near a useful
signal and hence amplitude and frequency estimation of a
dual-tone signal. To this end we will first introduce in the
next Subsection the Cramér-Rao lower Bound on unbiased
estimator variance.

C. Cramér-Rao Bound

Let us note with .̂ an estimator. The amount of information
on parameters which is carried by a signal observation can be
measured by the Fisher information matrix, noted J . More
precisely, let us note with Γ ∈ RQ×Q the covariance matrix
of an unbiased estimator of a Q×1 parameter vector θ. Then
under mild conditions [16], Γ is lower bounded, in the sense of
positive definiteness, by the Cramér-Rao lower Bound (CRB)
[16]:

Γ ≥ CRB(θ) = J(θ)−1 (14)
Γ− J(θ)−1 ≥ 0 (15)

Therefore the unbiased estimation of θq , the qth parameter of
the vector θ (q ∈ [[1;Q]]), is lower bounded by [16]:

var(θ̂q) ≥ CRB(θ̂q) = (J(θ)−1)[q, q] ≥ (J(θ)[q, q])−1

(16)
where the two right hand terms are equal if and only if J is
diagonal. If J [q, r] 6= 0 for q 6= r, the additional parameter
interferes, degrading performances.
Note that for a complex-valued vector x+[ñ; θ] = x[ñ; θ] +
w[ñ] where w ∼ N (0, σ2INL) is a circular white complex
Gaussian noise [[16], Chapter 15], for (q, r) ∈ [[1;Q]]2:

J [q, r] =
2

σ2
<

[
NL∑
ñ=1

∂x∗[ñ;θ]

∂θq

∂x[ñ;θ]

∂θr

]
(17)

where <[.] denotes the real part. In the next Section the current
State-of-the-art of Cramér-Rao Bounds applied to parametric
estimation based on compressed samples is presented, and the
importance of the choice of the sensing matrix is highlighted.

III. PARAMETRIC ESTIMATION WITH COMPRESSED
SAMPLES: STATE OF THE ART

As far as spectral information is concerned, the estimation
of the parameters governing the underlying signal model is
mostly based on Nyquist rate sampling since folding must be
avoided to preserve the information. Reconstruction relies on
costly and difficult non convex optimization methods. It is
proposed here to circumvent this problem and extract param-
eters directly from the compressed samples. This approach
differs strongly from traditional parameter estimation in the
sense that the structure of the information has been scrambled
along in the acquisition process. When reconstruction is per-
formed after the compressive sensing acquisition, an additional
assumption on the sparsity of the input enables to preserve the
information. However extracting spectral information directly
from the compressed samples is another challenge.

A. State-of-the-art

Signal reconstruction can be viewed as a specific case
of parameter estimation with θ = x. The authors of [9]
showed that, for known signal support Λ or unknown but with
cardinality exactly equal to the maximum sparsity level, the
Cramér-Rao Bound of x[ñ] for ñ ∈ [[1;NL]] is given by:

CRB(x) = E
(
‖x− x̂‖22

)
= σ2Tr

(
ΦH

ΛΦΛ

)
(18)

where ΦΛ is the restriction of the sensing matrix to the support
Λ and Tr(.) is the trace operator.
For parametric estimation, an interesting framing of the Fisher
matrix has been established in [10], [17] by approaching the
limit on the distance preservation property (2K-RIP), thus
extending norm preservation to the partial derivative vector.
And since the Fisher matrix is the Gramian of the partial
derivative vector:

M

N
(1− δ2K)2JNyq ≤ JCS ≤

M

N
(1 + δ2K)2JNyq (19)

where JNyq and JCS are the Fisher information matrices
given the Nyquist or the compressed samples respectively. MN
conforms the noise folding aspect raised in (6). (1 ± δ2K)2

corresponds to the unavoidable non-isometry of the projection
(RIP). An example case is given for frequency estimation of
a dual-tone signal, where the bound becomes O( σ2

N2M ) for
compressive sampling instead of O( σ

2

N3 ). Some more specific
analyses were derived for parametric model estimation with
random distributions, for example the mean of a complex
distribution for direction-of-arrival estimation in [18].

B. Positioning of our approach

Previous works ([10], [18]) consider a random matrix
with guarantees relating to the matrix as a whole from a
statistical point of view. Yet in practice, sensing matrices,
whether randomly generated from a distribution or structured,
are deterministic. The purpose of this article is to explore
more precisely how each one of the parameter estimates is
specifically affected by the deterministic coefficients of the
compressive sensing matrix, taking into account the knowledge
of the acquisition process in a concrete application scenario.
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Fig. 4: Disjoint subband model.

In the next Section, a new theorem on Cramér-Rao Bounds
with compressive multiband architectures is established. Re-
lationships between Fisher information matrices for Compres-
sive Multiband Sensing, Subsampling and Nyquist Sampling
will be exposed.

IV. CRAMÉR-RAO BOUND FOR MULTIBAND
ARCHITECTURES

Consider a Q×1 parameter vector θ to be estimated and a
K-sparse signal x, containing exactly K active subbands. If
there is a unique unknown parameter in each active subband,
then K = Q. In general K 6= Q.

Assumption 1 (Disjoint subband model) Assume the exis-
tence of an underlying ”disjoint” signal model, meaning that
each parameter θq (q ∈ [[1;Q]]) does not influence more
than one subband signal and no subband signal spread over
multiple subbands. This translates into the existence of a
function g that maps each parameter θq with its unique
corresponding support element g(θq) = λq ∈ Λ such that:
∀q ∈ [[1;Q]] if λq 6= Λ(f) then

∂x̃(f)

∂θq
= 0 (20)

An example is given in Fig. 4. Tones satisfy this model and so
do modulated signals whose channel bandwidths belong to a
unique frequency subband of the architecture. This would not
be the case for more wideband signals. For sake of concise-
ness, x̃λq denotes the component of the signal influenced by
parameter q and its central frequencies will be noted fk for
k ∈ [[1;K]].

Theorem 1 (Multiband architectures) Assuming the above
model, and a real-valued signal x, the Fisher information
matrix is given by:

JMB = <
[
BH

ΛBΛ

]
◦ JBP (21)

where JMB and JBP are the Fisher information matrices for
Compressive Sensing acquisition with a multiband architec-
ture, and Bandpass Sampling respectively. BΛ is the column
restriction of the matrix B to the support Λ with possible
multiplicity of a subband index for different parameters and
is normalized w.r.t. column energy, <[.] the real part and ◦ is
the Hadamard (elementwise) product.
If the signal x is complex-valued eq. (21) transforms into:

JMB = <
[
BH

ΛBΛ

]
◦ JBP + =

[
BH

ΛBΛ

]
◦ J̌BP (22)

where =[.] denotes the imaginary part. J̌BP [q, r] corresponds
to the [q, r]th coefficient of the Fisher matrix for Bandpass
Sampling in the case where the initial dephasing between

components xλq and xλr is increased by π
2 compared to the

actual input signal.

Refer to Appendix B for a proof.

Assumption 2 (Bandlimited signal) Assume that Asm. A1
is satisfied and also that the spectral representation of the
samples of each subsignal covers at most L bins:

∀q ∈ [[1;Q]] x̃q[ñ] = 0 for ñ /∈ [[ñ0(q)− L

2
; ñ0(q) +

L

2
]] (23)

where ñ0(q) corresponds to the central bin of x̃q . Eq. (23)
expresses the fact that there is no leakage between subbands.

Due to finite duration of the acquisition and therefore spectral
leakage, this hypothesis is an approximation. Note that Asm.
A2 deals, through the decomposition of the signal on the
frequency grid, with bandlimited discretized representations
whereas Asm. A1, in contrast, was dealing with bandlimited
analog representations and hence did not need to neglect
spectral leakage on remote frequencies.

Theorem 2 (Multiband architectures) Under the above as-
sumptions A1 and A2 the (q, r)th element of JBP for (q, r) ∈
[[1;Q]]2 is:

JBP [q, r] (∆fq,r) =
1
N (JNyq[q, r](∆fq,r) ·HLP (∆fq,r)) ∗∑∞

k=−∞ δ(∆fq,r − kfp) (24)

where JNyq and JBP are the Fisher information matrices
for Nyquist sampling and Bandpass Sampling, ∆fq,r is the
distance in the frequency domain between x̃λq and x̃λr ,
HLP (f) is the transfer function of an ideal low-pass filter
with cut-off frequency fc = fp/2 and unit gain, ∗ the
convolution operator, and δ(.) is the Dirac distribution. Notice
that term

∑∞
k=−∞ δ(∆fq,r−kfp) corresponds to a fp-spaced

Dirac comb distribution, used as periodisation operator. The
Cramér-Rao bound is then obtained through eq. (17).

Refer to Appendix C for a proof.

A. Discussions

The relationships established between Fisher matrices for
compressive multiband, subsampling and Nyquist sampling
allow to distinguish the influence on the estimation bound of
the effect of subsampling from the effect of diversity creation
between channels. Compared to inequality (19), an additional
hypothesis on a multiband architecture and a disjoint subband
model is made in the context of Spectrum Sensing to obtain
(21) and (22). This assumption enables to describe the effect
of the acquisition matrix on each frequency subband and thus
enables to determine each term thanks to the deterministic
nature of the sensing matrix in practice.
It is not surprising to see the Gramian appearing in Theorem
1. Due to dimensionality reduction, the Gramian BH

ΛBΛ

of a Compressive Sensing matrix BΛ is of maximum rank
M ≤ N . Hence neither norms nor orthogonality can be totally
preserved by the projection through the sensing matrix Φ. The
Gramian expresses this deformation of the scalar product by
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the acquisition process. The interpretation for complex-valued
x is less intuitive due to the effect of a complex Gramian on a
complex signal, however the behaviour regarding parameters
and the order of magnitude is similar as in the case where
x is real-valued. Signals spread over multiple bands that do
not satisfy Asm. A1 would induce non-trivial crossterms in
the computations but similar global behaviour (dependency
on the Gramian) could be expected. One fundamental but thin
subtlety allowing to establish the first theorem lies in the fact
that the sensing matrix of compressive multiband architectures
can be expressed in the ’compact formalism’ of eq. (10).
Hence all frequencies of an analog subband are projected
identically, even if they do not lie on the Nyquist grid with
frequency resolution δf . This means that leakage provoked by
the discretization of the analog disjoint model will depend on
the coefficient of the sensing matrix B given by the original
support index (cf proof Appendix C).
(24) means that JBP [q, r](∆fq,r) is fp-periodic and matches
with JNyq[q, r] at baseband up to a noise folding factor N . The
link between JBP and JNyq is drawn under a light approxi-
mation (Asm. 2) that is more accurate as the acquisition time
grows, because potential spectral leakage from off-frequency
grid components is reduced.

V. APPLICATIONS TO COGNITIVE RADIO CANONICAL
CASES

To illustrate the interest of this theorem for Cognitive
Radio applications, we will focus on the canonical application
case of amplitude and frequency estimation of two real tones.
This admittedly simplified and well-known scenario is selected
to highlight the influence of B on the expected estimation
performance and mimics the detection of an interferer with
background noise, a common issue for wideband compressive
receivers, as mentionned in ([7], [19]). The noisy time domain
input signal sampled at rate fNyq is given for ñ ∈ [[1;NL]]
by:

x[ñ]+ = A1 cos(2πf1ñ+ φ1) +A2 cos(2πf2ñ+ φ2) + w[ñ]
(25)

where (f1,f2) ∈ [−0.5; 0.5]2 are normalized frequencies (by
fNyq) and w ∼ N (0, σ2INL). x+ can be decomposed as:

x+ = Ea+w (26)

with

E =

 cos(2πf1 + φ1) cos(2πf2 + φ2)
...

...
cos(2πf1NL+ φ1) cos(2πf2NL+ φ2)

 , (27)

where E ∈ RNL×2 and aT = (A1, A2).

Let us note ∆f = f2− f1, ∆φ = φ2−φ1, Σf = f2 + f1 and
Σφ = φ2 + φ1. For illustrations, the MWC is chosen but the
proposed Theorem 1 is valid for all multiband architectures
(Bandpass, MWC, QAIC, PNUS, MRS); results can be easily
extended by replacing the corresponding B̌, as exposed in
section II-B. The exhaustive Fisher matrix for Nyquist sam-
pling of K real tones which is used as benchmark is given
in Appendix D. For sake of clarity, disjoint estimation with

2 real tones is presented. Joint estimation or multitones is
methodologically similar.

A. Amplitude estimation

The normalized frequencies of the useful signal f1 and
of a possible interferer f2 are assumed to be known, and
the parameters to estimate are θ = (A1, A2). First, classical
results for Fisher Information matrices are recalled for Nyquist
sampling based amplitude estimation. A focus is put on the
case of off-grid frequency, of practical interest and useful
for the derivations in the next sections. Second, the role of
Bandpass Sampling is studied. Finally these results are used
to express the Cramér-Rao lower Bound for multiband based
parametric estimation.

1) Nyquist samples: Using (17) (25) and according to
Appendix D (79), the Fisher matrix for Nyquist Sampling is:

JNyq ' NL
2σ2

(
1 J.,Nyq[1, 2]

J.,Nyq[1, 2] 1

)
(28)

where J.,Nyq[1, 2] is given by:

J.,Nyq[1, 2] = J1/2,Nyq[1, 2](∆f,∆φ) +

J1/2,Nyq[1, 2](Σf,Σφ) (29)

with:

J1/2,Nyq[1, 2](f, φ) ' (30)
sinc(πNLf) cos(φ+ πf(NL+ 1))

where sinc(x) stands for sin(x)
x . The lower the cross-term co-

efficient of the Fisher matrix J.[1, 2], the lower the determinant
∆ = NL

2σ2 [(1−J.[1, 2]2)] of JNyq and the better the estimation.
When J [1, 2] = 0 the matrix is diagonal meaning that the
ignorance of one amplitude does not degrade the estimation of
the other. When f1 = f2 and φ1 = φ2 mod π, or f1 = −f2

and φ1 = −φ2 mod π, then J [1, 2] = J [1, 1] and the matrix
is singular, meaning that amplitude estimation by an unbiased
estimator is not possible because foldings are indiscernible.
Consider first, as often in the literature, the frequency on-grid
case meaning that ∃(k, k′) ∈ N∗2 such that ∆f.fNyq = kδf
and Σf.fNyq = k′δf . Then J.[1, 2] = 0 and JNyq = NL

2σ2 · I2.
There is no spectral leakage if Tacq is a multiple of 1

f2−f1
and

1
f2+f1

. Furthermore the accuracy of the CRB depends only on
the number of samples NL.
Consider now the more realistic off-grid case meaning that
∃ 0 < η, η′ < 1 such that:

∆f.fNyq =

⌊
(f2 − f1).fNyq

δf

⌋
δf + ηδf

Σf.fNyq =

⌊
(f1 + f2).fNyq

δf

⌋
δf + η′δf

where ηδf and η′δf stands for the distance of (f2− f1)fNyq
and (f1 + f2)fNyq respectively to the grid.
Then eq. (31) transforms into:

J.[1, 2] =
1

NL
[
sin(π(k + η))

sin(π∆f)
cos(∆φ+ π∆f(NL+ 1)) (31)

+
sin(π(k + η′))

sin(πΣf)
cos(Σφ+ πΣf(NL+ 1))]
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Hence as NL increases, J.,Nyq[1, 2] approaches 0.
2) Bandpass Sampling: For Bandpass Sampling at nor-

malized subsampling frequency fp = 1
N , let us define the

frequencies folded at baseband with:

f̄1 = f1 − fp
⌊
f1

fp

⌋
, f̄2 = f2 − fp

⌊
f2

fp

⌋
and ∆f̄ = f̄1 − f̄2.

From (25) and (10), the output spectrum is:

∂y[l]BP
∂Ai

= cos(2πf̄iNl + φi), for i = 1, 2. (32)

Hence from (17):

JBP =
L

2σ2

(
1 J.,BP [1, 2]

J.,BP [1, 2] 1

)
(33)

where:

J.,BP [1, 2] =
1

L

L∑
l=1

[cos(2π∆f̄Nl + ∆φ) + cos(2πΣf̄Nl + Σφ)] (34)

Similarly to the establishment of eq. (79) in Appendix D:

J.,BP [1, 2] = J1/2,BP [1, 2](N∆f̄ ,∆φ)+ (35)
J1/2,BP [1, 2](NΣf̄ ,Σφ)

where:

J1/2,BP [1, 2](f, φ) ' sinc(πLf) cos(φ+ πf(L+ 1)) (36)

3) Multiband CS: From Theorem 1, (22):

JMB = <
[
BH

ΛBΛ

]
◦ JBP (37)

The results above on JMB and JBP will be discussed below.
4) Interpretation: Consider first the on-grid frequency

case (∃(k, k′) ∈ N∗2 s.t. ∆f̄ .fNyq = kδf̄ and Σf̄ .fNyq =
k′δf̄ ). As we obtained for Nyquist samples, JBP [1, 2] =
JBP [2, 1] = JMB [2, 1] = JMB [1, 2] = 0. The values taken
by J [1, 1] and J [2, 2] are proportional to the number of
samples, which is L for bandpass sampling, N times less
than Nyquist sampling, for the same acquisition time. Hence
when the two tones do not interfere with each others, Bandpass
and Multiband compressive amplitude estimation compared to
estimation from the Nyquist samples are exactly characterized
by the respective compression ratios 1/N and M/N .
Consider now the off-grid case. The interference between two
tones with Compressive Sensing is then influenced by the
product of two terms. The first term is the real part of an
element of the Gramian sensing matrix BHΛ BΛ[1, 1] and would
be one if frequencies belong to the same frequency subband.
The second term, JBP [1, 2], depends on the distance to the
grid, as shown in eq. (35). For φ1 = φ2, one may notice that
f1 = f2 for Nyquist and Multiband Compressive Sampling
and that f1 = f2 mod (fp) for Bandpass Sampling leads
as expected to a singular J . The mismatches between the two
tones model and the single tone observation makes the estima-
tion problem singular. Results obtained in this Subsection are
slightly more accurate than the Theorem 2 because Asm. A2
on bandlimited spectral representations of the sampled tones
needs not be assumed.

5) Maximum Likelihood estimator: The Maximum-
Likelihood estimator (MLE) is unbiased and efficient, meaning
that its covariance tends to the Cramér-Rao Bound as the
number of samples tends to infinity. Under noise gaussianity
assumption the MLE in the non-compressed case is given from
(26) by:

âNyq = (EHE)−1EHx+ (38)

with E as in (27), and its covariance matrix by:

Cov(âNyq) = σ2(EHE)
−1 ' 2σ2

NL
(39)

where the last approximation, holds for active frequencies
different from 0 and 1/2, as detailed in [20]. For multiband
architecture, we have y = Ha where

H =



 cos(2πf̄1N+φ1) cos(2πf̄2N+φ2)

...
...

cos(2πf̄1NL+φ1) cos(2πf̄2NL+φ2)

( b1,1 0
0 b1,2

)
−−−−−−−−−−−−−−−

...
−−−−−−−−−−−−−−− cos(2πf̄1N+φ1) cos(2πf̄2N+φ2)

...
...

cos(2πf̄1NL+φ1) cos(2πf̄2NL+φ2)

( bM,1 0
0 bM,2

)


(40)

is a matrix of size ML×2 and bi,j is the (i, j)th term of the
multiband sensing matrix. If we assume that the compressed
noise is white Gaussian with variance σ2, the Maximum-
Likelihood estimator coincides with the best linear estimator
and is given by:

âMB = (HHH)−1HHy+ (41)

and the covariance matrix of the estimation is given by:

Cov(âMB) = σ2(HHH)
−1

(42)

For multiband architectures, from eq. (41), cross-terms of J
are negligible toward diagonal terms as the number of samples
tends to infinity as detailed in Appendix D, approaching the
on-grid case:

Cov(âMB) ≈ 2σ2

ML

(
1

(BH
Λ BΛ)1,1

0

0 1
(BH

Λ BΛ)2,2

)
≈ N

M
Cov(âNyq) (43)

The empirical variance of the MLE obtained for both the
Nyquist and Modulated Wideband Converter architecture is
shown in Fig. 5. Results are also compared to the Cramér-
Rao Bound from eq. (24). The empirical MLE variance
indeed converges quickly to the Cramér-Rao Bound. Note also
the expected 10 log10(M/N) = 4, 04 dB loss between the
acquisition methods, which matches with the Signal-to-Noise
degradation by the Compressive Sensing projection of 3 dB
gain per doubling of the subsampling ratio M

N .
Now that mechanisms of estimation with compressive multi-
band architecture have been highlighted for amplitude estima-
tion, another example, frequency estimation, will be tackled
in the next Subsection. This time with a focus on the role of
the Gramian of the sensing matrix.
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Fig. 5: Variance comparison for amplitude estimation of 2
real tones. Empirical (stars, from (38) and (41)) and
Expected (triangle, from (39) and (42)) variance of the
Maximum-Likelihood Estimator, analytical Cramér-Rao
Bound from Theorem 2 (line), Blue=Nyquist sampling,
Red=MWC with Random Bernoulli codes, M = 50,
N = 127, 1000 trials, f1 = 1 GHz, f2 = 3 GHz,
fNyq = 10 GHz, A1 = A2 = 1.

B. Frequency estimation

The second scenario mimics the detection of an interferer
at any frequency with known amplitude (A1, A2) and phase
(φ1, φ2) with background noise. The parameters to be esti-
mated are the frequencies of the two tones θ = (f1, f2).
Although such a scenario is barely realistic, its purpose is
to validate and illustrate the expressions found in the previous
theorems and thus highlight the key role played by B in the
multiband framework.

1) Nyquist samples: For θ = (f1, f2), according to eq.
(17) and (25) we have:

JNyq '
2π2

σ2

(
A2

1S2(NL) J.[1, 2]
J.[1, 2] A2

2S2(NL)

)
where S2(NL) =

∑NL
ñ=1 ñ

2 = NL(NL+1)(NL+2)
6 and from

(81) with same notations as in (31):

J.,Nyq[1, 2] = A1A2<
[
ej∆φ1,2χ2(∆f,NL)− ejΣφ1,2χ2(Σf,NL)

]
where χ2(f,NL) =

∑NL
ñ=1 ñ

2ej2πfñ. (44)

2) Bandpass: We have:

∂y[l]BP
∂fi

= −2πNAil sin(2πf̄iNl + φi), for i = 1, 2. (45)

Therefore from (17) and similarly to the establishment of (81):

JBP '
2π2

σ2

(
N2A2

1S2(L) J.,BP [1, 2]
J.,BP [1, 2] N2A2

2S2(L)

)
where:

J.,BP [1, 2] = A1A2<
[∑L

l=1 l
2e2jπ∆f̄Nl+∆φ

]
= A1A2<

[
ej∆φ̄1,2χ2(∆f̄N, L)− ejΣφ̄1,2χ2(Σf̄N, L)

]
(46)

And from Theorem 1 for multiband compressive architec-
tures with sensing matrix B follows:

JMB = <
[
BH

Λ BΛ

]
◦ JBP (47)

In accordance with [17], the variance in O( σ2

(NL)3 ) turns

into O( σ2

(NL)2ML ) due to the dimension reduction. As the
behaviour of eq. (46) is not straightforward, these expressions
will be studied in simulation.

3) Simulation: The mixing codes of the MWC in the time
domain are randomly generated from a Bernoulli distribu-
tion. For these three acquisition methods (Nyquist sampling,
Bandpass Sampling and Multiband) the normalized coefficient
Jnorm[1, 2] = J[1,2]

J[1,1] is pictured in Fig. 6. Note that if it
is equal to 0, there is no degradation of the estimation of
one amplitude due to the lack of knowledge about the other
amplitude. If it is equal to 1, it is impossible to raise the
ambiguity between the two signals and no estimation can
be made. The x-axis corresponds to the relative normalized
frequency f2

fNyq
and the term f1

fNyq
= 0.22581 is arbitrarily

fixed. The value of J1,2(norm)(∆f) for Bandpass Sampling is

Fig. 6: Normalized off-diagonal coefficient of the Fisher
matrix for frequency estimation Jnorm[1, 2]( f2

fNyq
)

(top=overall, bottom=zoom), [M = 10, N = 31].

the fp-periodic repetition of the value of J1,2(norm)(∆f) in
[−fp/2; +fp/2] for a Nyquist approach. For multiband Com-
pressive Sensing, J1,2(norm)(∆f) is additionally weighted in
each frequency subband. This weight is the crosscorrelation
between the two support columns of the sensing matrix. It
would be 1 for Bandpass Sampling. Hence for two frequencies
f1 and f2 belonging to the same subband, they fold similarly
and the Cramér-Rao Bound for Multiband CS is equal to
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Fig. 7: Gramian of the Modulated Wideband Converter
sensing matrix for different codes: Random Bernoulli (top)
and Zadoff-Chu-based circulant (bottom) [N=31].

the Bandpass bound. However for two frequencies falling in
different subbands an attenuation coefficient controlled by the
sensing matrix appears. Note that the figure is not symmetric
due to the influence of the second term depending on Σf̄ ,
<[−ejΣφ̄χ2(Σf̄)] in eq. (46).

4) Influencing the sensing matrix Gramian: For sake of
generality, B is frequently supposed to be random, however
the sensing matrix depends on both the structure of the
architecture and on a pseudo-random element (mixing codes,
sample selection patterns, etc...). This opens the opportunity
to design codes to improve the overall performance of the
system. For example our findings may be used to take into
account a non uniform input spectrum distribution. Element
(i, j) of the Gramian is the crosscorrelation between columns
i and j of the matrix. A simple example on how to influence
the Gramian is given hereafter to yield a brief insight on the
possibilities.
It is shown in [3] that the MWC sensing matrix may be
expressed as B = AF̃D where A is the time expression
of the code, F̃ is a reordered subset of the DFT matrix, D is
a diagonal matrix accounting for pulse shaping. Fig. 7 presents
the Gramian for a Modulated Wideband Converter, and two
different codes studied in [21] for reconstruction. “Random”
corresponds to a Bernoulli distribution, “ZC” corresponds to
an example of structured codes with good crosscorrelation
properties, Zadoff-Chu based circulant codes introduced in
[21].

The weights of the coefficients for multiband architectures
(red dots on the red curve) in Fig. 6 are given by the values

on the 7th row (Λ(f1) = 7) of the Gramian in Fig. 7. For the
two different structures of codes, the Gramian presents two
specific patterns. For “Random” codes, values off the diagonal
appear uniformly distributed whereas the circulant character
of code (b) implies equal-valued diagonal lines. Hence by
changing the shift of the circulant matrix, it is possible to
choose the circular permutation with the most favorable
coefficient between λ1 and λ2. More sophisticated tunnings,
by optimizing the choice of M rows among N for example,
are also possible. Note that a more thorough analysis available
in [21] shows that the coherence of code (b) is also lower.
Thus it is possible to adapt the structure of the mixing code
in the MWC, and the choice of the pseudo-random element
in the general case to promote non-uniformly distributed
performance according to the frequency subband index. This
result shows that it is possible to control the Cramér-Rao
Bound and hence the frequency estimation precision thanks
to the crosscorrelation properties of the acquisition matrix.
With the random codes MWC given in example,
<
[
BH

ΛBΛ[4, 7]
]

= 0.9, so frequency estimation of a
single tone signal is as accurate if there is an interferer in the
4th subband with −10 dB Signal-to-Interference ratio (SIR),
as if the interferer is in the 7th subband (same as the signal,
Λ(f1) = 7), same bin, with 0 dB SIR. Given the orders
of magnitude obtained, it is possible to handle even strong
blockers, if the sensing matrix is adequately chosen.

VI. CONCLUSION

A. Summary
In this article a study of the theoretical performances of

spectral parameter estimation was led based on the Cramér-
Rao lower Bound. First a framework of compressive radiofre-
quency architectures was defined. For multiband compres-
sive architectures and disjoint frequency subband models a
new theorem which provides a benchmark toward Nyquist
sampling has been established. Relationships between Fisher
matrices are exposed: first between Compressive Sampling
and subsampling, then between subsampling and Nyquist sam-
pling. The role of the Gramian of the sensing matrix restricted
to the support is highlighted. Illustrations were given for
concrete scenarios of Cognitive Radio, namely the estimation
of amplitude and frequency of an out-of-band interferer. For
amplitude estimation, the on-grid case yields a diagonal Fisher
matrix, and bounds are exactly described by the compression
ratio. Otherwise performance depends on the crossterms of
J , and therefore on correlations between the columns of the
sensing matrix that belong to the support. Since the precision
of frequency and amplitude estimation can be controlled for
each pair of subbands through the crosscorrelation properties
of the sensing matrix, a simple way to optimize performances
is pointed out. A sketch is given on how to adapt the sensing
matrix to priors on the spectrum distribution by choosing
adequate codes. This represents a potential workaround for
the crucial interferer folding issue.

B. Discussions
The presented result offers a bound on each term of

the Fisher matrix from samples acquired with a multiband
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compressive radiofrequency receiver. As it is adapted to each
term, it is more accurate than [10]. This is achieved thanks
to the deterministic nature of the sensing matrix in practice
and assuming a specific signal model. It is interesting to note
that since reconstruction performance depends on coherence
and norm preservation, metrics which are closely linked to
the Gramian of B, a good matrix for feature extraction is
a good matrix for reconstruction and vice versa. This is
not surprising as in this educational scenario the signal is
accurately described by the set of parameters.
The suggested adaptive approach is flexible: compared for
example to the interference cancellation proposed in [7], new
codes need not be generated at every interferer detection.
The proposed framework is relatively general as it concerns
all types of parameters and all compressive multiband archi-
tectures, whether for real- or complex-valued signals (after
frequency downconversion). An interesting extension of the
signal model would be to go past the assumption of bandlim-
ited representation of the samples of the signal (Asm. A2).

C. Perspectives

Cramér-Rao Bounds expression for other wideband RF
receivers and wider class of signals ought to be exposed as
well. Also average and worst-case behaviours of the cross-
terms depending on dephasing and distance to the grid could
be characterized more thoroughly. A very interesting question
to investigate remains about the possibility to derive biased
estimators with lower variance.

APPENDIX A
MWC SENSING MATRIX

For sake of completeness, the expression of B̌ for the
MWC is established. The mth mixing code admits following
Fourier decomposition:

pm(t) =

+∞∑
n′=−∞

γm,n′e
2iπt n

′
Tp (48)

Its restriction to a period Tp is given by:

pm,[Tp](t) =

N−1∑
q=0

αm(q)g(t− qTc) (49)

where αm corresponds to the N code elements and g is a
shaping function, by default a rectangular window of length
Tc. Thus the Fourier Transform of the signal after mixing:

FT [x(t)pm(t)] = x̃(f) ∗ p̃m(f) =

+∞∑
n′=−∞

γm,n′ x̃(f − n′

Tp
)

=

+∞∑
n′=−∞

γm,−n′ x̃(f +
n′

Tp
) (50)

Yet:

γm,n′ =
1

Tp
p̃m,[Tp][

n′

Tp
] =

1

Tp
g̃(
n′

Tp
)DFT (αm)[n′] (51)

Note that x̃(f) can be rewritten as a sum of shifted support
limited functions:

x̃(f) =

bN/2c∑
k=−bN/2c

β̃k(f − kfp) (52)

where β̃k(f) = 0 if f /∈ [− fp2 ;
fp
2 ].

Hence eq. (50) can be rewritten:

FT [x(t)pm(t)] =∑bN2 c
k=−bN2 c

∑bN2 c
n′=−bN2 c

γm,−n′ β̃k(f − (k − n′)fp) (53)

After filtering, since β̃k are support limited, only k = n′ is
kept at baseband:

ỹm(f) = FT [x(t)pm(t)]BB =

bN/2c∑
n′=−bN/2c

γm,−n′ β̃n′(f) (54)

For a given acquisition time, suppose that the spectrum does
not have very quick fluctuations, we may write the decompo-
sition of the continuous β̃k on the l discrete frequency bins
by averaging for k ∈ [[−bN/2c; bN/2c]]:

β̃k(f) =

L∑
l=1

β̃k,l(f − (l − 1)δf) (55)

Hence eq. (54) can be rewritten as:

ỹm(f) =

bN/2c∑
n′=−bN/2c

γm,−n′ β̃n′(f) (56)

=

L∑
l=1

bN/2c∑
n′=−bN/2c

γm,−n′ β̃n′,l(f) (57)

where β̃n′,l(f) represents the ñth = (n− 1)L+ l
th bin of the

input spectrum. This is because n′ spans [[−bN/2c; bN/2c] but
index of the sensing matrix n ∈ [[1;N ]]. In other words:

ỹm[l] = ỹm

(
f = (l − 1)δf − fp

2

)
=

N∑
n=1

bm,nx̃

(
(l − 1)δf + (n− bN

2
c − 3

2
).fp

)
(58)

for l ∈ [[1;L]]. This demonstrates that the acquisition matrix
B̌ in eq. (7) is indeed given by bm,n = γm,−(n−bN2 c−1) with
γm,n defined by eq. (48) as the Fourier coefficients of the
shaped mixing codes. �

APPENDIX B
PROOF OF THEOREM 1

Proof: First, (22) is derived, then (21) as a simpli-
fication. According to (17),(1) the (q, r)th element of the
Fisher matrix from the compressed samples of a multiband
architecture (MB) JMB is given by:

JMB,[q,r] =
2

σ2
<

[
ML∑
m̃=1

∂y∗[m̃]

∂θq

∂y[m̃]

∂θr

]
(59)
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Due to orthonormality and independence toward parameters
of the Discrete Fourier Transform matrix F , it is also true in
the spectral domain:

JMB,[q,r] =
2

σ2
<

[
ML∑
m̃=1

∂ỹ∗[m̃]MB

∂θq

∂ỹ[m̃]MB

∂θr

]
(60)

For Bandpass Sampling, the output spectrum is:

ỹBP (f) =

+∞∑
k=−∞

x̃(f − kfp) (61)

The (q, r)th element of the Fisher matrix is given by:

JBP [q, r] =
2

σ2
<

[
L∑
l=1

∂ỹ∗[l]BP
∂θq

∂ỹ[l]BP
∂θr

]
(62)

where from the discretization of (61) the sample derivatives
are given by:

∂ỹ[l]BP
∂θq

=

N∑
n=1

∂x̃[L(n− 1) + l]

∂θq
=
∂x̃q[L(λq − 1) + l]

∂θq
(63)

where the second equality is due to the subband model
(Asm. A1). Whereas for Multiband Compressive Sensing, the
samples derivatives are given, from (58), by:

∂ỹm[l]MB

∂θq
=

N∑
n=1

bm,n
∂x̃[L(n− 1) + l]

∂θq

= bm,λq
∂x̃q[L(λq − 1) + l]

∂θq
= bm,λq

∂ỹ[l]BP
∂θq

(64)

where the second equality is due to (Asm. 1) and the third by
recognizing (63). Hence:

M∑
m=1

L∑
l=1

∂ỹ∗m[l]MB

∂θq

∂ỹm[l]MB

∂θr

=

M∑
m=1

b∗m,λqbm,λr

L∑
l=1

∂ỹ∗[l]BP
∂θq

∂ỹ[l]BP
∂θr

(65)

Yet:

<
[
b∗m,λqbm,λr

∂ỹ∗[l]BP
∂θq

∂ỹ[l]BP
∂θr

]
=

(66)

<
[
b∗m,λqbm,λr

]
.<
[
∂ỹ∗[l]BP
∂θq

∂ỹ[l]BP
∂θr

]
−

=
[
b∗m,λqbm,λr

]
.=
[
∂ỹ∗[l]BP
∂θq

∂ỹ[l]BP
∂θr

]
We recognize that:

=
[
∂ỹ∗[l]BP
∂θq

∂ỹ[l]BP
∂θr

]
= −<

[
j
∂ỹ∗[l]BP
∂θq

∂ỹ[l]BP
∂θr

]
. (67)

However j ∂ỹ
∗[l]BP
∂θq

= ∂ej
π
2 ỹ∗[l]BP
∂θq

, it corresponds to a simple
additional dephasing of π

2 between the two subsignals. So
according to (60) and (62), it is possible to rewrite matrixwise
for (q, r) ∈ [[1;Q]]2:

JMB = <
[
BH

ΛBΛ

]
◦ JBP + =

[
BH

ΛBΛ

]
◦ J̌BP (68)

Similarly but simpler in the real-valued case, by using eq. (17),
J can be rewritten matrixwise for (q, r) ∈ [[1;Q]]2 into:

JMB = <
[
BH

ΛBΛ

]
◦ JBP (69)

APPENDIX C
PROOF OF THEOREM 2

Proof: Let us remind that ∆fq,r = fq − fr. We
will first note that JBP [q, r](∆fq,r) is fp-periodic and then
demonstrate that JBP [q, r](∆fq,r) = 1

N JNyq[q, r](∆fq,r) for
∆fq,r ∈ [− fs2 ; fs2 ], i.e. at lowpass.
First notice from (61) that ỹ is fp-periodic, hence it follows
from (62) that JBP [q, r](∆fq,r) is also fp-periodic.
Concerning the second part, the Fisher information matrix for
a Nyquist-rate acquisition is given by:

JNyq[q, r] = (70)
2
σ2<

[∑L
l=1

∑N
n=1

∂x̃∗[(n−1)L+l]
∂θq

∂x̃[(n−1)L+l]
∂θr

]
According to Asm. A2, for a given l ∈ [[1;L]], the derivative:

∂x̃q[(n− 1)L+ l]

∂θq
,∀q ∈ [[1;Q]] (71)

for n ∈ [[1;N ]] has at most one non-zero term, occurring for
n = λq . Therefore for ∆fq,r ∈ [− fp2 ;

fp
2 ] it is possible to

simplify the sum over n leading to:

JNyq[q, r] = (72)
2
σ2<

[∑L
l=1

∂x̃∗q [(λq−1)L+l]

∂θq

∂x̃r[(λr−1)L+l]
∂θr

]
where λq and λr are equal, or consecutive indices (in case of
leakage from the adjacent subband). Hence by recognizing
(62)(63), we have JNyq[q, r] = NJBP [q, r] for ∆fq,r ∈
[− fp2 ;

fp
2 ].

APPENDIX D
CRB FOR NYQUIST SAMPLING OF K-TONE SIGNALS

Proof: Consider a K-tone signal, generalization of (25);
the parameter vector is θ = [A1...AK ,Φ1...ΦK , f1...fK ]. For
k ∈ [[1;K]]:

∂x̃[ñ]

∂Ak
= cos(2πfkñ+ φk) (73)

∂x̃[ñ]

∂φk
= −Ak sin(2πfkñ+ φk) (74)

∂x̃[ñ]

∂fk
= −Ak2πñ sin(2πfkñ+ φk) (75)

Then for Nyquist sampling, the coefficients of the Fisher
matrix JNyq are given as follows.
For same parameters, (k, k′) ∈ [[1;K]]2:

J [Ak, Ak′ ] =
1

σ2

NL∑
ñ=1

cos(2πfkñ+ φk) cos(2πfk′ ñ+ φk′) (76)
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Recall that cos(a) cos(b) = 1
2 (cos(a + b) + cos(a − b)) for

(a,b) ∈ R. Consider then the real part of a sum of geometrical
terms with common ratio e2jπf given by (f 6= 0):

NL∑
ñ=1

e2jπfñ+φ = eφ+2jπf 1− e2jπNLf

1− e2jπf
(77)

Then from half angle factorization (f 6= {0; 0.5}):

eφ+2jπf 1− e2jπNLf

1− e2jπf
= eφ+jπf(NL+1) sin(2πNLf)

sin(2πf)
(78)

Replacing in eq. (76) with the real part in eq. (78) yields:

J [Ak, Ak′ ] = 1
2σ2 [

sin(NL(∆f)k,k′ )

sin((∆f)k,k′ )
cos((∆Φ)k,k′ + π(∆f)k,k′(NL+ 1)) +

sin(NL(Σf)k,k′ )

sin((Σf)k,k′ )
cos(ΣΦk,k′ + π(Σf)k,k′(NL+ 1))]

' NL
2σ2 [sinc(NL(∆f)k,k′)cos((∆Φ)k,k′ + π(∆f)k,k′(NL+ 1)) +

sinc(NL(Σf)k,k′)cos(ΣΦk,k′ + π(Σf)k,k′(NL+ 1))] (79)

Similarly by using sin(a) sin(b) = 1
2 (− cos(a+b)+cos(a−

b)) for (a, b) ∈ R2:

J [Φk,Φk′ ] ' AkAk′NL
2σ2 [ (80)

[sinc(NL(∆f)k,k′) cos((∆Φ)k,k′ + π(∆f)k,k′(NL+ 1))−
sinc(NL(Σf)k,k′) cos((ΣΦ)k,k′) + π(Σf)k,k′(NL+ 1))]

J [fk, fk′ ] =
2π2

σ2 AkAk′<
[
ej(∆Φ)k,k′χ2(∆f,NL)− ej(ΣΦ)k,k′χ2(Σf,NL)

]
where χ2(f,NL) =

∑NL
ñ=1 ñ

2ej2πfñ. (81)

For diagonal terms, k ∈ [[1;K]]:

J [Ak, Ak] =

NL∑
ñ=1

(
1

2
+

cos(4πfk + 2φk)

2

)
' NL

2σ2
(82)

J [Φk,Φk] ' NLA2
k

2σ2
(83)

J [fk, fk] ' 2π2A2
k

σ2

NL∑
n=1

n2

=
2π2A2

k

σ2

NL(NL+ 1)(NL+ 2)

6
(84)

For other terms (k 6= k′):

J [Ak,Φk′ ] = (85)

−Ak′ NLσ2

∑NL
ñ=1 sin(2πfkñ+ φk) cos(2πfk′ ñ+ φk′)

Using sin(a) cos(b) = 1
2 (sin(a+b)+sin(a−b)) for (a,b) ∈ R:

J [Ak,Φk′ ] ' −Ak′NL2σ2 [ (86)
sinc(NL(∆f)k,k′) sin((∆Φ)k,k′ + π(∆f)k,k′(NL+ 1)) +

sinc(NL(Σf)k,k′) sin((ΣΦ)k,k′ + π(Σf)k,k′(NL+ 1))]

J [Ak, fk′ ] = 2π2

σ2 Ak′=[ej(∆Φ)k,k′χ2(∆f,NL) +

ej(ΣΦ)k,k′χ2(Σf,NL)] (87)

J [Φk, fk′ ] = −2π
σ2 AkAk′ .

<
[
ej(∆Φ)k,k′χ1(∆f,NL)− ej(ΣΦ)k,k′χ1(Σf,NL)

]
(88)

where χ1(f,NL) =
∑NL
ñ=1 ne

j2πfñ.
For k = k′:

J [Ak,Φk] '
NL
2σ2 sinc(2NLfk) sin(2Φk + 2πfk(NL+ 1)) (89)

J [Ak, fk] = 2π2

σ2 Ak=
[
ej2Φkχ2(2fk, NL)

]
J [Φk, fk] = 2π

σ2A
2
k
NL(NL+1)

2 (90)

Note that eq. (82-84) and (89-90) match eq. (3.41) in [16]. It
is possible to compute further χ1 and χ2, either by simple but
tedious calculations consisting in deriving twice

∑N
n=1 e

j2πfn

or by recognizing the Fourier Transform of a ramp function
and a square function.
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APPENDIX E
NOTATION TABLE

Matrices and vectors will be written with uppercase and
lowercase boldface letters respectively.

Notations Signification

.T Transpose

.∗ Conjugate

.H Hermitian conjugate

.−1 Inverse
∗ Convolution
◦ Hadamard product
Tr(.) Trace operator
.̂ Estimation
b.c Floor operator

mod (.) Modulo operator
< ., . > Scalar product
[[. . . ; . . .]] Interval of integers
<(.) Real part
=(.) Imaginary part
|.| Module
x(t) Analog time-domain input signal
y(t) Analog time-domain output signal
x[.] Discrete time-domain input vector
x̃(f) Fourier Transform of x(t)
x̃[.] Discrete Fourier Transform (DFT) of x(t)
x+(t) Noisy analog time-domain input signal
x] Reordered N×L input signal for the compact multi-

band formalism
y] Reordered M×L output signal for the compact

multiband formalism
fp Width of a subband in the signal model
Tp Period of the mixing code
fs 2x the filter cut-off frequency
Ts Sampling period
δf Frequency resolution
TNyq Time resolution of the input signal
Tacq Acquisition length such that there are NL input

samples
fNyq Nyquist sampling rate of x(t)
Tc Chip period of the code in the MWC
K Degree of sparsity of x(t)
L Number of bins of width δf in a subband fp or ratio

between acquisition time and period of the codes
M Number of branches, typically
N Number of subbands
µ = ML Output dimension
ν = NL Input dimension
n Subband index
l Bin index within a subband
ñ Global frequency index ñ = (n− 1)L+ l
Q Length of the parameter vector
Λ Support
Λ(.) Support index indicator function
λq Support index of the qth parameter
x̃q Subsignal influenced by the qth parameter
∆fq,r −fq + fr
Σfq,r fq + fr
∆φq,r −φq + φr
Σφq,r φq + φr
f̄ f folded at baseband by subsampling
βk Support-limited function representing the kth sub-

band

δK RIP constant of sparsity K
η1,2 Offset to the frequency grid of ∆f , in freq. resolution

< 1
η′1,2 Offset to the frequency grid of Σf , in freq. resolution

< 1
γm,n Fourier coefficients of the shapped mixing codes in the

MWC
σ White noise variance
θ Vector of estimation parameter
Ai,. ith row of A
A.,i ith column of A
A Matrix expressing, for the MWC the mixing codes in the

time domain, and for the NUWBS the operations before
time subsampling

B Multiband architecture matrix, compact formalism
B̌ Multiband architecture matrix, canonical formalism
D Diagonal matrix accounting for pulse shaping
E Matrix model of the dual-tone signal at Nyquist time
F Discrete Fourier Transform matrix
F̃ Reordered Discrete Fourier Transform matrix
H Matrix model of the dual-tone signal with CS
J Fisher information matrix
Z Sensing matrix applied on the sparsity domain Z=ΦΨ
Γ Covariance matrix
Φ Acquisition/Sensing matrix describing the Compressive

Sensing acquisition process on the time signal
Ψ Matrix corresponding to the basis change to the sparsity

domain (Sparsifying matrix)
ΦΨ Acquisition/Sensing matrix describing the Compressive

Sensing acquisition process on the sparse representation
N∗ Set of strictly positive integers
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