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Abstract. Gaussian Mixture Models are widely used nowadays, thanks
to the simplicity and efficiency of the Expectation-Maximization algo-
rithm. However, determining the optimal number of components is tricky
and, in the context of data partitioning, may differ from the actual num-
ber of clusters. We propose to apply a post-processing step by means
of Spectral Clustering: it allows a clever merging of similar Gaussians
thanks to the Bhattacharyya distance so that clusters of any shape are
automatically discovered. The proposed method shows a significant im-
provement compared to the classical Gaussian Mixture clustering ap-
proach and promising results against well-known partitioning algorithms
with respect to the number of parameters.

Keywords: Gaussian mixture model, spectral clustering, Bhattacharyya
coefficient, Bayesian information criterion

1 Introduction

Cluster analysis is a fundamental task in data science as it allows to gather indi-
viduals that show similar features. Clustering belongs to the set of unsupervised
learning methods: they are among the most challenging ones in machine learning
as they aim at blindly determining the label of each point. In other words, the
objective is to find out which group each point belongs to, without having any
ground-truth available. Clustering has been applied to a variety of fields such as
community detection, segmentation and natural language processing [9].

Due to the amount of topics clustering can be applied to, numerous tech-
niques have been proposed to tackle this problem. They can be classified as:
hierarchical (agglomerative or divisive), centroid-based, density-based, graph-
based or distribution-based [I7]. This work focuses on distribution-based cluster
analysis algorithms, which address the problem from a statistical point of view by
considering the probability density of the data. In particular, we study the case
of Gaussian Mixture (GM) Clustering which models the data by a combination
of normal distributions: each Gaussian represents one cluster of points.

* Supported by Auvergne-Rhone-Alpes region.
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Determining the right number of GM components only from the data is still
a current topic of research. Three strategies exist regarding this challenge. The
first one consists in initializing the Gaussian Mixture Model (GMM) with a
low number of components and increasing it until convergence [21]. The sec-
ond approach aims at iteratively merging components until a stopping criterion
is met [6]. Finally, the third group of methods applies an optimization process
to minimize a criterion over possible numbers of components [12]. Many crite-
ria have been proposed such as the Bayesian Information Criterion (BIC) [19],
the Minimum Message Length (MML) [20] or the Akaike Information Criterion
(AIC) [I.

Nevertheless, the aforementioned approaches may suffer from overfitting. In
fact, model selection is based on the minimization of £, the likelihood function.
Yet, adding more components leads to a decrease in L. As a consequence, the
resulting GMM often ends up with too many components: the model accurately
represents the data density but overestimates the number of actual clusters. A
fusion step can subsequently be added to reduce the number of components by
merging similar Gaussians. In most cases, the GMM generates strong overlapping
components and gathering them allows a simplification of the model without any
loss of information. Hence, several methods have been developed.

In order to automatically detect the correct number of clusters, no matter
their distribution, we propose a three-fold process. First, the data is approx-
imated by a GMM, optimally selected through the minimization of the BIC,
leading to an overfitted model with too many components compared to the
number of clusters. Then, to decide if two components belong to the same group
or not, the Bhattacharyya coefficients are computed to estimate the similarity
between each pair of components of the GMM. Lastly, the final clusters are
determined by merging similar Gaussians thanks to Spectral Clustering (SC).

The remainder of this paper is organized as follows: the idea of Gaussian
Mixture is explained and detailed in Section [2| Section [3| describes our proposal
and results are given in Section [@ Finally, Section [5 draws conclusions and gives
some prospects about future work.

2 Gaussian Mixture Model

2.1 Principle

A mixture model is a probabilistic model that approximates the density of a

dataset by a weighted sum of probability distributions of the same kind but

differently parameterized. This article is focused on Gaussian Mixture Models,

i.e. the aforementioned distributions are assumed to be normal in any dimension.
A Gaussian Mixture Model M with K components can be defined as

K
M:ZMN(M;ED, (1)
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where 7; is the weight associated to the i*" component with Efil m o= 1,
N (p;; X;) is the multivariate normal distribution with mean u; € R™ and co-
variance matrix X; € R™*" and n represents the dimensionality of the data to
be modeled. In other words, for any vector « in R",

1 C;
p(x|pi, Xs) = @y i P (—2>, (2)

with C; = (z — ps) " X, M@ — pi).

2.2 Expectation-Maximization Algorithm

When the number of components K is known, it is possible to determine such a
mixture model only from the data {x; € R",i =1,..., N}, as defined in Eq. .
To do this, one makes use of the Expectation-Maximization (EM) algorithm de-
velopped by Dempster et al. in 1977 [4]. It consists in determining the parame-
ters of the Gaussian Mixture, namely mq, ..., Tx, ph1,-.., LK, 21, .-, 2K, that
maximize the likelihood function associated to M, in an iterative manner.

In real terms, the algorithm can be broken down into four steps.

1. Parameters initialization
The classical approaches set 7 = -+ = g = % and Yy = =Yg =X
(the whole data covariance matrix). Regarding the means, it is common to
initialize them with randomly chosen data points.

2. E(xpectation) step
One computes here the probability «;, of data at index i being generated by
component k for all ¢ in {1,..., N} and for all £ in {1,..., K}. That is

e N | pw; X)
Yik = Tk

Zj:l T N(zi|pg; Xy) '

3)

3. M(aximization) step
The parameters are updated thanks to the previously computed probabili-
ties. For each component k € [1; KJ:

L
Tk =37 > ik (4)
i=1
N
i=1 VikT4
D i1 ik
N
5 = > ey vk (@i — pa) T (@5 — p)
21:1 Yik

4. Steps 2 and 3 are repeated until convergence.



4 J. Muzeau et al.

2.3 High-Dimensional Gaussian Mixture Model

Even though the EM algorithm returns accurate outputs in most cases, issues oc-
cur when working in high-dimensional spaces (when the dimensionality is greater
than five). As a matter of fact, what is called the “curse of dimensionality” causes
a breakdown of any kind of distances as the number of dimensions increases. A
small value, repeated by the dimensionality, leads to a huge error.

This issue appears in the Gaussian Mixture models and the EM algorithm. In
particular, the Mahalanobis distance C; of Eq. suffers from this phenomenon,
especially due to the covariance matrix. In fact, the number of elements in such
a matrix increases quadratically with respect to the dimensionality, enforcing
small errors to accumulate, thus leading to an unrealistic Mahalanobis distance.

To overcome this challenge, the algorithm developed in [16] is used. The idea
is to add a regularization parameter in the maximization step of the EM algo-
rithm (see Subsection . More precisely, after the covariance matrix of each
component is computed, the Graphical Lasso method, proposed by Friedman et
al. [8], is applied to each of those matrices. The idea is as follows: an [;-norm
penalization term imposes the covariance matrices to become sparse, that means
with a maximum of zeros outside of the diagonal. Eventually, the elements close
to zero, that would yield small errors, are set to zero: an immediate consequence
is the vanishing of the errors that disturbs the final computed distance.

2.4 Clustering via GMM

In addition to its ability to approximate data set distributions, clustering by
Gaussian Mixture model is also possible. For instance, the three blobs pictured
by black crosses in Fig. can readily be partitioned thanks to a GMM with
3 components whose covariances are represented by red ellipses. Each point is
associated to one Gaussian only and the three clusters are retrieved.

0 ﬁ 0
-5 —0.5

—10 * -1

~15 . ; . ~1s— . . . - - -
=15-10 =5 0 5 10 15 20 -15-1-050 05 1 15 -15-1-05 0 05 1 15

(a) 3-component model. (b) 2-component model. (c) 19-component model.

Fig.1: 2-D data sets and associated Gaussian Mixture models.

However, this kind of clustering fails in cases where the different data groups
are not spherical. As a case of point, when applied to two concentric circles of
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different radii (see Fig. , the method completely misses the data distribution
and influences the subsequent partitioning in the wrong direction.

Several remarks have to be done at this point. First, this issue occurs in this
case because the true clusters (the two rings) share the same mean. Moreover,
the number of components is chosen equal to the number of clusters (2 here). It
implies that the number of groups is available prior to the execution, which is
unrealistic in most practical situations. It also shows that setting the number of
components equal to the number of clusters may be inappropriate.

3 Gaussian Spectral Clustering

In this section, we propose a parameter-free Gaussian Mixture based clustering
method: Gaussian Spectral Clustering (GSC). The idea is twofold: first, the input
data is modeled by a GMM, whose number of components exceeds the actual
number of clusters. Then, those Gaussians are merged in a smart manner, thanks
to Spectral Clustering [I3], to discover the real clusters.

3.1 Assess Mixture Model Quality

As pointed out in Subsection the choice of the number of components of
a mixture model is critical and is often not related to the number of distinct
data groups. We propose an exhaustive search for the optimal data modeling:
more precisely, we try several models on the input data (or equivalently, several
number of components) and select the one that fits the data the best. We remind
that the number of components may mismatch the true number of clusters.

A question which rightfully arises next is the choice of the criterion that
allows model selection. Many techniques have been developed through the years
to address this issue [12]. We propose to use the Bayesian Information Criterion
(BIC) [19] because it does not underestimate (asymptotically) the number of
true components [11] and the resulting density estimate is consistent with the
groundtruth [IO/I5]. It is defined as:

BIC =tInN —2InL, (7)

where t is the number of parameters to be estimated in the model, N the number
of data points and £ the likelihood function associed to the model M.

The model leading to the lowest BIC value is assumed to be optimal, as it
perfectly fits the original data. In particular, in the situation shown in Fig.
the minimum is reached for 19 components and such a model adapts better to
the data. According to definition 7 one can understand that this criterion is a
trade-off between how good the model fits the data, represented by the likelihood
function £, and its complexity, embodied in ¢ (the number of parameters).

3.2 Determine Gaussians Similarity

The main consequence of determining the optimal GM model through the min-
imization of the BIC value lies in the fact that the final number of components
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may not be indicative of the actual number of clusters present in the data. Due to
the fact that a normal distribution is only able to accurately model an elliptical
data group, one can see a Gaussian Mixture model as an approximation of a data
set distribution by Gaussians. It follows that the number of components of the
optimal mixture model is necessarily greater than or equal to the true number of
clusters, as non-elliptical data clusters are decomposed into several Gaussians.
It is also clear that normal distributions which belong to the same cluster show
similarities among themselves, contrary to those from distant clusters.

Consider for example the 19-component GMM (see Fig. of the two con-
centric circles depicted in Fig. [I} This model fits the data better than the 2-
component one, although the data is composed of 2 clusters. Moreover, the
Gaussians which belong to the outer ring are similar to each other, pair by pair,
but differ from the ones of the inner ring, and vice-versa. Merging them into one
only set leads to a better data partitioning.

In order to measure similarity between Gaussians, we introduce in this sub-
section the Bhattacharyya distance and coefficient [3]. The Bhattacharyya dis-
tance dg and coefficient cg between two multivariate normal distributions p ~
N (pp, Xp) and g ~ A (g, Xq) are defined as:

dp(p,q) = é(up —1g)" X (up — p1q) + %ln |2:,‘7|||2q| (8)
e(p.q) = exp (= ds(p.0)), (9)

with ¥ = (¥, + ¥4)/2 and |.| the determinant of a (square) matrix.

A geometrical interpretation is to be drawn from this coefficient: it actually
approximates the overlap ratio between two statistical distributions (normal
in our case). It approaches 1 when the two compared distributions are quasi-
identical and tends towards 0 in the case of two dissimilar ones.

Let us now suppose that, from a specific data set, an optimal Gaussian Mix-
ture model with C' components N1, ..., N¢ is determined, as explained in Sub-
section Consequently, we can build the similarity matrix S = (S;;)i=1...c,j=1...
whose elements are equal to the pairwise Bhattacharyya coefficients. Precisely:

5y = {CBW‘N” 7T i) e s op (10)
0 ifi=3j
This gives a matrix of correspondences, where each coefficient reflects the
similarity between the two Gaussians involved. One can also highlight that this
matrix indeed is symmetric. The next subsection details the method used to
decide when Gaussians are overlapping enough to be considered as belonging to
the same cluster and to be merged.

3.3 Apply Spectral Clustering

The similarity matrix defined in the previous subsection (Eq. ) embeds the
similarity between each pair of Gaussians.
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In the perspective of clustering, the idea that comes next consists in parti-
tioning this matrix so that sets of significant overlapping normal distributions
are discovered. In other words, we want to determine clusters among which
a “path” from one Gaussian to another is readily available, either directly or
through other Gaussians from the same cluster.

This objective can be achieved by various means, we propose in this paper
to make use of the spectral clustering approach proposed in [I3]. Assuming the
number N, of clusters to be discovered, five steps have to be executed.

1. Normalize S by L = D~'/28D~1/2 where D is the row-wise sum of S (its
non-diagonal elements equal 0).

2. Obtain V' € REXY the eigenvectors of L. We assume they are sorted in
descending order of the eigenvalues.

3. Crop V as to keep the N, largest eigenvectors: X is then of size C x N,.

4. Obtain Y by normalizing the rows of X. In the end, the norm of each row
of Y is equal to 1.

5. Apply K-means algorithm [I4] to Y, considering each row as a data point.

From this point, the rows of Y, which correspond to the normal distributions
of the Gaussian Mixture model, are partitionned into N, clusters. Consequently,
the label of each GMM component is modified according to the K-means clus-
tering output. Each original data point label is affected the same way.

The central disadvantage of spectral clustering is the need to specify the
number of clusters. It implies an interaction with the user and the prior knowl-
edge of how many groups are hidden in the data: this last piece of information
is surrealist in most practical applications, especially in higher dimensions.

To overcome this issue, many ideas have been proposed. We propose to iterate
over steps 3-5 from the spectral clustering algorithm: the idea is to provide an
exhaustive search for the number of clusters, from 1 to C. At each iteration, the
distortion of the K-means output (i.e. the sum of squared distances from each
data point to the centroid of its cluster) is computed: the number of clusters
yielding the lowest distortion value is assumed to be the actual number of groups.

At this point, the authors would like to highlight two elements from the
exhaustive search step. First of all, the idea seems to show similarities with
internal clustering validation measures (as a reminder, such a metric aims at
comparing two partitionning of the same data set, possibly computed by two
different algorithms, without any ground-truth). However, in our case, the data
is evolving at each iteration, the dimensionality is increasing as well. Secondly,
as was said earlier, it is almost impossible in real life scenarios to have a guess
about the number of clusters. Nonetheless, a range of possible values seems more
reasonable. This algorithm allows the inclusion of such prior knowledge which
leads to a process acceleration.

3.4 Summary

We summarize in this subsection the proposed method. Given as input the data
set {x; € R",i =1... N}, our algorithm is made of the three following steps:
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1. Determine several Gaussian Mixture models of the data with an increasing
number of components. Keep the model yielding the lowest BIC.

2. Compute the similarity matrix S (Bhattacharyya coefficient between each
pair of Gaussians).

3. Apply spectral clustering on S for different number of clusters. Keep the
value which leads to the lowest K-means distortion.

The proposal is fully non-parametric: it is however possible to add, if avail-
able, constraints about the number of components in the mixture model or about
the number of data clusters.

4 Experiments

This section is devoted to the comparison of our approach with other methods.
Subsection is divided in three groups. First, we compare GSC with GMM,
as we want to show that our method outperforms GMM. Secondly, as most
techniques need as input the number of clusters, we devise an extension of our
method in this direction and compare the performance of GSC in both situations.
Finally, we compare our method against well-known clustering algorithms.

4.1 Databases and Assessment Metric

To evaluate our method, we use more than 100 datasets from the Clustering
benchmarkﬂ We then compare our predicted partitioning with the available
ground-truth. More precisely, we use the Fowlkes-Mallows (FM) score [7]:

TP TP
FM\/TP—l—FPxTP—i—FN’ (11)

where TP is the number of true positives, FP the number of false positives and
FN the number of false negatives. It equals 1 in the case of a predicted clustering
similar to the ground-truth, 0 otherwise.

For the following experiments, the range of the number of components in
which to seek the optimal GMM is fixed to [1;75]. Moreover, the SC stage of
our algorithm tries all numbers of clusters from 1 to C', where C' is the number
of components of the optimal mixture model determined in the first stage.

4.2 Results

Comparison against GM clustering As a preliminary, Fig. [2] displays a
visual comparison between the proposed algorithm and the classical Gaussian
Mixture (GM) approach on a few bidimensional synthetic datasets. One can
observe identical results for the second and fourth columns. However, our method
(top row) outperforms GM clustering (bottom row) in the other two cases: the
latter is indeed unable to retrieve non-elliptical data clusters. We also highlight
that, unlike GM clustering for which the number of clusters has to be specified
by the user, GSC accurately discovers the right number of groups autonomously.

! Thttps://github.com/deric/clustering-benchmarlk
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Fig.2: Comparison of our approach (top row) with the classical GM clustering
(bottom row) on 4 datasets. Each marker/color represents a different class.

Comparison of two variants of GSC We compare in this section the results
given by the proposed approach in two situations: (1) when the number of clus-
ters is given as input, denoted as GSC_gt, and (2) when it is totally parameter-
free, denoted as GSC_free. For this purpose, we make use of the histogram of the
Fowlkes-Mallows scores computed over
all the datasets. Fig. |3| depicts the
superposition of both histograms and
both means (dashed lines).

As expected, GSC_gt outperforms
GSC_free. Actually, the mean over all
the datasets obtained by GSC_gt is ol ) o amhal | I | |

1GSC without n_clusters
GSC with n_clusters

40+
30F
20F

. o
0.8604 while the one for GSC_free o3 o4 o6 o8 1
equals 0.7783. This difference stems Fowlkes-Mallows score

from the K-Means iterations within Fig.3: Histograms of GSC_gt (in orange)
Spectral Clustering (step 3 of Subsec- and GSC_free (in blue).

tion and can be explained accord-

ing to three factors:

1. K-Means is applied on a small number of data points, namely the number
of components in the optimal Gaussian Mixture Model.

2. The distortion only takes into account the distances between the points and
their associated centroid. The number of clusters and the dimensionality are
not included in this computation.

3. The limit case where K-Means algorithm is launched with the same number
of clusters than the number of data points leads to a zero distortion, it is
then considered the best clustering for any data set.

Comparison against other clustering algorithms In order to provide a
fair comparison, we put ourselves in conditions where the number of clusters is
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Table 1: Fowlkes-Mallows score of our method and four others on 23 datasets.
The number of GMM components determined by our method is displayed in the
first column. The average score for each datasets is reported in the last row.

zelnikb 4)[0.8098 1 0.7889  ]0.7907  [0.8078
[Average [0.8604 0.8516 0.7887 0.76 0.884

lDataset ‘GSC (ours)‘DBSCAN ‘GM ‘Kmeans ‘SC ‘
2d-20c-no0  (22)]0.987 0.9705 0.9479 0.9658 0.9916
2d-3c-nol23 (4)|0.9814 0.8897 0.937 0.8206 0.9405
2d-4c-no4 (6)|0.9999 0.9625 0.8985 0.9819 0.9922
2d-4¢-no9 (5)[1 0.8961 0.9915 0.9241 0.9752
2d-4c @)1 1 1 1 1
curvesl (14)[1 1 0.499 0.499 1
curves2 (13)|0.9065 0.3763 0.9047 0.9465 0.952
dartboard2 (63)]0.5698 0.9246 0.547 0.5465 0.5484
donutl (21)|0.9958 0.991 0.5263 0.5046 0.992
elly-2d10c13s (8)|0.9367 0.707 0.9368 0.9076 0.929
engytime (2)]0.6141 0.732 0.6895 0.736 0.9696
pathbased (7)]0.6923 0.9797 0.8556 0.7984 0.9794
pmf (6)0.9916 0.9251 0.9759 0.9932 0.9932
spherical 5.2 (4)|1 1 0.9891 1 1
spherical 6.2 (6)|1 1 0.5281 0.5162 1
squarel (4)]0.9411 0.4992 0.9411 0.9372 0.9469
square2 (4)]0.8925 0.4992 0.8922 0.8943 0.8978
tetra (4)]0.6499 0.7068 0.5956 0.574 0.7053
twenty (20)[0.9999 07067 |1 1 1
twodiamonds (6)|0.8651 0.947 0.9315 0.9297 1
wingnut (5)]0.9953 0.9421 0.9953 0.9953 0.9993
zeInik3 (6)[1 1 1 0.6467 |1

4)

known, as it is a mandatory argument in Gaussian Mixture clustering, K-means
[2] and Spectral Clustering [13]. We proceed as follows: algorithms are executed
for each dataset, repeated 50 times for results stability and the mean Fowlkes-
Mallows score is kept. Table [1| provides an excerpt of the results obtained over
23 datasets. The best score for each point set is represented in bold and the
average of each algorithm is given in the last row of the table.

The proposed method shows better performance than classical Gaussian Mix-
ture clustering and K-means. Thus, in the case where the right number of clusters
is known and provided as input to both algorithms, Gaussian Spectral Cluster-
ing is able to cluster 9.1% better compared to GM approach. Both methods give
similar results when data groups are elliptical, in other cases ours is able to dis-
cover clusters with more complex data distribution. It is also to be highlighted
that GM clustering performs better than K-means as the latter is a specific case
of the former for spherical clusters. In order to show the outperformance of GSC
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over GM, we perform a z-test, as we know the variance and the mean of the dis-
tributions and both of them follow a gaussian. Given the means, ugsc = 0.860
and pgyr = 0.798, and the standard deviations, oggc = 0.171 and ogas = 0.197,
of both models computed on n = 101 datasets, we consider the null hypothesis
Ho: paym = pasc and the alternative hypothesis Hi: puegn < pagsc. We want
to show with a 99% confidence (ug.01 = 2.33) that H; holds. Then,

_ hem — BGSc
z= 2 2
Vou/n+ ogsa/n

=-2.736 < 233 = —UQ.01- (12)

Thus, we can reject the null hypothesis H.

GSC shows better performance than DBSCAN [5JI8] but is outpaced by Spec-
tral Clustering. It is however important to keep in mind that several parameters
have to be set for those methods:

e In DBSCAN, the radius ¢ of a spherical neighborhood and the number
MinPts of data points in order for such a neighborhood to be valid.
e In SC, the standard-deviation of the RBF kernel and the number of clusters.

A quasi-exhaustive search over all the parameters is conducted, only the greatest
FM score is kept in memory. Such a process is usually unpractical in most real-
world clustering applications. We remind that our method requires, at this point,
only the number of clusters and is automatic except from this parameter.

In summary, our model gives competitive results in most datasets but three,
namely DARTBOARD2, ENGYTIME and TETRA. Those bad scores are mainly
caused by inaccurate GM models due to strongly overlapping clusters or data
groups with too few points.

5 Conclusion and Prospects

We propose in this article an improvement of GM clustering. Our method com-
bines a modelling of a specific data set by a mixture of weighted normal dis-
tributions. Then, similar Gaussians are merged using the SC algorithm. Our
model, named Gaussian Spectral Clustering (GSC), is able to retrieve clusters
with complex shape, contrary to GM partitioning which is limited to elliptical
data groups. Constraints on the number of components, the number of clusters
or both, can be applied in order to speed GSC up and obtain realistic results
regarding to specific applications. A non-parametric algorithm is also derived.

Several leads for improvement will be considered for future work. First, the
selection of the optimal GMM, i.e. trying all models within a range of possible
ones, is naive and expensive. Moreover, the random initialization of the EM
algorithm makes it difficult to obtain stable results. Finally, since the estimation
of the number of clusters in the SC step is prone to errors, an auto-determination
technique or another evaluation criterion for K-Means may be used.
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