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Abstract

The paper studies input and state observability (ISO) of discrete-time linear time-invariant network systems whose
dynamics are a↵ected by unknown inputs. More precisely, we aim at reconstructing the initial state and the sequence
of unknown inputs from the system outputs, and we will use the term ISO when the input reconstruction is possible
with delay one, namely the inputs up to time k � 1 and the states up to time k can be obtained from the outputs
up to time k, while the term unconstrained ISO will refer to the case where there is some arbitrary delay in the input
reconstruction. We focus on the problem of s-structural ISO (resp. s-structural unconstrained ISO) wherein the objective
is to find conditions such that for all system matrices that carry the same network structure, the resulting system is
ISO (resp. unconstrained ISO). We provide first a graphical characterization for s-structural unconstrained ISO, and
subsequently, su�cient conditions and necessary conditions for s-structural ISO. For the latter, under the assumption
of zero feedthrough, these conditions coincide and characterise ISO. The conditions presented are in terms of existence
of suitable uniquely restricted matchings in bipartite graphs associated with the structured system. In order to test
these conditions, we present polynomial-time algorithms. Finally, we discuss an equivalent reformulation of the main
conditions in terms of coloring algorithms as in the literature of zero forcing sets.

Keywords: Linear time-invariant systems, Network systems, Input and state observability, Structured systems, Strong
structural observability, Uniquely restricted matchings, Constrained matchings, Zero forcing sets

1. Introduction

Modern life relies on critical infrastructure systems that
provide essential services. These systems are more and
more networked. It is vital to monitor e�ciently such sys-
tems in order to promptly respond to failures and attacks
they could face. For this purpose it is not only necessary to
estimate the system states from sensor measurements but
also reconstruct the possible unknown inputs a↵ecting the
system; these inputs representing failures or intentional
attacks.

In a systems-theory context, we are interested in study-
ing Input and State Observability (ISO), namely to under-
stand whether it is possible to reconstruct both the initial
state and the unknown input sequence, from the output
sequence. Throughout this paper, the term ISO will be
used for the case where the input reconstruction only has
delay one (with the knowledge of outputs up to current
time step k, we can reconstruct the input up to time k� 1
and the state up to time k), while the term unconstrained
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ISO will be used for the case that some arbitrary delay is
allowed in the input reconstruction.

Algebraic characterizations of ISO, in a similar vein
as Kalman or PBH tests for controllability, are classical
[1, 2, 3]. However these conditions, based on matrix rank
computations, su↵er from the following drawbacks: check-
ing these conditions entails exact knowledge of the coef-
ficients of the system matrices—a luxury often not avail-
able in network systems—and moreover it is non-trivial
for large networks, due to ill-conditioning and complexity
issues. Therefore, a rich trend of research looks for results
based on structured systems theory. A structured system
is a linear system whose system matrices have positions
that are a priori fixed to zero, while the positions that
are not a priori fixed to zero are free parameters. Under
such a setting, there are two kinds of results, generally
formulated as graphical conditions: i) structural results,
that are true for almost all choices of free parameters, and
ii) strong structural (s-structural) results, that are true for
every choice of non-zero parameters. The understanding is
as follows: structural results ensure that some property is
true with probability one, if the free parameters are chosen
at random from any continuous distribution. S-structural
results, on the other hand, require that the property be
guaranteed true, as far as all parameters are non-zero. The



present paper is focused on s-structural results.
S-structural controllability (and, by duality, also ob-

servability) has been studied since the late 70s, starting
with the seminal paper [4], where the single-input case
was addressed. This was extended for the multi-input
case in [5]. The results in [4, 5] are graph-theoretic condi-
tions without easy algorithms to test them. More recently,
building on the works [6, 7], a characterization in terms
of existence of uniquely restricted matchings of appropri-
ate size on suitably-defined bipartite graphs has been pro-
vided in [8], together with a polynomial-time algorithm
to test such condition. This approach has been used in
further works such as [9, 10]. Yet another approach to-
wards studying s-structural controllability is that of zero
forcing sets [11, 12, 13, 14]. The two approaches, with
uniquely restricted matchings and with zero forcing sets,
give characterizations which are equivalent, although very
di↵erently phrased, as first shown in [12]. In this paper,
we will mostly focus on uniquely restricted matchings, but
we will also show how to rephrase our main results with
zero forcing sets.

The literature concerning s-structural ISO is, compara-
tively, rather thin. The results in [15] concern both linear
time-invariant (LTI) and linear time-varying (LTV) sys-
tems with fixed graphs, but are restricted to systems that
satisfy the following assumptions: each unknown input
acts on a single state, no two inputs act on a same state,
dedicated sensors are available (i.e., each measurement
concerns a single state), and there is no direct feedthrough
from input to output. The results in [16] do not require
the aforementioned assumptions, but concern LTV sys-
tems only (either with time-varying or with time-invariant
graph), while in this paper we are interested in LTI sys-
tems. A preliminary result about LTI systems can be in-
ferred from the results in [16]: by considering the case
of a time-invariant graph, the su�cient condition in [16,
Thm. 2] for s-structural ISO of an LTV system is a su�-
cient condition also for s-structural ISO of the LTI system
with the same graph. Indeed, this condition ensures that
the system is ISO for all possible non-zero parameters,
irrespective of how they vary in time, and hence in par-
ticular for all time-invariant ones. However, this condition
involves the so-called dynamic bipartite graph, which de-
scribes the system evolution over a time interval as long
as the number n of states and hence has a number of ver-
tices that grows quadratically with n. The use of the dy-
namic bipartite graph is natural for a time-varying prob-
lem, while for the time-invariant case it would be desirable
to have results involving a smaller graph, with a number
of vertices growing only linearly with n and hence compa-
rable with the size of the problem description. Moreover,
the above-discussed condition is only su�cient, and there
is no simple way to derive a necessary condition for the
LTI case from the LTV one.

Paper Contributions

The present paper gives su�cient conditions and neces-
sary conditions for s-structural ISO of LTI systems, with-
out the restrictive assumptions considered in [15], and in-
volving smaller graphs than the dynamic bipartite graph
considered in [16]. Our conditions are expressed in terms of
existence of suitable uniquely restricted matchings on bi-
partite graphs associated with the structured system. We
also present an algorithm to find such matchings, whose
complexity is linear in the total number of edges and ver-
tices of the bipartite graph, and we discuss an alternative
formulation involving color change rules as in the literature
on zero forcing sets.

Our main results are the following. First, we provide a
characterization of s-structural unconstrained ISO (The-
orem 1). Then, for s-structural ISO: Each of the condi-
tions in Theorem 1 and in Theorem 2 is necessary, while
the conditions in Theorem 1 and Theorem 3, together,
are su�cient. For the particular case of systems with no
direct feedthrough, by combining the conditions in Theo-
rem 1 and Theorem 4, we obtain a full characterization of
s-structural ISO. For general feedthrough, instead, there
is a gap between the necessary and su�cient conditions,
as we highlight with relevant examples.

A preliminary version of this paper has been presented
as [17]. The current paper improves upon the main re-
sults in [17] by providing a new su�cient condition for s-
structural delay-1 left invertibility (Theorem 3), and show-
ing that the old condition (presented here as Prop. 1) im-
plies the new one in a non-trivial way. This paper is en-
riched with examples that not only illustrate the applica-
tion of our main results, but also prove some relevant facts
about s-structural delay-1 left invertibility: the two above-
mentioned su�cient conditions are not equivalent to each
other, nor they are necessary, and the necessary condition
given in Theorem 2 is not su�cient. Furthermore, the sec-
tions on algorithms and their complexity and the results
involving coloring rules and zero forcing sets are novel.

Paper Outline

The rest of this paper is organized as follows. We for-
mally state the problem of interest in Section 2. The main
results are stated in Section 3 and an algorithmic reformu-
lation of the same is given in Section 4, together with a fur-
ther reformulation involving coloring rules and zero forcing
sets. Sect. 6 illustrates with examples the gaps between
the su�cient and the necessary conditions for s-structural
delay-1 observability. Sect. 5 introduces the main tools for
the proofs (also useful in the discussion of the examples
in Sect. 6), and the details of the proofs are given in Sec-
tions 7, 8 and 9. Finally, in Sect. 10 we summarize our
results and discuss some possible directions for future re-
search. The appendix discusses algorithmic complexity.
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Figure 1: Directed graph G. (a) Sketch of its construction; (b) Ex-
ample 1.

2. Problem formulation

Consider a discrete-time LTI network system, whose
dynamics are given by:

⇢
xk+1 = Axk +Buk

yk = Cxk +Duk
(1)

with state vector xk 2 Rn, unknown input vector uk 2 Rp

and output vector yk 2 Rm. Matrices A B, C and D

have some positions that are a priori fixed to zero, and
all other positions occupied by free parameters (that is,
distinct real-valued parameters, which can be chosen arbi-
trarily). The position of zeros represents the interactions
that cannot happen in this network system, while param-
eters represent the intensity of existing interactions. Such
a linear system with given zero positions and with free
parameters is called a structured system. A structured
system is usually described with a directed graph G, with
vertex set U [X [ Y , where U = {u1, . . . , up} are the in-
put vertices, X = {x1, . . . , xn} are the state vertices, and
Y = {y1, . . . , ym} are the output vertices. Edges of G cor-
respond to the non-zero entries of matrices A, B, C, D:
a non-zero entry aij of matrix A corresponds to an edge
(xj , xi), representing the influence of state xj(k) on the
state xi(k + 1), a non-zero entry bij of matrix B corre-
sponds to an edge (uj , xi), a non-zero entry cij of matrix
C corresponds to an edge (xj , yi), and a non-zero entry
dij of matrix D corresponds to an edge (uj , yi). Figure 1a
gives a pictorial reminder of this construction, while an
example is the following.

Example 1. Consider the system (1), with matrices

A =

2

4
a11 0 0
a21 0 a23

0 a32 0

3

5 , B =

2

4
b11 0
0 b22

0 0

3

5 ,

C =

2

4
0 c12 0
c21 0 c23

0 c32 0

3

5 , D =

2

4
d11 0
0 0
0 0

3

5 ,

where all non-zero entries are independent real-valued pa-
rameters. This is a structured system, whose directed graph
G is in Figure 1b.

This paper studies the system properties for recon-
struction of both unknown inputs and states from outputs.

Definition 1. System (1) is unconstrained ISO if there
exists some integer ` � 0 such that the initial condition x0

and the unknown inputs u0, u1, . . . , un�` can be uniquely
determined from the outputs y0, y1, . . . , yn. ⌅

In case the input reconstruction delay ` is constrained to
be equal to one, we will say that the system is ISO:

Definition 2. System (1) is ISO if the initial condition
x0 and the unknown inputs u0, u1, . . . , un�1 can be uniquely
determined from the measured outputs y0, y1, . . . , yn. ⌅

Notice that ISO is equivalent to unconstrained ISO to-
gether with the delay-1 left invertibility property, which is
defined as follows:

Definition 3. System (1) is delay-1 left invertible if the
input u0 can be uniquely determined from the initial state
x0 and the outputs y0 and y1. ⌅

The goal of this paper is to understand whether a struc-
tured system is (unconstrained) ISO for all possible non-
zero choices of its free parameters. In such a case, the sys-
tem will be said to be s-structurally (unconstrained) ISO.

3. Graphical conditions for s-structural ISO

In this section, we give the statement of our main
results: graphical conditions which fully characterize s-
structural unconstrained ISO, some su�cient and some
necessary conditions for s-structural delay-1 left invertibil-
ity, and the characterization of s-structural delay-1 left in-
vertibility in the case where D = 0. Recalling that ISO is
equivalent to unconstrained ISO together with delay-1 left
invertibility, these conditions together provide conditions
for s-structural ISO.

3.1. Uniquely restricted matchings

Our results rely on the notion of uniquely restricted
matching, which we recall in this section together with a
few related definitions.

Given a graph, a matching is a subset of edges such
that no two edges share a common vertex. The size of a
matching is its number of edges; if a matching has maxi-
mum size among all the matchings in the same graph, then
it is a maximum matching. We will say that a matching
covers those vertices that are an end-point of an edge in
the matching, and we will say that a vertex is matched if
it is covered by the matching, and unmatched otherwise.
Similarly we will say that an edge is matched if it belongs
to the matching and is unmatched otherwise.

Uniquely restricted matchings (also known as constrained
matchings) are defined as follows.

Definition 4 ([18, Definition 2.4]). Given a graph with
edge set E, a matching M ✓ E is uniquely restricted if
there exists no other matching M

0
✓ E covering exactly

the same set of vertices as M. ⌅

3
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Figure 2: Sketch of the construction of H, H⇥, and N . From N ,
Ñ is obtained by removing U1 and its incident edges, and N0 by
removing U1, Y0 and their incident edges.
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Figure 3: Bipartite graphs H, H⇥, N for Example 1. In H⇥, Eloop =
{(x1, x0

1)} and Enew = {(x2, x0
2), (x3, x0

3)}. Red edges represent the
uniquely restricted matchings M, M⇥ and L described in Sect. 3.

As shown in [19, Thm. 2.1], a matching M is uniquely
restricted if and only if the graph does not contain any
alternating cycle with respect to M, i.e., any cycle of even
length with edges alternating between matched and un-
matched edges.

3.2. Characterization of s-structural unconstrained ISO

In this section, we present a graphical characterization
of s-structural unconstrained ISO. The graphs involved in
its statement are not the directed graph G introduced in
Sect. 2, but two bipartite graphs defined as follows.

The bipartite graph H has left vertex set X [ U and
right vertex set X 0

[ Y , where U , X, and Y are the same
input, state, and output vertex sets used in the definition
of the directed graph G, while X 0 = {x

0

1, . . . , x
0

n} is a copy
of the state vertex set X. Edges of H are in one-to-one
correspondence with non-zero entries of matrices A, B, C,
D, as follows: aij 6= 0 corresponds to an edge (xj , x

0

i), bij 6=
0 corresponds to an edge (uj , x

0

i), cij 6= 0 corresponds to an
edge (xj , yi), and dij 6= 0 corresponds to an edge (uj , yi).
Notice that edges of H are in one-to-one correspondence
with edges of G.

The bipartite graph H⇥ is obtained from H by extend-
ing its edge set as follows. We will use the word ‘self-loops’
to indicate edges (xi, x

0

i), since such edges correspond to
actual self-loops (xi, xi) in G. We define Eloop as the set
of ‘self-loops’ that are edges of H, and Enew as the set of

‘self-loops’ that are not edges of H. We obtain H⇥ from
H, by adding all edges of Enew.

A sketch of the construction of H and H⇥ is given in
Figures 2a and 2b, while Figures 3a and 3b show H and
H⇥ for Example 1.

With these definitions in place, we have the following
characterization of s-structural unconstrained ISO.

Theorem 1. The structured system (1) is s-structurally
unconstrained ISO if and only if the following conditions
are satisfied:

i. in H there exists a uniquely restricted matching M

of size n+ p, and
ii. in H⇥ there exists a uniquely restricted matching

M⇥ of size n+ p, such that M⇥ \ Eloop = ;,

where n = |X| and p = |U |. ⌅

The conditions in Theorem 1 bear close resemblance to
those in [8, Theorem 5], which characterizes s-structural
controllability. When rephrased for observability by du-
ality, [8, Theorem 5] coincides with Theorem 1 for the
particular case where there is no unknown input in the
system (1), and hence the input vertex set U in H and H⇥

is empty.

Example 1 (continued). Consider the bipartite graph H

of Example 1, depicted in Fig. 3a. The following match-
ing M is uniquely restricted and has size 5 = n + p:
M = {(x1, x

0

1), (x2, x
0

3), (x3, y2), (u1, y1), (u2, x
0

2)}.
The bipartite graph H⇥ is shown in Fig. 3b. In this ex-

ample, Eloop = {(x1, x
0

1)} and Enew = {(x2, x
0

2), (x3, x
0

3)}.
The following matching M⇥ is uniquely restricted, does
not have any edge from Eloop, and has size 5 = n + p:
M⇥ = {(x1, y2), (x2, y3), (x3, x

0

3), (u1, y1), (u2, x
0

2)}.
We have shown that the structured system in Example 1

satisfies the two conditions i. and ii. of Thm. 1. Hence,
this system is s-structurally unconstrained ISO.

3.3. Conditions for s-structural delay-1 left invertibility

In this section, we present some necessary and some
su�cient conditions for s-structural delay-1 left-invertibility,
and its characterization in the case with D = 0. The bi-
partite graphs involved in the statements are N and its
subgraphs Ñ and N0, defined as follows.

The bipartite graph N has left vertex set U0 [X [ U1

and right vertex set Y0 [ X
0
[ Y1, where X and X

0 are
the same as in the definition of H, U0 = {u

0
1, . . . , u

0
p} and

U1 = {u
1
1, . . . , u

1
p} are two copies of the input vertex set,

and Y0 = {y
0
1 , . . . , y

0
m} and Y1 = {y

1
1 , . . . , y

1
m} are two

copies of the output vertex set. The edge set is constructed
as follows. For each index h = 0, 1, edges between Uh and
Yh are in one-to-one correspondence with non-zero entries
of D: an entry dij 6= 0 corresponds to edges (u0

j , y
0
i ) and

(u1
j , y

1
i ). Edges between U0 and X

0 are in correspondence
with non-zero entries of B, and edges between X and Y1

are in correspondence with non-zero entries of C: an entry

4



bij 6= 0 corresponds to an edge (u0
j , x

0

i) and an entry cij 6=
0 to an edge (xj , y

1
i ). Finally, all ‘self-loops’ (xi, x

0

i) are
added. Figure 2c shows a sketch of this construction, and
Figure 3c illustrates N for Example 1.

We also define Ñ as the subgraph of N obtained by
removing the vertices in U1 and all their incident edges,
andN0 as the subgraph of Ñ obtained by further removing
the vertices in Y0 and their incident edges.

We finally introduce the notation t-rk(D) to denote
the maximum rank that matrix D can attain, when the
parameters in its non-zero entries can take arbitrary real
values.

With the above-defined notation, we can study s-structural
delay-1 left-invertibility. We start with some necessary
conditions.

Theorem 2. The following conditions are necessary for
the structured system (1) to be s-structurally delay-1 left
invertible:

1. The size of the maximum matching of N is p+ n+
t-rk(D);

2. In Ñ there exists a uniquely restricted matching of
size p+ n,

where p = |U0| and n = |X|. ⌅
The following theorem gives a su�cient condition for

s-structural delay-1 left invertibility.

Theorem 3. The following condition is su�cient for the
structured system (1) to be s-structurally delay-1 left in-
vertible: in N there exists a uniquely restricted match-
ing such that the set S of unmatched left vertices satisfies
S ✓ U1 and there is no edge from S to any matched right
vertex. ⌅

Another su�cient condition for s-structural delay-1 left
invertibility is the following, which was presented in [17]
together with a simple direct proof of its su�ciency (see
[17, Thm. 2]).

Proposition 1. The following condition is su�cient for
the structured system (1) to be s-structurally delay-1 left
invertible: in N there exists a uniquely restricted matching
of size p+ n+ t-rk(D), where p = |U0| and n = |X|. ⌅
At a first glance, none of the two conditions of Thm. 3 and
Prop. 1 seems to imply the other. Indeed, both conditions
are about the existence of a suitable uniquely restricted
matching in N , and they require di↵erent properties of
such matching. Prop. 1 asks that such matching has size
p+ n+ t-rk(D), which is equivalent to asking that it cov-
ers all U0 [ X and t-rk(D) vertices of U1. Theorem 3,
instead, has the less stringent condition that the matching
covers all U0 [ X, without any requirement on the num-
ber of matched vertices in U1, but on the other hand it
has the additional requirement that there is no edge from
unmatched left vertices to matched right vertices.

In this paper we will show that the condition in Prop. 1
actually implies the one in Thm. 3, as stated below and
proved in Sect. 8.2.

Proposition 2. In the bipartite graph N , if there exists a
uniquely restricted matching of size p+n+t-rk(D), where
p = |U0| and n = |X|, then there exists a uniquely re-
stricted matching such that the set S of unmatched left
vertices satisfies S ✓ U1 and there is no edge from S to
any matched right vertex. ⌅

Clearly, thanks to Thm. 3, this provides an alternative
proof of Prop. 1, di↵erent from the simpler one in [17].
The interest of this new proof is that it shows that there is
no need to test both conditions separately: testing the con-
dition in Theorem 3 is enough, since the class of systems
that satisfy such condition includes all the systems that
satisfy the condition in Prop. 1. We will show in Sect. 6
that Example 2 satisfies the condition in Theorem 3 and
does not satisfy the condition in Prop. 1, thus showing that
the latter is a more stringent condition than the former.

Recalling that ISO is equivalent to unconstrained ISO
together with delay-1 left invertibility, each of the con-
ditions in Theorem 1 and in Theorem 2 is necessary for
s-structural ISO, and the the conditions in Theorem 1 and
Theorem 3, together, are su�cient for s-structural ISO.
Such conditions di↵er from the results in [15], where only
the case D = 0 is considered, and further assumptions are
made on matricesB and C. The case with general matrices
is new for time-invariant systems. From the results in [16]
about time-varying systems, we can only obtain a su�cient
condition, not necessary ones. Indeed, asking the system
to be ISO for all non-zero parameters, arbitrarily varying
in time, is a more stringent request than only asking ISO to
be satisfied for all constant non-zero parameters. The suf-
ficient condition from [16, Thm. 2] involves a large graph,
the so-called dynamic bipartite graph over a time interval
of length n, whose number of vertices grows quadratically
with n, while the results in Theorems 1, 2 and 3 involve
smaller graphs, with order linear in n and comparable with
the description of the LTI system. Moreover, the condi-
tion from [16, Thm. 2] turns out to imply the condition
in Prop. 1, since the dynamic bipartite graph contains N
as a subgraph, and the uniquely restricted matching men-
tioned in [16, Thm. 2] gives a uniquely restricted matching
in N of size p+n+t-rk(D) as required in Prop. 1. Hence,
the su�cient condition from [16, Thm. 2] is actually more
stringent than conditions in Thm. 1 and Thm. 3 together.

In general, there is a gap between the necessary con-
ditions in Theorem 2 and the su�cient condition in The-
orem 3, as we will show in Sect. 6. However, in the case
where D = 0, i.e., there is no direct feedthrough of the in-
put to the output, then there is no gap: the conditions in
Theorem 2 are equivalent to the condition in Theorem 3, so
that we have the following characterization of s-structural
delay-1 invertibility.

Theorem 4. If D = 0, then the structured system (1) is
s-structurally delay-1 left invertible if and only if in the bi-
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partite graph N0 there exists a uniquely restricted matching
of size p+ n, where p = |U0| and n = |X|. ⌅

Proof: Since D = 0, the three bipartite graphs N ,
Ñ , and N0 have the same edges and only di↵er by some
stranded vertices, which are irrelevant for the existence
of a uniquely restricted matching of some required size.
Finally notice that D = 0 implies t-rk(D) = 0, so that
the required size is p+ n both in the necessity and in the
su�ciency part. ⇤

Theorem 1 and Theorem 4, together, give the char-
acterization of s-structural ISO for the systems without
direct feedthrough of the input to the output (D = 0).
This result encompasses a larger class of systems than the
characterization of s-structural ISO in [15] (see Thm. 2
together with Remark 6), which required more stringent
assumptions, not only D = 0, but also assumptions on
B and C: each unknown input acts on a single state, no
two inputs act on a same state, and dedicated sensors are
available (i.e., each measurement concerns a single state).

Example 1 (continued). Consider the bipartite graph N

of Example 1, depicted in Fig. 3c. Consider the set of
edges L = {(u0

1, y
0
1), (u0

2, x
0

2), (x1, x
0

1), (x2, y
1
3), (x3, y

1
2),

(u1
1, y

1
1)}. Notice that L is a uniquely restricted match-

ing, and that the set of left vertices not covered by L is
S = {u

1
2} ⇢ U1. Hence, this system satisfies the su�cient

condition for s-structural delay-1 left invertibility given in
Thm. 3. Also notice that L is a maximum matching of N .
Hence, this system also satisfies the su�cient condition
given in Prop. 1.

We have obtained here that this structured system is s-
structurally delay-1 left-invertible. Recalling that this sys-
tem is also s-structurally unconstrained ISO (see Sect. 3.2),
we obtain that it is s-structurally ISO.

4. Algorithmic versions of the graphical conditions

In this section we show that all graphical conditions in
the main results from Sect. 3 can be tested in polynomial
time. More precisely, most conditions can be tested with a
complexity which is linear with respect to the total num-
ber of vertices and edges in the relevant bipartite graph;
this corresponds to a linear complexity with respect to p,
n, m (the sizes of input, state and output vector) and µ

(the size of the parameter space, i.e., the total number of
non-zero entries in matrices A, B, C, and D). We will
further discuss how to rephrase the conditions involving
color change rules, as in the literature on zero forcing sets.

4.1. Main algorithm and its properties

We present here the main algorithm to be used for test-
ing the graphical conditions from Sect. 3. This algorithm
takes as input a bipartite graph B (with left vertex set V ,
right vertex set W and edge set E) and a subset of edges
F ✓ E . The output of the algorithm consists of a set of
edges M and a set of left vertices S, whose properties are

discussed in the remainder of this subsection. In Sect. 4.2
we will describe which input needs to be considered, so
that the output of Algorithm 1 is informative about s-
structural unconstrained ISO and delay-1 left invertibility.

Algorithm 1

Input: B = (V,W, E), F .
Initialization: M = ;, S = V ,
T = the set of vertices inW having degree 1 and incident
edge not in F .
while T 6= ; do:

Pick w 2 T ;
v = the unique neighbor of w;
Add edge (v, w) to M;
Remove v from S;
Remove v from B (i.e., remove v from V , and remove

all edges incident to v from E);
T = the set of vertices in W currently having de-

gree 1 and incident edge not in F .
end while

Return: S, M.

In the remainder of this subsection, we will study the
properties of the output of Algorithm 1, which make it
relevant for testing s-structural (unconstrained) ISO.

Remark 1. We consider the output M, S of Algorithm 1.
We denote by (v1, w1), . . . , (vs, ws) the edges of M. We
can easily see that M is a matching, since vertices v1, . . . , vs
and w1, . . . , ws are all distinct by construction. We also
notice that M does not contain any edge from the set F ,
i.e., M \ F = ;; for this reason, we will refer to F as
the set of forbidden edges, since Algorithm 1 is forbidden
to use such edges in the construction of the matching M.
Also, by construction, S = V \ {v1, . . . vs}, i.e., S is the
set of left vertices that are not covered by M.

In the case where there is more than one right vertex
with degree 1 and incident edge not in F , Algorithm 1
does not specify which of such vertices should be picked
first; this choice can be made arbitrarily, as ensured by the
following Proposition, whose proof is in Sect. 9.1.

Proposition 3. Consider two runs of Algorithm 1, that
might make di↵erent choices when picking a vertex w 2 T ,
and let M1, S1, and M2, S2 be their outputs. Then M1

and M2 have the same cardinality, and S1 = S2. ⌅
This property is important, because it shows that we

can make statements about ‘the output S of Algorithm 1’,
without the need to specify the rule used in Algorithm 1
for picking one among multiple right vertices with degree 1
and incident edge not in F .

Proposition 4 below clarifies that Algorithm 1 finds
a uniquely restricted matching, and more precisely the
largest uniquely restricted matching with some given prop-
erties. See Sect. 9.1 for its proof.
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Proposition 4. The output M of Algorithm 1 is a match-
ing satisfying the following three properties: 1) it is uniquely
restricted, 2) M\F = ;, and 3) there is no edge from un-
matched left vertices to matched right vertices.

S is the set of the left vertices not covered by M.
If M

0 is another matching satisfying the three prop-
erties above, then |M

0
|  |M| and the set S

0 of its un-
matched left vertices satisfies S ✓ S

0.
In particular, S = ; if and only if there exists a uniquely

restricted matching with no edge from F and covering all
the left vertex set. ⌅

Notice that, in general, Algorithm 1 does not find the max-
imum uniquely restricted matching in B (even when set-
ting F = ;), but rather finds the largest one that satisfies
the above properties. Actually, the problem of finding the
maximum uniquely restricted matching is NP-complete for
bipartite graphs [19, Thm. 3.3]. Algorithm 1 (in a slightly
di↵erent form discussed in Remark 4 in Sect. 5.2) has been
used in [8, 9, 10] to test s-structural observability. Such
test, rephrased for observability by duality, amounts to
finding whether there is a uniquely restricted matching
(without edges from a forbidden set F) that covers all the
left vertex set, in two suitable bipartite graphs. In this
paper we have similar tests, and moreover we also need to
consider a more general case, where not all left vertex set
is covered.

4.2. Testing s-structural ISO using Algorithm 1

Thanks to Prop. 4, the conditions for s-structural ISO
given in Sect. 3 can be tested using Algorithm 1, as we
will present in details below. In particular, this means
that they can be tested in polynomial time with respect
to p, n, m (the sizes of input, state and output vector) and
µ (the size of the parameter space, i.e., the total number
of non-zero entries in matrices A, B, C, and D).

The characterization of s-structural unconstrained ISO
given in Thm. 1 is equivalent to the following.

Theorem 5. The structured system (1) is s-structurally
unconstrained ISO if and only if the following conditions
are satisfied:

i. Algorithm 1 with input B = H and F = ; returns
S = ;, and

ii. Algorithm 1 with input B = H⇥ and F = Eloop re-
turns S = ;. ⌅

Indeed, by Prop. 4 conditions i. and ii. in Thm. 1 are
equivalent to the corresponding conditions in Thm. 5. As
discussed in Appendix A, both conditions can be tested
with complexity O(p+ n+m+ µ).

We then rephrase the necessary conditions for s-structural
delay-1 left invertibility from Theorem 2.

Theorem 6. The following conditions are necessary for
the structured system (1) to be s-structurally delay-1 left
invertible:

1. The size of the maximum matching of N is p+ n+
t-rk(D), where p = |U0| and n = |X|, and

2. Algorithm 1 with input B = Ñ and F = ; returns
S = ;. ⌅

The first condition is the same as in Thm. 2, and the equiv-
alence of the second condition with the correponding con-
dition in Thm. 2 is obtained with Prop. 4.

The first condition in Thm. 6 can be checked with clas-
sical polynomial-time algorithms for finding the maximum
matching, e.g., with Hopcroft-Karp algorithm [20], whose
complexity is O(

p
p+ n+m (p+n+m+µ)). Testing the

second condition has complexity O(p + n + m + µ), see
Appendix A.

Finally, we turn our attention to the su�cient condi-
tion for s-structural delay-1 left invertibility given in The-
orem 3, and to the characterization of s-structural delay-1
left invertibility for the case with D = 0 given in Theo-
rem 4. Again, the reformulations given below are obtained
using Prop. 4 and the given conditions can be tested in
O(p+ n+m+ µ) as discussed in Appendix A.

Theorem 7. The following condition is su�cient for the
structured system (1) to be s-structurally delay-1 left in-
vertible: Algorithm 1 with input B = N and F = ; returns
S ✓ U1. ⌅

Theorem 8. If D = 0, then the structured system (1)
is s-structurally delay-1 left invertible if and only if Algo-
rithm 1 with input B = N0 and F = ; returns S = ;. ⌅

Concerning the su�cient condition given in Prop. 1 for
s-structural delay-1 left invertibility, there is no need to
test it: it is enough to test for the condition in Theorem 3.
Indeed, Prop. 2 shows that the class of systems that satisfy
the condition in Theorem 3 includes all the systems that
satisfy the condition in Prop. 1. However, the interested
reader can see in Sect. 8.1 that the same technique used
to prove Prop. 2 also provides a technique for testing the
condition in Prop. 1 in polynomial time, as described in
Remark 5.

4.3. Color change rules on G and zero forcing sets

Two main approaches have been used in recent litera-
ture on s-structural controllability. On the one side, there
are characterizations involving uniquely restricted match-
ings on a bipartite graph, together with algorithms sim-
ilar to Algorithm 1, as discussed throughout this paper.
On the other hand, literature on zero forcing sets presents
characterizations involving the directed graph G, with al-
gorithms described as color change rules. At initializa-
tion, a subset Vblack ⇢ V of vertices are colored black, and
all other vertices are colored white; then the color change
rule iteratively changes vertices from white to black under
specified conditions, until no further color changes are pos-
sible. If the algorithm ends with all vertices being black,
then Vblack is called a zero forcing set. It has been shown
that s-structural controllability is equivalent to the fact
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that the set of input vertices is a zero forcing set for suit-
able color change rules (see [12, Theorem 5.5] for a pre-
cise statement and its proof). The two approaches, with
uniquely restricted matchings in bipartite graphs or with
zero forcing sets in the directed graph, are equivalent, as
first established in [12, Theorem 5.4].

In this section, we will show that most of our results can
be easily rephrased with the use of suitable color change
rules applied to the directed graph G or to a subgraph of G.

Definition 5. Given a directed graph, and given an ini-
tial coloring of its vertices with a subset Vblack of vertices
colored black and all other vertices colored white, we define
the following two color change rules (the second rule also
requires a given subset V2 of vertices, to which a further
coloring rule applies).

Color change rule n. 1: If a vertex v is the unique white
in-neighbor of a vertex w, then change v from white
to black.

Color change rule n. 2: If a vertex v is the unique white
in-neighbor of a black vertex w, or if v 2 V2 is a white
vertex with no white in-neighbor, then change v from
white to black.

The characterization of s-structural unconstrained ISO
given in Thm. 1 (or its equivalent reformulation using Al-
gorithm 1 given in Thm. 5) can be rephrased with the
use of the two above-defined color change rules, as stated
below and proved in Sect. 9.2.

Theorem 9. The structured system (1) is s-structurally
unconstrained ISO if and only if the following conditions
are satisfied:

i. Color change rule n. 1 applied to the directed graph
G with Vblack = Y stops with all vertices being black,
and

ii. Color change rule n. 2 applied to the directed graph
G with Vblack = Y and V2 = X stops with all vertices
being black. ⌅

Expressing the conditions concerning delay-1 left in-
vertibility with a color change rule on G is more involved:
the bipartite graphs N and Ñ used in Theorems 2 and 3
and in Prop. 1 have a double appearance of Y in the right
vertex set, and this would require special care to distin-
guish their roles, defining a color change rule that sepa-
rates the e↵ect of edges from ED and of edges from EC .
Moreover, N also has a double appearance of U in the
left vertex set, and this is even more di�cult to be taken
into account. One might devise a coloring associating two
colors to each vertex of U , but this cumbersome rule will
not be presented here. Another alternative is to use color
change rule n. 1 on some directed graphs di↵erent from G,
such as the dynamic graph with vertices U0, Y0, X1, U1, Y1

(see [21, Chapter 2] or [16] for a definition of the dynamic
graph of a structured system) and a suitable subgraph of
it.

In this paper, we will only consider the case D = 0,
where the bipartite graph N0 involved in the characteriza-
tion of delay-1 left invertibility in Theorem 4 has a single
appearence of U and of Y and hence gives rise to a simple
characterization involving a coloring rule on a subgraph
of G, as stated below and proved in Sect. 9.2.

Theorem 10. Let G0 be the subgraph of G obtained by
removing all edges between state vertices. In other words,
G0 has vertex set U [ X [ Y and edges corresponding to
non-zero entries of B, C and D. If D = 0 (i.e., there
are no edges from U to Y ) then the structured system (1)
is s-structurally delay-1 left invertible if and only if color
change rule n. 2 applied to G0 with Vblack = Y and V2 = X

stops with all vertices being black. ⌅

5. From rank conditions to existence of suitable

matchings

In this section we present the main tools that we will
use in our proofs in Sections 7, 8 and 9, as well as in the
study of examples in Sect. 6.

We start with known algebraic characterizations of (un-
constrained) ISO that involve rank conditions, then we re-
call important relations between the rank of a matrix and
suitable matchings in bipartite graphs, building upon the
literature on structured systems [21], uniquely restricted
matchings [18, 19] and s-structural controllability [7, 8].

5.1. Algebraic characterizations of (unconstrained) ISO
Both unconstrained ISO and delay-1 left invertibility

have been studied in the systems theory literature, and
there are well known algebraic characterizations of them,
see e.g. [1, 2, 3]. Hereafter we will recall only the two
characterizations that we will use in this paper, from [22,
23].

Lemma 1 ([22, Theorems 2.7 and 2.8]). System (1) is
unconstrained ISO if and only if the corresponding matrix
pencil

P (z) =


A� zI B

C D

�

has full column rank for all z 2 C. ⌅
Lemma 2 ([23, Prop. 2]). System (1) is delay-1 left in-
vertible if and only if rk(Q) = p+n+rk(D), where p is the
size of the input vector, n is the size of the state vector,
and

Q =

2

4
D 0 0
B �I 0
0 C D

3

5 . ⌅

Remark 2. When looking for a necessary condition for
s-structural delay-1 left invertibility, we will also use the
following immediate consequence of Lemma 2. We define
Q̃ to be the submatrix of Q formed by its first p+n columns,
and we notice that rk(Q̃) = p+ n is a necessary condition
for rk(Q) = p+ n+ rk(D), and hence also for System (1)
to be delay-1 left invertible. ⌅
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There is a fundamental connection between the above-
defined matrices P (z), Q and Q̃ and the bipartite graphs
H, H⇥, N , and Ñ used in Sect. 3 to state our main results.
We discuss the same in the following subsection.

5.2. Structured matrices and associated bipartite graphs

In this paper, we will use the following definitions of
structured matrices and pattern matrices (note that a dif-
ferent vocabulary is used in some other papers). We say
that a matrix M is a structured matrix if its entries are
real polynomials in some variables, say �1, . . . ,�µ. We
consider the variables as real-valued parameters. We say
that a structured matrix M is a pattern matrix if all its
non-zero entries are of the form �i, with all i’s being dis-
tinct.

It is customary [21] to define the bipartite graph B(M)
associated to the structured matrix M in the following
manner: the left vertex set is the set of all columns of
M , the right vertex set is the set of all rows of M , and
there is an edge from column j to row i if and only if Mij

is not the all-zero polynomial. This associated bipartite
graph plays a crucial role in various properties related to
the rank of M .

The important connection between the matrices P (z),
Q and Q̃ from Sect. 5.1 and the bipartite graphs H, H⇥,
N , and Ñ from Sect. 3 can now be highlighted.

Remark 3. Matrices P (z), Q and Q̃ are structured ma-
trices. Their associated bipartite graphs are B(P (z)) =
H⇥, B(Q) = N , and B(Q̃) = Ñ . Moreover, when evalu-
ated at z = 0, the matrix pencil P (z) yields P (0) = [A B

C D ],
which is a pattern matrix, whose associated bipartite graph
is B(P (0)) = H.

Another interesting remark is the following.

Remark 4. When Algorithm 1 is applied to the bipartite
graph B(M) associated with a structured matrix M , the al-
gorithm can be equivalently rephrased by considering rows
and columns of M instead of the corresponding right and
left vertices of B(M). In this formulation, the algorithm
takes as input a matrix M and a set of forbidden positions
in the matrix. At each iteration, the algorithm looks for
a row w with a unique non-zero entry, which moreover is
not in a forbidden position; denoting by (w, v) the position
of such unique non-zero entry, the algorithm then removes
column v from the matrix. This rule for peeling o↵ the
columns of a matrix has been introduced in [8] as an algo-
rithm for testing s-structural controllability, and used for
the same purpose in subsequent works such as [9, 10].

5.3. Rank of structured matrices

The rank of a structured matrix M clearly depends on
the value of the parameters, but some relevant information
about it can be obtained from the bipartite graph B(M).

A graphical notion that plays a relevant role is the one
of term rank, see e.g. [21, Chapter 2]. The term rank of a

structured matrix M , denoted t-rk(M), is defined as the
size of the maximum matching in B(M). For any choice
of the parameters, rk(M)  t-rk(M). Moreover, if M

is a pattern matrix, then rk(M) = t-rk(M) generically,
i.e., for all parameters except possibly a proper sub-variety
of the parameter space. In particular, if M is a pattern
matrix, then t-rk(M) is the maximum rank that M can
attain, when the parameters vary arbitrarily among real
values. Notice that D is a pattern matrix, which justifies
the notation t-rk(D) introduced in Sect. 3.3.

Uniquely restricted matchings have been introduced in
[18] to obtain the following result on the rank of a pattern
matrix for all non-zero parameters.

Lemma 3 ([18, Thm. 3.9]). If M is a pattern matrix,
then the following are equivalent:

• rk(M) = r for all non-zero parameters;

• t-rk(M) = r and there exists a uniquely restricted
matching of size r in B(M). ⌅

A deeper understanding of the role of a uniquely restricted
matching in the associated bipartite graph of a matrix will
be given in the next subsection.

5.4. Uniquely restricted matchings and triangular subma-
trices

The following result gives a characterization of uniquely
restricted matchings in bipartite graphs. This is the key
tool that reveals the relation between uniquely restricted
matchings and rank, and this is also the main tool to prove
that the output M of Algorithm 1 is uniquely restricted.

Lemma 4 ([19, Thm. 3.1]). Let B be a bipartite graph,
with left vertex set V , right vertex set W , and edge set E. A
matching M ✓ E of size s is uniquely restricted if and only
if there exists a reordering of vertices V = {v1, . . . , v|V |}

and W = {w1, . . . , w|W |} such that M = {(vi, wi)}si=1 and
moreover (vj , wi) /2 E for 1  i < j  s. ⌅

When applying Lemma 4 to the bipartite graph B(M)
associated with a structured matrix M , the relabeling of
left vertices in the lemma corresponds to a permutation
of columns of M and the relabeling of right vertices to a
permutation of rows. More precisely, define two permu-
tation matrices P1 and P2, where right multiplication of
M by P2 permutes the columns of M , moving the col-
umn corresponding to vertex vj to position j, while left
multiplication by P1 permutes the rows, moving the row
corresponding to vertex wi to position i. With this nota-
tion, the square submatrix of P1MP2 formed by its first
s rows and columns has diagonal entries corresponding
to the edges of the uniquely restricted matching M =
{(v1, w1), . . . , (vs, ws)}, i.e., [P1MP2]ii = Mwivi 6= 0 for
i = 1, . . . , s, and moreover it is lower triangular, since
(vj , wi) /2 E for 1  i < j  s means that [P1MP2]ij = 0
for 1  i < j  s.
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Following the definition of Forms I, II and III in the
literature (see e.g. [7]), we adopt the following definition
from [15]: a matrix is in Form IV if it is equal to

2

6666666664

⇥

⇥ 0
.
.
.

⇥

* ⇥

*

3

7777777775

where ⇥ denote entries which are a non-zero polynomial,
0 denote entries equal to zero and ⇤ denote unspecified
entries, which might or might not be zero.

A uniquely restricted matching of B(M) covering all
the left vertex set corresponds to P1MP2 being in Form IV,
with the⇥-terms corresponding to the edges in the uniquely
restricted matching.

A uniquely restricted matching of B(M) of smaller size
s corresponds to P1MP2 having two blocks of columns: a
first block of s columns which is in Form IV, and then the
remaining columns, whose entries are all unspecified (⇤),
as follows

P1MP2 =

2

6666666664

⇥

⇥ 0
.
.
. *

⇥

* ⇥

* *

3

7777777775

A uniquely restricted matching of B(M) such that there
is no edge from unmatched left vertices to matched right
vertices corresponds to P1MP2 as follows:

P1MP2 =

2

6666666664

⇥

⇥ 0
.
.
. 0

⇥

* ⇥

* *

3

7777777775

(2)

where the zero block in upper-right position corresponds to
the absence of edges from unmatched left vertices (columns
j > s, corresponding to vertices in S) to matched right ver-
tices (first s rows).

Clearly the above correspondences can be used in both
the directions. Given a uniquely restricted matching of size
s in B(M) (with no edge from unmatched left vertices to
matched right vertices), after reordering it as in Lemma 4,
we can use it to find permutation matrices P1, P2 such
that the submatrix with the first s columns of P1MP2

is in Form IV (and the rest of the first s rows is zero).

And, vice-versa, given permutation matrices P1, P2 such
that the submatrix with the first s columns of P1MP2 is
in Form IV (and the rest of the first s rows is zero) we
can find a uniquely restricted matching of size s in B(M)
(with no edge from unmatched left vertices to matched
right vertices).

6. Conditions in Thm. 2, Thm. 3 and Prop. 1 are

not equivalent.

In this section we present some examples that clarify
the limitations of the su�cient and of the necessary con-
ditions for s-strucutral delay-1 left-invertibility given in
Sect. 3.3. Example 2 will highlight the gap between the
more restrictive su�cient condition in Prop. 1 and the less
restrictive one in Thm. 3, while Examples 3 and 4 will
show the gap between the su�cient condition in Thm. 3
and the necessary condition in Thm. 2, by proving that
the former is not necessary and the latter is not su�cient.
Throughout this section, we will only define matrices B,
C, and D for our examples. Indeed, matrix A is irrelevant
for characterizing delay-1 left-invertibility, since it is not
involved in the algebraic characterization in Lemma 2, nor
in the construction of the bipartite graphs used in Thm. 2,
Thm. 3 and Prop. 1.

We start by considering the two su�cient conditions for
s-structural delay-1 left-invertibility given in Thm. 3 and
Prop. 1. We have shown in Prop. 2 that the latter implies
the former. We will now exhibit a structured system that
satisfies the former but not the latter, thus showing that
the su�cient condition in Thm. 3 encompasses a broader
class of systems.

Example 2. Consider the structured system (1) with any
5⇥ 5 matrix A, and matrices

B =

2

66664

0 0 0
b21 0 0
0 b32 0
0 0 0
0 0 0

3

77775
, C =

2

66664

0 0 c13 0 0
c21 0 c23 c24 0
c31 c32 0 0 0
0 0 0 c44 c45

0 0 c53 0 0

3

77775
,

D =

2

66664

d11 0 0
0 0 0
0 d32 d33

0 d42 d43

0 0 0

3

77775
.

Its bipartite graph N is shown in Fig. 4.
Running Algorithm 1 with input B = N and F = ;,

we obtain the following uniquely restricted matching of
N , covering all left vertices except S = {u

1
2, u

1
3} ✓ U1,

and thus satisfying the su�cient condition for s-structural
delay-1 left invertibility in Theorem 3: M1 = {(u0

1, y
0
1),

(x1, x
0

1), (x2, x
0

2), (x4, x
0

4), (x5, x
0

5), (x3, y2), (u0
2, x

0

3), (u
0
3, y

0
4),

(u1
1, y

1
1)} (see edges highlighted in red in Figure 4).

Now we can see that this system does not satisfy the
more stringent su�cient condition for s-structural delay-1
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Figure 4: Bipartite graph N for Example 2. Red edges form a
uniquely restricted matching M1.

left invertibility given in Prop. 1. Indeed, t-rk(D) = 3,
and hence p + n + t-rk(D) = 11, which equals the size
of the left vertex set. This means that the condition in
Prop. 1, applied to this system, requires the existence of
a uniquely restricted matching covering all the left vertex
set. By Prop. 4, since Algorithm 1 has returned S 6= ;,
such condition is not satisfied.

The next two examples highlight the gap between the
su�cient condition in Theorem 3 and the necessary con-
ditions in Theorem 2. Example 3 below shows a system
where the su�cient condition from Theorem 3 fails, but
nevertheless the system is s-structurally delay-1 left in-
vertible.

Example 3. Consider the structured system (1) with any
4⇥ 4 matrix A, and matrices

B=

2

664

b11 0
0 b22

0 0
0 0

3

775, C=

2

664

c11 0 0 0
c21 c22 0 0
0 0 0 0
0 0 0 c44

3

775, D=

2

664

d11 d12

d21 d22

d31 d32

0 0

3

775.

Its bipartite graph N is shown in Fig. 5a.

(a) (b)

Figure 5: Bipartite graphs for Example 3: (a) N , with in red the two
edges of the uniquely restricted matching obtained with Algorithm 1;
(b) B(Q̄), where Q̄ is the submatrix of Q formed by the first seven
columns; red edges form the uniquely restricted matching M̄.

This system does not satisfy the su�cient condition for
s-structural delay-1 left invertibility given in Thm. 3. In-
deed, Algorithm 1, when running with input B = N and
F = ;, can only remove left vertices x3 and x4 and then
stops, with unmatched left vertices S = {u

0
1, u

0
2, x1, x2, u

1
1, u

1
2},

which is not a subset of U1 and instead also includes ele-
ments of U0 and of X.

Now we will show that rk(Q) = p + n + rk(D) for
all non-zero parameters, i.e., this system is s-structurally
delay-1 left invertible. To do so, we will exploit the fact
that Q is not a pattern matrix: some non-zero entries of
Q cannot be chosen independently, since each of the pa-
rameters d11, d12, d21, d22, d31, d32 appears in two di↵erent
positions.

We will consider separately the two cases, where rk(D) =
2 and rk(D) = 1; notice that rk(D) cannot be zero with
non-zero parameters.

When rk(D) = 2, Q is a block-lower-triangular matrix,
and the blocks on the diagonal are D, �I and D, each
having full column rank. Hence, rk(Q) = 2 + 4 + 2 =
p+ n+ rk(D).

When rk(D) = 1, the second column of D is parallel
to the first one; this also means that the eighth column
of Q is parallel to the seventh one, and rk(Q) = rk(Q̄),
where Q̄ is the submatrix of Q formed by the first seven
columns only, without the eighth one. Considering the bi-
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(a) (b)

Figure 6: Bipartite graphs for Example 4: (a) N ; the edges in match-
ing M2 are highlighted in red; (b) Ñ ; the edges in matching M3 are
highlighted in red.

partite graph B(Q̄) associated with Q̄ (see Fig. 5b) and
applying Algorithm 1 with input B = B(Q̄) and F = ;, we
can find the following uniquely restricted matching cover-
ing all the left vertex set of B(Q̄): M̄ = {(x3, x

0

3), (x4, x
0

4),
(u1

1, y
1
3), (x1, y

1
1), (x2, y

1
2), (u

0
1, x

0

1), (u
0
2, x

0

2)}. As shown in
Sect. 5.4, this is equivalent to the existence of permutation
matrices P1 and P2 such that P1Q̄P2 is in Form IV, and
the ⇥-terms correspond to the edges of the matching M̄,
so that they are equal to �1, �1, d31, c11, c22, b11, b22.
This shows that rk(Q̄) = 7 for all non-zero parameters,
and hence also rk(Q) = 7 = p+n+rk(D) for all non-zero
parameters such that rk(D) = 1.

The following example shows a system where the nec-
essary conditions from Thm. 2 are satisfied, but this is not
enough to ensure that the system is s-structurally delay-1
left invertible.

Example 4. Consider the structured system (1) with any
4⇥ 4 matrix A and the following matrices B, C, and D:

B =

2

664

0 b12

0 b22

0 b32

0 b42

3

775 , C =

2

4
0 0 c13 0
0 0 c23 c24

0 0 c33 c34

3

5 , D =

2

4
d11 0
d21 0
d31 0

3

5 .

The relevant bipartite graphs, N and Ñ , are depicted in
Figures (6a) and (6b), respectively.

This example satisfies both necessary conditions for s-
structural delay-1 left invertibility given in Theorem 2. For
the first one, notice that t-rk(D) = 1 and the following
matching in N has size 7 = p + n + t-rk(D): M2 =

{(u0
1, y

0
1), (u

0
2, x

0

4), (x1, x
0

1), (x2, x
0

2), (x3, x
0

3), (x4, y
1
2), (u

1
1, y

1
3)}.

For the second one, the following matching is a uniquely
restricted matching of Ñ of size 6 = p+n: M3 = {(u0

1, y
0
1),

(u0
2, x

0

4), (x1, x
0

1), (x2, x
0

2), (x3, x
0

3), (x4, y
1
2)}.

This system is not s-structurally delay-1 left invert-
ible. Here is an example of non-zero parameters such that
rk(Q) = 6 < p+ n+ t-rk(D) = 7:

B =

2

664

0 1
0 1
0 1
0 1

3

775 , C =

2

4
0 0 1 0
0 0 1 1
0 0 �1 �1

3

5 , D =

2

4
�1 0
�2 0
2 0

3

5 .

7. Proofs of Theorems 1, 2, 3

These proofs are based on the algebraic characteriza-
tions from Lemmas 1 and 2. Since we are studying s-
structural properties, the rank conditions are to be satis-
fied for all non-zero parameters. Such requirement will be
turned into graphical conditions, using Lemma 3 (i.e., [18,
Thm. 3.9]) and modified versions of its proof. The tech-
niques to go beyond pattern matrices and study P (z) are
similar to the ones introduced in [7, 8] to characterize s-
structural controllability. Delay-1 left invertibility requires
particular care: di↵erently from all results on s-structural
controllability, Theorem 3 does not involve a uniquely re-
stricted matching covering all the left vertex set. Its proof
will use the discussion in Sect. 5.4, with a permuted matrix
as in (2) instead of in Form IV as in previous results.

7.1. Proofs of necessity

In this subsection we prove the necessity part of The-
orem 1 and Theorem 2.

For the necessity part of Theorem 1, we consider the al-
gebraic characterization of unconstrained ISO from Lemma 1,
which implies the following two necessary conditions for s-
structural unconstrained ISO: P (0) has full column rank
for all non-zero parameters, and P (1) has full column rank
for all non-zero parameters. We will show that condition
i. of Thm. 1 is necessary for the former, and condition ii.
is necessary for the latter.

Recall that P (0) = [A B
C D ] is a pattern matrix, with as-

sociated bipartite graph B(P (0)) = H. Hence, by Lemma 3,
it has full column rank n + p if and only if there exists a
uniquely restricted matching of size n+ p in H.

For P (1) =
⇥
A�I B
C D

⇤
, instead, we will use the Lemma 5

given below, which is a modified version of Lemma 3, in-
spired by [7, 8], and adapted to the presence of �1’s in
some entries of the matrix. In this lemma, we will consider
the submatrices of P (1) formed by selecting s columns of
P (1), and the associated bipartite graphs, which are the
subgraphs of H⇥ having left vertex set reduced to the s

vertices corresponding to the selected columns. Lemma 5
gives the desired statement by setting s = n + p, but has
a formulation with general s, more suitable for the proof
by induction.
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Lemma 5. Let s be an integer, 1  s  n + p. For any
matrix Ps formed with s columns of P (1), if there does

not exist a uniquely restricted matching M
(s)
⇥

of size s in

B(Ps) that satisfies M
(s)
⇥

\Eloop = ;, then either Ps = 0 or
there exist non-zero parameters such that the correspond-
ing numerical realization of Ps satisfies rk(Ps) < s. ⌅

Proof: The proof is by induction on s. The base
case is s = 1, where P1 is a column of P (1) (say the i-th
column) and hence B(P1) has only one vertex in its left
vertex set. This implies that each edge is a matching of
size 1, and is also a uniquely restricted matching. Hence,
if there does not exist a uniquely restricted matching in
B(P1) with empty intersection with Eloop, then all edges
of B(P1) are in Eloop. This means that P1 is either the
all-zero vector, or a vector with a unique non-zero entry,
which is equal to aii � 1 since the corresponding edge is
in Eloop. In the latter case, we can set aii = 1 and notice
that this non-zero parameter corresponds to P1 = 0, which
implies rk(P1) = 0 < s = 1.

Now we assume that the claim holds for s�1 (inductive
assumption) and we prove that this implies that the claim
holds for s. There are two cases, that require di↵erent
proofs.

Case a): there exists a row of Ps having exactly one
non-zero entry, and such that this non-zero entry is not
of the form aii � 1, i.e., it is either a free parameter, or
�1. Say that this is the k-th row, and its non-zero entry
is in position (k, `). Denote by Ps�1 the submatrix of Ps

obtained by removing the `-th column. Notice that Ps�1

is a matrix formed with s� 1 columns of P (1). If there
is no uniquely restricted matching of size s in B(Ps) with
empty intersection with Eloop, then there is no uniquely
restricted matching of size s�1 in B(Ps�1) with empty in-
tersection with Eloop; indeed, if the latter existed, then one
would obtain the former simply by adding the edge corre-
sponding to the (k, `)-th entry of Ps. Hence, by inductive
assumption applied to Ps�1, either Ps�1 = 0 or there ex-
ists some non-zero parameters such that the corresponding
numerical realization of Ps�1 has rk(Ps�1) < s� 1. With
the same parameters (if any), together with an arbitrary
non-zero value for the (k, `)-th entry in case it is a free
parameter, we have a choice of non-zero parameters such
that rk(Ps) < s.

Case b): the complement of case a). This means that
all rows of Ps fall in the following categories: 1) all-zero
row; 2) a row with p � 1 non-zero entries, one of which
of the form aii � 1 for some i, and p � 1 of which being
free parameters; 3) a row with p � 2 non-zero entries,
being either p free parameters, or one �1 and p � 1 free
parameters. If Ps 6= 0, we can find non-zero parameters
such that the corresponding numerical evaluation Ps has
all row-sums equal to zero. Rows in the first category al-
ready have zero sum. For rows in the second category, we
can choose aii = p and all other parameters (if any) equal
to �1. For rows in the third category, we can choose one
free parameter equal to p � 1 and all other free parame-

ters (if any) equal to �1. With this choice, the sum of
the columns of Ps is the zero vector, which implies that
rk(Ps) < s. ⇤

Setting s = n + p and recalling that H⇥ = B(P (1)),
Lemma 5 shows that condition ii. in Theorem 1 is neces-
sary for s-structural unconstrained ISO.

Now consider Theorem 2. For the first part, we use the
characterization of delay-1 left invertibility from Lemma 2:

Q =
h
D 0 0
B �I 0
0 C D

i
has rank p + n + rk(D). Recalling that

rk(Q)  t-rk(Q), a necessary condition for rk(Q) = p+n+
rk(D) is t-rk(Q) � p+n+rk(D). Since D is a pattern ma-
trix, rk(D) = t-rk(D) generically, and hence in particular
for some non-zero parameters; with these parameters for
D, we have the following necessary condition for delay-1
left invertibility: t-rk(Q) � p+n+rk(D) = p+n+t-rk(D).
The proof is concluded by noting that t-rk(Q) is the size of
the maximum matching in N = B(Q), and by noting that
the inequality t-rk(Q) � p+n+t-rk(D) can be re-written
as an equality. Indeed, surely t-rk(Q)  p + n + t-rk(D),
because every matching of N can cover at most t-rk(D)
vertices of U1, since its edges covering vertices of U1 form
a matching of B(D), whose size cannot exceed t-rk(D).

For the second part of Theorem 2, recall the simple
necessary condition for delay-1 left invertibility given in

Remark 2: Q̃ =
h
D 0
B �I
0 C

i
must have full column rank p+n.

Then, we can prove the following lemma, which gives the
desired result when taking s = p+ n.

Lemma 6. Let s be an integer, 1  s  p + n. For any
submatrix Q̃s formed with s columns of Q̃, if there does
not exist a uniquely restricted matching of size s in B(Q̃s),
then either Q̃s = 0 or there exist non-zero parameters such
that the corresponding realization of Q̃s has rk(Q̃s) < s. ⌅

The proof by induction is the same as the proof of Lemma 5
in the simple case where Eloop = ; and hence is omitted.

7.2. Proofs of su�ciency

In this subsection we prove the su�ciency part of The-
orem 1 and Theorem 3.

The proof of the su�ciency part of Theorem 1 is in-
spired by the characterization of s-structural controllabil-
ity [7, 8], and is based on the PBH-like characterization of
unconstrained ISO in Lemma 1 and on the discussion in
Sect. 5.4 about Form IV and uniquely restricted match-
ings.

We will show that condition i. in Theorem 1 ensures
that P (0) has full column rank n + p for all non-zero pa-
rameters, and that condition ii. ensures that P (z) has full
column rank n+p for all non-zero parameters and non-zero
z, thus showing that the two together ensure s-structural
left invertibility (by Lemma 1).

13



Condition i. is the existence in H = B(P (0)) of a
uniquely restricted matching of size n+ p and hence cov-
ering all the left vertex set. As shown in Sect. 5.4 with
the use of Lemma 4, this is equivalent to the existence of
permutation matrices P1 and P2 such that P1P (0)P2 is in
Form IV, with the ⇥-terms corresponding to the edges of
the matching. Looking at the triangular square submatrix
formed with the first n + p rows of P1P (0)P2, it is clear
that it has full rank n + p for all non-zero parameters,
since all diagonal entries (i.e., ⇥-entries) are parameters.
Hence, also P (0) has full column rank n+p for all non-zero
parameters.

Similarly, condition ii., i.e., the existence in H⇥ =
B(P (z)) of a uniquely restricted matching of size n + p

with no edge from Eloop, is equivalent to the existence of
permutation matrices P1 and P2 such that P1P (z)P2 is in
Form IV, with the ⇥-terms corresponding to the edges of
the matching, and hence being either free parameters or
terms �z, but surely not zeros nor terms aii � z since the
matching does not use edges from Eloop. This ensures that
P (z) has rank n+ p for all non-zero parameters and non-
zero z.

The proof of Theorem 3 is also based on the discussion
in Sect. 5.4, but involves a uniquely restricted matching
covering only a suitable subset of the left vertex set.

Recall that N = B(Q), and that by Lemma 2 delay-1
left invertibility is equivalent to rk(Q) = p+ n+ rk(D).

LetM = {(v1, w1), . . . , (vp+n+s, wp+n+s)} be a uniquely
restricted matching as in the statement of Theorem 3, i.e.,
whose set of unmatched left vertices is S ✓ U1 and such
that there is no edge from S to matched right vertices.
We have used the notation s for the number of matched
vertices in U1; clearly 0  s  r = t-rk(D). Assume M is
already ordered as in Lemma 4. As discussed in Sect. 5.4,
we can find permutation matrices P1, P2 such that P1QP2

has the first p + n + s columns in Form IV, with the ⇥

entries equal to Qw1v1 , . . . , Qwp+n+svp+n+s (in this order).
The last p � s columns of QP2 are equal to the columns
of Q corresponding to vertices in S ✓ U1; the last p � s

columns of P1QP2 are the same, except that some rows
are permuted. The condition that there are no edges from
S to matched right vertices ensures that the last p � s

columns of P1QP2 have the first p + n + s rows equal to
zero, i.e., we have

P1QP2 =


Q11 0
Q21 Q22

�
,

with Q11 lower triangular and with diagonal entries equal
to Qw1v1 , . . . , Qwp+n+svp+n+s ; the last p � s columns cor-
respond to vertices v 2 S. This implies that Q11 has
full rank p+ n+ s for all non-zero parameters, and hence
rk(Q) = p+ n+ s+ rk(Q22) for all non-zero parameters.

Now consider the set M̃ of edges in M that cover ver-
tices of U1 (in the same order with which they appear in

M). Notice that M̃ is a uniquely restricted matching of
B(D) of size s, with set of unmatched left vertices equal to
S, and with no edge from S to unmatched right vertices.
Hence, we have permutation matrices P̃1, P̃2 such that

P̃1DP̃2 =


D11 0
D21 D22

�
,

where D11 is an s ⇥ s lower triangular matrix, with di-
agonal entries corresponding to the s entries Qwivi with
vi 2 U1; the last p � s columns correspond to vertices
v 2 S. This implies that D11 has full rank s for all non-
zero parameters, and hence rk(D) = s + rk(D22) for all
non-zero parameters.

Now we will show that rk(D22) = rk(Q22). To see this,
notice that the last p� s columns of P1QP2 are obtained
with row permutations from the columns of Q correspond-

ing to vertices of U1, i.e., from the columns of
h

0
0
D

i
corre-

sponding to vertices of U1. Similarly, the last p�s columns
of P̃1DP̃2 are obtained with row permutations from the
columns of D corresponding to vertices of U1. Hence, the
last p� s columns of P1QP2 and of P̃1DP̃2 have the same
non-zero rows, and only di↵er in the number of zero rows
and in their position. Moreover, Q22 contains all the non-
zero rows of the last p � s columns of P1QP2 and D22

contains all the non-zero rows of the last p � s columns
of P̃1DP̃2. This shows that Q22 and D22 have the same
non-zero rows, and hence have the same rank.

Putting all these results together, for all non-zero pa-
rameters we have rk(Q) = p+ n+ s + rk(Q22) = p+ n+
s+rk(D22) = p+n+rk(D), which concludes the proof of
Theorem 3.

8. Maximum independent sets and proof of Prop. 2

8.1. Maximum independent sets and maximum matchings

A key tool that we will use to prove Prop. 2 is the well-
known König theorem, that relates maximum independent
sets and maximum matchings in bipartite graphs. We re-
call here this theorem and some consequences of it, which
are useful both for the proof of Prop. 2 (see Sect. 8.2) and
for testing in polynomial time whether a bipartite graph
contains a uniquely restricted matching of the same size
as its maximum matching (see Remark 5). The material
in this subsection is mostly based on [18] and [24].

A maximum independent set I is a set of vertices such
that there is no edge between any two of them, and with
the largest size. For bipartite graphs, König theorem en-
sures that the complement K of a maximum independent
set has the same size as the maximum matching. This also
implies the following further properties.

Lemma 7. Given a bipartite graph B = (V,W, E) denote
by ⇢ the size of its maximum matching. Consider I a
maximum independent set of B, and define K = (V [W )\
I. Denote by BIK the induced subgraph of B having left
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vertex set V \ I and right vertex set W \ K and by EIK

its edge set; similarly define BKK , EKK , BKI , and EKI .
Then:

(a) |K| = ⇢;

(b) Every maximum matching of B is the disjoint union
of a matching of BIK of size |V \K| and a matching
of BKI of size |W \K|;

(c) If M is a uniquely restricted matching of B of size ⇢,
then M is the disjoint union of a uniquely restricted
matching of BIK of size |W \ K| and a uniquely
restricted matching of BKI of size |V \K|;

(d) Given a uniquely restricted matching of BIK of size
|W \K| and a uniquely restricted matching of BKI

of size |V \ K|, their union is a uniquely restricted
matching of B of size ⇢. ⌅

Proof: Statement (a) is König theorem (see e.g. [25,
Sect. 2.1]).

Statement (b) has been pointed out in [18, Theorem 3.1],
and we recall here its short proof, adapted to our nota-
tion. Let M be a maximum matching. Since I is an
independent set, M is the union of MKI , MKK , and
MIK , which are matchings of BKI , BKK and BIK , re-
spectively. Notice that |MKK |+ |MKI |  |V \K|, since
both these matchings share the same left vertex set V \K,
and similarly |MKK |+|MIK |  |W \K|, since both these
matchings share the same right vertex set W \K. Hence,
2|MKK | + |MKI | + |MIK |  |K|. On the other hand,
|MKK | + |MKI | + |MIK | = |M| = |K|. From these
two expressions, we can conclude that |MKK | = 0 and
|MKI |+ |MIK | = |K|. Moreover, since |MKI |  |V \K|

and |MIK |  |W \ K|, the latter equality also implies
|MKI | = |V \K| and |MIK | = |W \K|.

Finally, we obtain statements (c) and (d) as follows.
Given M a uniquely restricted matching of size ⇢, de-

fine its decomposition M = MKI [ MIK as above; this
already shows that they have the desired size. Being sub-
matchings of M, they are uniquely restricted matchings of
B and hence even the more so MKI is uniquely restricted
in BKI and MIK is uniquely restricted in BIK .

On the other hand, given MKI a uniquely restricted
matching of BKI and MIK a uniquely restricted matching
of BIK , we can show with Lemma 4 that their union is a
uniquely restricted matching of B. Indeed,
let (v1, w1), . . . , (vh, wh) be a reordering of MKI such that
(wj , vi) /2 EKI (and hence also (wj , vi) /2 E) for 1  i <

j  h, and let (vh+1, wh+1), . . . , (vh+`, wh+`) be a reorder-
ing of MIK such that (wj , vi) /2 EIK (and hence also
(wj , vi) /2 E) for h + 1  i < j  h + `. Then con-
sider all edges (v1, w1), . . . , (vh+`, wh+`). The absence of
edges from V \ I to W \ I ensures that (wj , vi) /2 E for
all 1  i  h and h + 1  j  h + `, and hence we can
conclude that this is a uniquely restricted matching for B,
since it has (wj , vi) /2 E for all 1  i < j  h+ `. The size
is h + ` = |V \K| + |W \K| = |K| = ⇢, which ends the

proof. ⇤

Remark 5. Thanks to Lemma 7, the question whether a
bipartite graph B has a uniquely restricted matching of the
same size as its maximum matching can be answered as
follows. First, find a maximum independent set I, and
then test whether there exist:

• a uniquely restricted matching of BIK covering all of
its right vertices, and

• a uniquely restricted matching of BKI covering all of
its left vertices.

Such test can be performed in polynomial time, as follows.
Thanks to Prop. 4, the existence of a uniquely restricted

matching of BKI covering all of its left vertices can be
tested with Algorithm 1. Also the existence of a uniquely
restricted matching of BIK covering all of its right vertices
can be tested with Algorithm 1, simply by exchanging the
role of left and right vertices (in case BIK is the bipartite
graph associated with a matrix, this corresponds to looking
at the transpose matrix). Algorithm 1 can be implemented
with complexity O(|V |+ |W |+ |E|), as shown in Appendix
A.

For the construction of a maximum independent set I
in a bipartite graph, it is well-known that this can be done
in polynomial time as follows. First, use Hopcroft-Karp
algorithm [20] to construct a maximum matching M; this
has complexity O(|E|

p
|V |+ |W |). Then, use the follow-

ing technique to construct a maximum independent set I
associated with the maximum matching M.

Let Z be the set that contains the unmatched left ver-
tices, together with all vertices that can be reached by start-
ing from an unmatched left vertex and following an alter-
nating path. Then define I = (V \ Z) [ (W \ Z) and
define K as the complement of I. It is well known that I
is a maximum independent set and K is a minimum ver-
tex cover, see e.g. [25, Sect. 2.1], where this property is
used to prove König Theorem. The construction of Z has
complexity O(|E|) and then the construction of I and K

has complexity O(|V |+ |W |). ⌅

Although presented di↵erently, the test described in
Remark 5 has been used in [18] to prove [18, Thm. 3.9]
(presented here as Lemma 3), and in [24] to show that an
answer can be found in polynomial time to the question
whether a bipartite graph has a uniquely restricted match-
ing of the same size as the maximum matching (see [24,
Coroll. 4]).

8.2. Proof of Prop. 2

In order to prove Prop. 2, we turn our attention to
the bipartite graph N . We will use the short notation
r = t-rk(D) and V and W for the left and right vertex
sets of N , i.e., V = U0 [X [ U1 and W = Y0 [X

0
[ Y1.
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We consider a uniquely restricted matching M of size
p+n+ r in N , which exists by assumption, and we define
I to be the maximum independent set constructed from
M as in Remark 5, i.e., Z is the set that contains the un-
matched left vertices, together with all vertices that can
be reached by starting from an unmatched left vertex and
following an alternating path, and I = (V \Z)[ (W \Z).

As a first part of the proof of Prop. 2, with the above-
constructed I, we will now show that I \ V ✓ U1.

Denote by N1 the induced subgraph of N having only
left vertices in U1 and right vertices in Y1 (notice thatN1 is
isomorphic to B(D)). Since M has size p+n+r, M covers
all U0 [X and r vertices of U1, and the r edges of M that
cover vertices in U1 form a maximum matching M̃ of N1.
This implies Z\V ✓ U1. Indeed, assume by contradiction
that there exists v 2 (U0 [X)\Z. This means that there
exists an alternating path from some unmatched u 2 U1

to v 2 U0[X; this path necessarily uses an odd number of
edges from N1, and then uses an odd number of edges from
N\N1. Consider the first portion of this path, formed with
the edges from N1 only: its last vertex is a vertex y 2 Y1

covered in M with an edge (x, y) for some x 2 X. This
implies that y is not covered by M̃ , and hence this first
portion of path is an augmenting path for M̃ in N1, thus
contradicting the fact that M̃ is a maximum matching of
N1.

By definition of I, Z \ V ✓ U1 means I \ V ✓ U1.

We are now ready for the second and final part of the
proof of Prop. 2: we construct a uniquely restricted match-
ing in N whose unmatched left vertices belong to U1, as
follows. With I the above-constructed maximum indepen-
dent set (such that I \V ✓ U1) and K its complement, we
apply Lemma 7. We obtain that M is the disjoint union of
two uniquely restricted matchings MIK and MKI , where
MKI covers all vertices of V \K = V \I and hence the set
of unmatched left vertices of MKI is V \ I ✓ U1. Hence,
MKI is the desired uniquely restricted matching which
ends the proof of Prop. 2.

9. Proofs of results from Sect. 4

9.1. Proofs of properties of Algorithm 1

In this subsection we present the proofs of the proper-
ties of Algorithm 1 that were stated in Sect. 4.1.

In order to prove Prop. 3, we introduce a modified al-
gorithm, which we will call Algorithm 2.

The only di↵erence between Algorithms 1 and 2 is that
one iteration of Algorithm 1 considers a single w 2 T (arbi-
trarily chosen), while one iteration of Algorithm 2 concerns
all w 2 T .

Proof of Prop. 3: To prove that any two runs of
Algorithm 1 produce matchings of the same size and with
the same set S of unmatched left vertices, we will show
that any implementation of Algorithm 1 removes exactly

Algorithm 2

Input: B = (V,W, E), F .
Initialization: M = ;, S = V .
T = the set of vertices inW having degree 1 and incident
edge not in F .
while T 6= ; do:

for all w 2 T do

v = the unique neighbor of w;
Add edge (v, w) to M;
Remove v from S;
Remove v from B (i.e., remove v from V , and

remove all edges incident to v from E);
end for

T = the set of vertices in W currently having de-
gree 1 and incident edge not in F .
end while

Return: S, M.

the same left vertices that are removed by Algorithm 2.
We will use the notation Vh for the set of left vertices
removed at the hth iteration of Algorithm 2.

Part 1: We show by induction that all left vertices
removed by Algorithm 2 are also removed by Algorithm 1.
The base case concerns V1: we show that all vertices in
V1 will be removed also by Algorithm 1, sooner or later.
Indeed, each v 2 V1 is the unique neighbor of some w 2 W ,
with (v, w) /2 F ; this property is retained along iterations
of Algorithm 1, and will remain true until v is removed
from B because one of its neighbors (either w or another
one) is picked by the algorithm; in either case, v must be
removed before the while loop can terminate.

Then, we use the strong inductive assumption that all
vertices from V1, . . . , Vh�1 are removed by Algorithm 1,
and we show that then also vertices from Vh are removed.
Consider Algorithm 1 at an iteration after all vertices
from V1, . . . , Vh�1 are removed; now each v 2 Vh is ei-
ther already removed, or it is the unique neighbor of some
w 2 W , with (v, w) /2 F ; again, this property is not de-
stroyed along further iterations of Algorithm 1, and will
remain true until v is removed, thus proving that v must
be removed before the algorithm can terminate.

Part 2: We show the vice-versa: all vertices removed
by Algorithm 1 are also removed by Algorithm 2. We
show by induction that all vertices removed by Algorithm 1
belong to some Vh.

The first vertex removed by Algortihm 1 clearly be-
longs to V1.

Then, when some vertex vk is removed by Algorithm 1,
by strong inductive assumption all vertices v1, . . . , vk�1 re-
moved by Algorithm 1 before vk belong to V1 [ · · · [ Vh

for some h. This ensures that at iteration h + 1 for Al-
gorithm 2, since all vertices of V1 [ · · · [ Vh have been re-
moved, in particular v1, . . . , vk�1 have been removed and
hence either vk has already been removed (i.e., belongs to
V1 [ · · · [ Vh), or it now has degree 1 and unique incident
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edge not in F , and hence belongs to Vh+1. ⇤

Proof of Prop. 4: We consider the output M, S of
Algorithm 1. We denote by (v1, w1), . . . , (vs, ws) the edges
of M, in the order in which they are added to M by
Algorithm 1 from first to last iteration.

As mentioned in Remark 1, M is a matching and S

is the set of its unmatched left vertices. Also, M satisfies
the property M \ F = ;.

Then, we notice that, for each i = 1, . . . , s, we have
(v, wi) /2 E for all v /2 {v1, . . . , vi}; indeed, at ith itera-
tion of Algorithm 1, i.e., after v1, . . . , vi�1 have been re-
moved from B, vertex wi has a unique neighbor vi. This
remark implies two properties of the matching M. First,
by Lemma 4, M is uniquely restricted. Second, there is
no edge from the set S of unmatched left vertices to the
set {w1, . . . , ws} of matched right vertices. This ends the
proof that M satisfies the three properties mentioned in
Prop. 4.

Now consider M
0 any matching satisfying the same

three properties, and let (v01, w
0

1), . . . , (v
0

h, w
0

h) be its re-
ordering as in Lemma 4. Notice that thanks to the prop-
erties of M0 we can run Algorithm 1 by picking vertices
w

0

1, . . . , w
0

h, in this order. After these h iterations, Algo-
rithm 1 has constructed a matching equal to M

0 and has a
set S0 = V \{v

0

1, . . . , v
0

h} of unmatched left vertices. Then,
either Algorithm 1 stops, and outputs M0 and S

0, or con-
tinues for some more iterations, and returns M

00
� M

0

and S
00
⇢ S

0.
We have shown in Prop. 3 that all runs of Algorithm 1

return matchings of the same size, and with the same set of
unmatched vertices. This proves that |M| � |M

0
| and S ✓

S
0, for any matching M

0 satisfying the three conditions.
Finally, notice that S = ; means that there is no un-

matched left vertex, i.e., M covers all the left vertex set.
In the absence of unmatched left vertices, the condition
that there are no edges between unmatched left vertices
and matched right vertices is trivially true. ⇤

9.2. Proofs of Theorems 9 and 10

In this subsection, we prove the characterizations given
in Sect. 4.3 using coloring rules, of s-structural uncon-
strained ISO and of delay-1 left-invertibility (the latter
under the assumption D = 0).

Proof of Thm. 9: The key remark for this proof
is that edges of G are in one-to-one correspondence with
edges of H. For vertices too there is a natural association
between the vertex sets U and Y of G and the correspond-
ing vertex sets in H, while the vertex set X is doubly asso-
ciated, both with the left vertex set X and with the right
vertex set X 0, but the two roles can be easily distinguished
by looking at outgoing and incoming edges, respectively.
The out-neighbors of a vertex v 2 U [ X in G are the
same as the neighbors of the corresponding left vertex in
H, and similarly the in-neighbors of a vertex w 2 X [ Y

in G are the same as the neighbors of the corresponding
right vertex in H.

The first part of this proof is to show that the first
condition in Thm. 9 is equivalent to the first condition in
Thm. 5. To do so, we will show that an application of
coloring rule n. 1 to G with Vblack = Y corresponds to a
run of Algorithm 1 with input B = H and F = ;, in such a
way that at each iteration the vertices in G that are white
are in one-to-one correspondence with the left vertices of
H that belong to S (i.e., that are currently present in B,
not having yet been removed).

This is clearly true at initialization: setting Vblack = Y ,
the set of white vertices of G is U [X. Then we construct
a suitable run of Algorithm 1, in such a way that turn-
ing a vertex v from white to black in G corresponds to
removing vertex v from S and from the left vertex set of
B. This is possible, because a vertex v is selected for a
color change from white to black under the condition that
it is the unique white in-neighbor of some vertex w, i.e.,
there exists some vertex w 2 X [ Y such that w has ex-
actly one white in-neighbor; looking at the corresponding
left vertex v and right vertex w in B, this means that v is
the unique neighbor of w, and hence v can be removed in
this iteration of Algorithm 1.

Since at each iteration the vertices of G that are white
are in one-to-one correspondence with the left vertices of
B that belong to S, the coloring rule terminates with no
white vertices if and only if Algorithm 1 returns S = ;.

The second part of this proof is to show that the second
condition in Thm. 9 is equivalent to the second condition in
Thm. 5, with a similar technique as in the first part of the
proof. Here we consider an application of color change rule
n. 2 to G with Vblack = Y and V2 = X, and we construct
a corresponding run of Algorithm 1 with input B = H⇥

and F = Eloop, in such a way that at each iteration the
white vertices in G are in one-to-one correspondence with
the remaining left vertices of B; again, turning a vertex v

from white to black in G corresponds to removing a ver-
tex v from S and from B. This is possible, since color
change rule n. 2 is suitably tweaked so as to take care of
the forbidden edges F = Eloop and of the additional edge
set Enew in H⇥. Indeed, di↵erently from rule n. 1, rule
n. 2 does not allow w to be arbitrary: w must be black.
First, notice that w being black ensures that w is di↵er-
ent from v, and this, in turn, ensures that self-loops of G
are avoided (equivalently: forbidden edges from Eloop are
avoided). Second, notice that w being black is trivially
true if w 2 Y , and is a crucial assumption in case w 2 X.
Indeed, in case w 2 X, and denoting by w and w

0 the
left and right vertices of B corresponding to w, v 6= w be-
ing the unique in-neighbor of w in G corresponds to two
cases: when w is white, i.e., left vertex w has not yet been
removed from B by Algorithm 1, w0 has two neighbors v

and w (the latter because of an edge from Enew); when w

is black, instead, w0 has a unique neighbor v. Finally, the
second part of color change rule n. 2 allows for white state
vertices without any in-neighbor to be colored black. This
corresponds to a pair of vertices xi, x0

i in B that are neigh-
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bors with (xi, x
0

i) 2 Enew and such that x
0

i has no other
neighbor. ⇤

Proof of Thm. 10: The proof is similar to the sec-
ond part of the proof of Thm. 9. Notice that G0 has no
self-loops (since it does not have any edges between state
vertices), and hence N0 has a set of edges KB[KC which is
in one-to-one correspondence with the edge set of G0, plus
a set of edges KI containing all “self-loops” (xi, x

0

i). ⇤

10. Conclusion

In the present paper, we studied s-structural (uncon-
strained) ISO for LTI network systems.

First, we provided a graphical characterization for s-
structural unconstrained ISO. Then we gave some neces-
sary and some su�cient conditions for s-structural ISO.
We also compared our two su�cient conditions, and proved
that one of the two implies the other, and the vice-versa
is not true. Moreover, we showed with examples that in
general there is a gap between the necessary and the su�-
cient conditions, while we proved that in the case without
direct feedthrough from input to output there is no gap.

All our graphical conditions are in terms of existence
of suitable uniquely restricted matchings in some bipartite
graphs. We presented an algorithm to find uniquely re-
stricted matchings with the required properties, and showed
that its complexity is linear with respect to the size of the
parameter space (total number of non-zero entries in the
system matrices) plus the dimension of the input, state
and output spaces. We also discussed the reformulation of
our conditions as color change rules on the directed graph
representing the network system, as in the literature on
zero forcing sets.

One direction for future research is a deeper study of
the case with direct feedthrough from input to output,
aiming at closing the gap between necessary and su�cient
conditions for s-structural ISO. Another future research
line is the study of ISO with some known delay `, for values
of ` greater than 1; partial results in this direction have
been obtained for structural ISO [26] and this problem is
open for s-structural ISO.

Appendix A. Complexity of Algorithm 1

It is clear that Algorithm 1 has a complexity which is
polynomial in |V |+|W |+|E|. However, the actual complex-
ity might vary depending on the implementation choices;
in particular, the choice of how to represent the graph B

a↵ects the complexity of finding a vertex w with degree 1
and unique edge not in F , and the complexity of remov-
ing its neighbor v from the graph. In [10], the authors
consider the two specific applications of Algorithm 1 that
are used to test s-structural controllability (that are some-
what similar to applying Algorithm 1 with B = H and
F = ;, and with B = H⇥ and F = Eloop), and they intro-
duce a clever implementation whose complexity is linear

in |V | + |W | + |E|. The approach in [10] is based on two
main ideas: using the compressed column storage (CSS)
format for structured matrices, and storing in memory not
only the main matrix but also its transpose and another
structure relating the two.

We will now show that a complexity linear in |V | +
|W | + |E| can be achieved for the general algorithm pre-
sented in this paper as Algorithm 1, and not only for its
specific application used to test s-structural controllabil-
ity. For simplicity of notation, we will only discuss the
implementation details that are useful for achieving such
complexity bound, while leaving to the interested reader
the choice of the most e�cient implementation of the data
structures, for example with the CSS format proposed
in [10]. We will present as Algorithm 3 an algorithm that
is equivalent to Algorithm 1, and whose implementation
choices give a complexity linear in |V |+ |W |+ |E|.

Input representation:
The input of Algorithm 1 is: a bipartite graph B =

(V,W, E) and a subset of edges F ✓ E ; edges in F can
be interpreted as forbidden edges, since Algorithm 1 is
forbidden to use edges from F in the construction of M.
We suppose that this input information is encoded in the
following way:

• A structure Edges that contains, for each edge e =
(v, w) 2 E : leftvertex(e) = v, rightvertex(e) =
w, a flag forbidden(e), which is true if e 2 F and
false if e /2 F , and a flag active(e) = true;

• A structure Vertices that contains, for each vertex
⌫ 2 V [W , the list of all edges incident to ⌫.

This input representation is redundant: all the information
describing B = (V,W, E) and F is contained in the struc-
ture Edges (except in the case where B has some stranded
vertices, i.e., vertices without incident edges). However,
the redundant structure Vertices is introduced, because
it can be exploited to obtain a lower time complexity for
the algorithm. Moreover, the flag active is trivially set
to true for all edges, but it will be useful along iterations
of the algorithm, to indicate when some edge is removed
from the graph. Notice that, despite the redundancy, the
memory requirement remains O(|V |+ |W |+ |E|) as in the
most compact input description. Also notice that, given
the structure Edges, a pre-processing step can construct
the structure Vertices with O(|V |+|W |+|E|) operations.

Variables and their interpretation:
Algorithm 3 receives as input the structures Edges and

Vertices. Along iterations, the flags active in the struc-
ture Edges are updated: changing active(e) from true to
false corresponds to removing edge e from B.

The other variables of Algorithm 3 are:

• degree, a vector of size |W | with integer entries,
that is initialized and updated in such a way that
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degree(w) equals the current degree of right vertex
w, i.e., the number of its incident edges that are still
active;

• M a list of edges, that is initialized as empty, and
enriched with edges in such a way that at each iter-
ation M is a matching with suitable properties (the
same M as in Algorithm 1);

• S a vector of size |V | with boolean entries, where
S(v) = true if v is an unmatched left vertex, i.e., a
vertex v 2 V not covered by any edge from M (in
the notation of Algorithm 1, v 2 S);

• T a list of edges, that is initialized and updated in
such a way that T is the list of all edges e = (v, w)
such that e is not forbidden and w currently has
degree 1 (in the notation of Algorithm 1, such that
w 2 T ).

Algorithm 3

Input: Edges, Vertices.
Initialization:

M = ; ;
for all v 2 V , S(v) = true; end for

for all w 2 W , degree(w) = number of edges inci-
dent in w; end for

T = the list of all edges e such that forbidden(e) =
false and degree(rightvertex(e)) = 1.
while T 6= ; do:

Pick e 2 T ;
Add e to M;
v = leftvertex(e);
S(v) = false;
for all edge e

0 incident to v do

active(e0) = false;
w

0 = rightvertex(e0);
degree(w0) = degree(w0)� 1;
if degree(w0) = 1 then

for all edges ẽ incident to w
0
do

if active(ẽ) = true and forbidden(ẽ) =
false then add ẽ to T ;

end if

end for

end if

end for

end while

Return: S, M.

Clearly, Algorithm 3 is equivalent to Algorithm 1. The
action of removing a left vertex v in Algorithm 1 is ob-
tained in Algorithm 3 by removing (or more precisely by
flagging as not active) its incident edges; keeping the stranded
vertex v with no incident edge, instead of removing it, has
no impact on the rest of the algorithm. Similarly, picking
w 2 T and letting v be its unique neighbor is obtained by
picking e = (v, w) 2 T . The output of Algorithm 3 is the

same as the one of Algorithm 1, other than the di↵erent
way to represent the set S of unmatched left vertices (with
a vector of flags, or with a list of vertices).

To study the complexity of Algorithm 3, we start by
recalling that the extended input representation can be
constructed in O(|V |+ |W |+ |E|). We can also show that
the complexity of initialization is O(|V |+ |W |+ |E|). We
notice that degree is initialized in O(|W | + |E|). Indeed,
degree(w) is obtained by counting the number of edges
incident to w; this is done by looking at the list edges
incident to w, from the structure Vertices, and requires
O(degw) for a vertex w with degree degw 6= 0 and O(1)
for a stranded vertex. Then recall that

P
w2W degw = |E|.

For the other initializations, it is clear that M is initialized
in O(1), S is initialized in O(|V |), and T is initialized in
O(|E|).

Then, we study iterations of Algorithm 3 (i.e., its ‘while
T 6= ;’ cycle).

Recall that the outputM is a matching of B, and hence
|M|  min(|V |, |W |, |E|). Notice that each edge that is
added to T at some point (either at initialization, or at
some iteration of the algorithm) is later removed from T

and added to M, and will never be added again to T .
This ensures that the action of adding an edge to T along
iterations happens at most |M| times. Moreover, each it-
eration adds exactly one edge toM, and hence the number
of iterations is equal to |M|.

Let us consider one iteration of the algorithm, where
e = (v, w) is removed from T and added to M. We start
by studying the complexity of such iteration, except for
the part within the clause ‘if degree(w0) = 1’. We no-
tice that each line requires O(1) operations, thanks to the
structures Edges and Vertices used to describe the graph
B. The cycle ‘for all edge e

0 incident to v’ involves deg v
edges, where deg v denotes the degree of left vertex v, and
the list of such edges can be read in Vertices(v). Hence,
the total cost of this iteration of the algorithm, except for
the part in the ‘if degree(w0) = 1’ clause, is O(deg v). We
recall that each iteration corresponds to one edge of M
and hence, denoting by VM the set of left vertices cov-
ered by M (i.e., those that are flagged as false in the
output S), we have that the cost of all iterations of the
algorithm, except for their ‘if degree(w0) = 1’ part, is
O(

P
v2VM

deg(v)) = O(
P

v2V deg(v)) = O(|E|).
Now we consider the ‘if degree(w0) = 1’ part. If w0 has

degree 1, then we need to find the unique ẽ such that ẽ is
incident to w

0 and is active, and in case it is not forbid-
den, we need to add ẽ to T . To do so, we need to read
the list of edges incident to w

0 and access the correspond-
ing positions in the list of edges, to read the attributes
active and forbidden; this costs O(degw0). For a given
iteration of the algorithm, the ‘if degree(w0) = 1’ clause
might be true for no right vertex w

0, or for one, or for
more. The key remark is that, along all iterations of the
algorithm, this clause will be true only for some right ver-
tices (those that are covered by the output matching M
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and that at initialization are not covered by an edge of T ),
and only once for each of them. This means that the total
cost, along all iterations, of the ‘if degree(w0) = 1’ parts
is O(

P
w02W degw0) = O(|E|).

Putting together the above results, we have a total
complexity O(|E|) for running all the iterations of the al-
gorithm, and O(|V | + |W | + |E|) when including also the
initialization and returning the output.
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