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Abstract

In this work, we consider the estimation of temperature along the pipes of concentric heat exchanger tubes in which CO2

is the working fluid. The transport phenomena is modeled using (2x2) linear hyperbolic partial differential equations,
with one rightward equation for the hot flow and one leftward equation for the cold flow. Both flows exchange energy
through the wall interface, which physically induces a coupling between the two dynamics. Our objective is to estimate
the temperature distribution along the flows from measurements at the tubes boundaries only. In this framework, we
propose an adaptive boundary observer that can estimate not only the full state of the system, but also unknown in-
domain parameters. The design is based on transforming the error system via a finite-dimensional backstepping-like
transformation into a desired filter-based system, for which standard backstepping observer techniques and adaptation
laws can be used. The theoretical results are evaluated against the temperature measurements taken from a CO2

refrigeration apparatus built at CERN, Switzerland.

Keywords: Boundary Observers, Boundary Control, Fluid dynamics, Hyperbolic partial differential equations,
Lyapunov theory, Backstepping boundary estimation, Adaptive state observers

1. Introduction

Heat exchangers are widely used in many industrial
domains like food production, chemical plants or oil re-
fineries. They also play an important role for cooling and
heating of houses, offices, companies, cars etc. In the past
decades fluorocarbons (C2F6, C3F8, R134a) were used
as the working fluids for heat exchangers, but nowadays
CO2 (especially evaporative CO2) cooling has become an
interesting technology due to several advantages. Indeed,
CO2 has high heat transfer capabilities, high latent heat,
low pressure drop and low viscosity (ability to use small
size pipes), which allows us to cool networks of long small
pipes over large distances. CO2 has thus been retained
as the best choice for HEP detectors cooling at CERN
[1]. Heat exchangers are key components that are present
in any refrigeration system. The control of such units is
vital in order to have low rates of energy consumption
while maximizing the heat transfer rates. Considering
the concentric tubes heat exchanger, both hot and cold
fluids exchange energy through the wall interface. This
transport and exchange of energy can be modeled by
first order linear hyperbolic systems of balance laws [2].
Synthesizing a control law may require a full knowledge
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of the distributed state while measurements are available
only at the tube boundaries. Furthermore, full state
knowledge helps in managing energy efficiently in complex
and large heat exchanger networks, and to detect faults
in case of an energy leakage.
The classical approach used for solving control and
estimation problems for hyperbolic partial differential
equations is to discretize the partial differential equa-
tions (PDEs) and then apply classical control methods
designed for finite dimensional systems. However, key
information on the system transient behavior is lost, and
the observability and controllability of the system will
depend on the chosen space-discretization method. This
leads to the idea of extending finite dimensional control
theory to the infinite case. An extra challenge induced
by our estimation problem is the lack of knowledge
of some in-domain coupling parameters (e.g. the heat
transfer coefficient). This adds more complexity to the
estimation problem as we also have unmeasured dis-
tributed states. This motivates our work to consider the
adaptive design of a boundary observer that can simulta-
neously estimate the distributed states and the unknown
in-domain parameters, with only boundary measurements.

Hyperbolic systems and more specifically linear and
quasi-linear hyperbolic systems are well studied by the
control community. These systems can model many phys-
ical processes, like road traffic [3], gas flow in pipelines
[4], flow of fluids in open channels [5], transmission lines
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[6], multiphase flow [7], etc.. The early results on stability
and controllability of such systems can be dated back to
the 70s [8], [9]. During that period, the stability issue
was tackled by computing the explicit solution of the
equations along the characteristic curves in the framework
of the C1 norm. Afterwards, using Lyapunov-based
functions, dissipative boundary conditions (standard
static boundary output feedback) are designed to guar-
antee exponential stability in the L2, C1 and H2 norms
[2, 10, 11]. One drawback of using this kind of boundary
conditions to stabilize the system is that it imposes some
restrictions on the magnitude of the coupling between the
system states. However, this limitation can be overcome
by the use of the so-called backstepping-method. The
main idea of this method is to introduce an invertible
Volterra transformation that maps the original system
into a target system with the desired stability properties,
for which static boundary controls and observer gains
are synthesized to ensure the system convergence to a
desired set in finite time. In [12], the authors solve the
problem of one-sided boundary stabilization (actuation
only at one boundary) of a two by two quasilinear
first-order hyperbolic system in finite time. The approach
is then generalized by the authors in [13] to a general
system of heterodirectional coupled hyperbolic equations.
The backstepping method is also used for two-sided
boundary control (actuation on both boundaries) of
heterodirectional hyperbolic systems. The authors in
[14] derive control laws using a Fredholm transformation
(unlike Volterra transformation, Fredholm transformation
is not always invertible) that also ensures convergence in
finite time. However, all the results mentioned so far do
not allow unknown in-domain parameters or unknown
boundary parameters to be present. In order to address
this problem, we consider adaptive boundary control
for hyperbolic systems. The first results on adaptive
control for hyperbolic PDEs were obtained by the authors
in [15], where a general first-order hyperbolic partial
integro-differential equation(PIDE) with one rightward
convecting PDE is adaptively stabilized by boundary
sensing only. This result is extended by the authors in
[16] to 2 by 2 hyperbolic partial differential equations
with unknown transport speeds, unknown couplings and
also unknown boundary parameters.

Infinite dimensional boundary observers are less in-
vestigated in the literature. The problem with systems
that have distributed parameters is that it is most of
the time impossible to take measurements at every
point in space. It is more natural for the sensors to
be located at the boundaries of the domain, which led
to the idea of boundary observers. Boundary control
design is achieved using boundary observers based on two
methods: Lyapunov and backstepping-based methods.
Concerning Lyapunov methods, the authors in [17] design
a boundary observer for n rightward hyperbolic transport
equations. The observer uses measurements taken from

the right boundary to correct the estimation error on the
left one. This result is extended by the authors in [18]
to one rightward and one leftward transport equation for
the plate heat exchanger. Nevertheless, both methods
assume perfect knowledge of the model parameters.
Backstepping-based boundary observers are also well
established in the literature. In fact, static control
design using backstepping requires a full knowledge of
the distributed states. A collocated boundary observer is
thus synthesized to fulfill this requirement (see previously
mentioned results such as [12],[13],[14]). These designs
also assume a perfect knowledge of the system. In many
practical cases, some model parameters are unknown,
which motivates the need for adaptive estimators.
The objective of an adaptive boundary observer is to
simultaneously construct the system’s distributed states
and the unknown parameters from only boundary sensing.
The problem of adaptive boundary estimation was first
addressed by the authors in [19] for parabolic PDEs
using backstepping techniques. Such method is applied to
hyperbolic systems in [20], where the authors design an
adaptive observer for first-order hyperbolic systems with
uncertain additive boundary parameters (the adaptive
laws for these parameters are derived using Lyapunov
analysis). This result is extended by the authors in [21]
to unknown additive and multiplicative parameters in the
boundary. We can also mention the results on disturbance
rejection for hyperbolic systems (see e.g. [22], [23]), which
can be interpreted as results on adaptive observers for
hyperbolic PDEs. As a different approach, swapping
design is also used in the derivation of adaptive observers.
This method relies on using K-filters to derive static
relationships between the system states and the unknown
parameters: this relationship is used to build Lyapunov-
based adaptive laws to estimate the unknown parameters
(see [24] and [25] for ODEs and [19] for PDEs). In the
work of the authors in [26], [27], and [28] swapping design
is used to estimate unknown boundary parameters for
some classes of hyperbolic systems. However, few results
exist in the literature on in-domain parameter estimation.
The works [15] and [16] on adaptive control include
in-domain parameter estimations based on swapping
design methods. In these works, an adaptive observer
is designed for systems in the ”canonical observable
form” to serve as an intermediate step in deriving the
control law. In this paper, we consider the problem of
estimating the distributed states of a 2 × 2 hyperbolic
system, two-sided actuated with unknwon in- domain
parameters. The motivation behind considering such
system is the application to heat exchanger networks.
To the best of our knowledge, this type of estimation
problem is not addressed yet in the literature. Inspired
by [29], the novelty of our adaptive design is to apply the
swapping method on the error estimation system and not
on the original plant. This gives more degrees of freedom
for the designer to shape the boundary conditions of
the resulting error system, which facilitates the use of a
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backstepping technique to derive the observer gains. In
addition, we validate the proposed adaptive architecture
experimentally using temperature measurements taken
from a CO2 refrigeration apparatus built at CERN.
The paper is organized as follows: the observation
problem formulation is described in Section 2. The
adaptive observer design with the estimation convergence
analysis is presented in Section 3. Section 4 is dedicated
to the experimental setup together with the experimental
evaluation results, and some concluding remarks are given
in Section 5.

2. Observation problem formulation

We consider the following class of linear hyperbolic sys-
tems evolving in {(t, x) | t ≥ 0, x ∈ [ 0, 1] }:

∂tu+ c1∂xu = σ1(x)v + θ1φ1(x, t) (1)

∂tv − c2∂xv = σ2(x)u+ θ2φ2(x, t) (2)

u(0, t) = U(t), v(1, t) = V (t) (3)

where u and v are the system states, [u, v] T : [ 0, 1] ×
[ 0,+∞) → R2. c1 > 0 and c2 > 0 are the transport
speeds, and σ1, σ2 are assumed to be C0([0, 1];R) known
functions. Furthermore, φ1 and φ2 are also bounded
known functions of class C1([ 0, 1] × [ 0,+∞);R), and θ1
and θ2 are unknown real scalar parameters. The initial
conditions, denoted u0 and v0, are assumed to belong to
L2([0, 1]). U(t) and V (t) are considered as known bound-
ary inputs.
Our goal is to estimate the state of the system (1)-(3) and
the unknown parameters θ1 and θ2, assuming that the fol-
lowing measurements are available:

y1(t) = u(1, t), y2(t) = v(0, t) (4)

Remark 1. While the method extends to spatially varying
transport speeds c1(x) and c2(x), we consider here constant
transport speeds for the sake of technical simplicity.

Remark 2. The method can be extended to include the
estimation of unknown boundary parameters of the form
u(0, t) = qv(0, t) + U(t) where q is the unknown boundary
parameter. Nevertheless, this requires assuming that the
plant is stable and does not diverge for all times.

3. Adaptive Observer Design

We introduce the following adaptive observer design:

∂tû+ c1∂xû = σ1(x)v̂ + θ̂1(t)φ1(x, t)

− p1(x)(û(1, t)− y1(t)) +m1(x, t) (5)

∂tv̂ − c2∂xv̂ = σ2(x)û+ θ̂2(t)φ2(x, t)

− p2(x)(û(1, t)− y1(t)) +m2(x, t) (6)

û(0, t) = U(t) + q(v̂(0, t)− y2(t)) (7)

v̂(1, t) = V (t) (8)

where p1(x) and p2(x) are the observer gains, q is a non-
zero real parameter that can be chosen arbitrarily, and
m1(x, t) and m2(x, t) are additional feedback gains to be
determined later. The observer initial conditions are de-
noted by û0 and v̂0, and are assumed to belong to L2[0, 1].
The estimates are denoted by hat, and we define the er-
ror variables ũ = u − û, ṽ = v − v̂, θ̃1(t) = θ1 − θ̂1(t),

θ̃2(t) = θ2 − θ̂2(t).
Forming the error system by subtracting (5)-(8) from (1)-
(3) we have:

∂tũ+c1∂xũ = σ1(x)ṽ+θ̃1(t)φ1(x, t)−p1(x)ũ(1, t)−m1(x, t)
(9)

∂tṽ−c2∂xṽ = σ2(x)ũ+θ̃2(t)φ2(x, t)−p2(x)ũ(1, t)−m2(x, t)
(10)

ũ(0, t) = qṽ(0, t), ṽ(1, t) = 0 (11)

The observer designed in (5)-(8) is a Luenberger-type ob-
server, which is a copy of the system with output injection
terms (y1(t), y2(t)) added in the domain and at the left
boundary. The problem is then to find the observer gains
p1(x) and p2(x), and proper parameter update laws in or-
der to guarantee the exponential convergence of the error
system (9)-(11) to zero.

3.1. Swapping Design

In this section, we derive a static relationship which con-
nects the estimation error on the states with the estimation
error on the parameters. This relationship will then be
used to derive the parameters adaption laws. By writing
the error system (9)-(11) using swapping filters we have:

z1(x, t) = ũ(x, t)− λ11(x, t)θ̃1(t)− λ12(x, t)θ̃2(t) (12)

z2(x, t) = ṽ(x, t)− λ21(x, t)θ̃1(t)− λ22(x, t)θ̃2(t) (13)

We can write (12)-(13) in the compact form:

Z(x, t) = E(x, t)− Λ(x, t)θ̃(t) (14)

where:

Z(x, t) =

(
z1(x, t)
z2(x, t)

)
, E(x, t) =

(
ũ(x, t)
ṽ(x, t)

)
θ̃(t) =

(
θ̃1(t)

θ̃2(t)

)
, Λ(x, t) =

[
λ11(x, t) λ12(x, t)
λ21(x, t) λ22(x, t)

]
3



The swapping filters λij(x, t) : [ 0, 1] × [ 0,+∞) → R,
(1 ≤ i ≤ 2, 1 ≤ j ≤ 2) are to be defined later. Differenti-
ating (12) with respect to time and substituting with (9)
we get:

∂tz1 = −c1∂xũ+ σ1(x)ṽ + θ̃1(t)φ1(x, t)−m1(x, t)

− p1(x)ũ(1, t)− ∂tλ11θ̃1 − λ11 ˙̃
θ1 − ∂tλ12θ̃2 − λ12 ˙̃

θ2 (15)

In order to keep (15) linear in θ̃1 and θ̃2, we choose the
following feedback law m1(x, t):

m1(x, t) = −λ11(x, t)
˙̃
θ1(t)− λ12(x, t)

˙̃
θ2(t) (16)

Using (16), and substituting with (14) in (15) leads to:

∂tz1 + c1∂xz1 = σ1(x)z2 − p1(x)z1(1, t)

+θ̃1(−∂tλ11−c1∂xλ11+σ1(x)λ21−p1(x)λ11(1, t)+φ1(x, t))

+ θ̃2(−∂tλ12 − c1∂xλ12 + σ1(x)λ22 − p1(x)λ12(1, t))
(17)

Similarly, deriving (13) with respect to time and following
the same procedure, one gets:

m2(x, t) = −λ21(x, t)
˙̃
θ1(t)− λ22(x, t)

˙̃
θ2(t) (18)

∂tz2 − c2∂xz2 = σ2(x)z1 − p2(x)z1(1, t)

+ θ̃1(−∂tλ21 + c2∂xλ21 + σ2(x)λ11 − p2(x)λ11(1, t))

+θ̃2(−∂tλ22+c2∂xλ22+σ2(x)λ12−p2(x)λ12(1, t)+φ2(x, t)))
(19)

Equations (17) and (19) suggest the following dynamics of
the swapping filters:

∂tλ11+c1∂xλ11 = σ1(x)λ21−p1(x)λ11(1, t)+φ1(x, t) (20)

∂tλ21 − c2∂xλ21 = σ2(x)λ11 − p2(x)λ11(1, t) (21)

∂tλ12 + c1∂xλ12 = σ1(x)λ22 − p1(x)λ12(1, t) (22)

∂tλ22−c2∂xλ22 = σ2(x)λ12−p2(x)λ12(1, t)+φ2(x, t) (23)

and we impose the following boundary conditions:

λ11(0, t) = qλ21(0, t), λ21(1, t) = 0 (24)

λ12(0, t) = qλ22(0, t), λ22(1, t) = 0 (25)

with zero distributed initial conditions Λ(x, 0) = 0. It is
important to notice that the system (20)-(21) with bound-
ary conditions (24), and the system (22)-(23) with bound-
ary conditions (25) are independent of each other. Hence,
we can denote by:

Λ1(x, t) =

(
λ11(x, t)
λ21(x, t)

)
, Λ2(x, t) =

(
λ12(x, t)
λ22(x, t)

)
(26)

two separate subsystems of Λ(x, t). Doing so, and substi-
tuting equations (20)-(23) in (17) and (19), the dynamics
of the transformed state Z(x, t) becomes

∂tz1 + c1∂xz1 = σ1(x)z2 − p1(x)z1(1, t) (27)

∂tz2 − c2∂xz2 = σ2(x)z1 − p2(x)z1(1, t) (28)

Also, using the boundary conditions given in (11), (24)
and (25), we can then derive the boundary conditions of
Z(x, t) using transformation (14) as:

z1(0, t) = qz2(0, t), z2(1, t) = 0 (29)

In view of the transformation (14), the state estimation
error E(x, t) splits into two parts. The first component
is the observation error represented by Z(x, t), which is
always present whether we have parameters to estimate
or not. The second component is the parameter-induced
error represented by Λ(x, t)θ̃(t), which is proportional to
the parameters mismatch. It is important to mention that
the idea of state parametrization was was first introduced
by the authors in [25] for ODEs. To sum up, the problem
of the exponential stability of the error system (9)-(11)
is equivalent to address three problems: the exponential
stability of Z(x, t), the exponential stability of θ̃(t) and
the boundedness of Λ(x, t).

3.2. Exponential stability of Z(x,t)

We start our analysis by considering the Z(x, t) system
(27)-(29) our goal is to select the observer gains p1(x) and
p2(x) such that the equilibrium z1 ≡ z2 ≡ 0 is exponen-
tially stable in the L2 sense. In fact, equation (14) allows
a straightforward application of the results in [12] (section
4). The authors use a Volterra-backstepping transforma-
tion of the second kind to map the system (27)-(29) into
an exponentially stable target system. We present here
the transformation for the sake of completeness:

Z(x, t) = γ̃(x, t)−
∫ 1

x

P (x, ξ)γ̃(ξ, t)dξ (30)

P (x, ξ) =

(
P 11(x, ξ) P 12(x, ξ)
P 21(x, ξ) P 22(x, ξ)

)
,

γ̃(x, t) =

(
α̃(x, t)

β̃(x, t)

) (31)

The transformation evolves in the triangular domain  L =
{(x, ξ), 0 ≤ x ≤ ξ ≤ 1}, and maps the Z(x, t) system
(27)-(29) into the target system γ̃(x, t) given by:

∂tα+ c1∂xα = 0 (32)

∂tβ − c2∂xβ = 0 (33)

α(0, t) = qβ(0, t), β(1, t) = 0 (34)
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To achieve this transformation, the kernel equations must
satisfy the following equations:

c1P
11
x + c1P

11
ξ = σ1(x)P 21 (35)

c1P
12
x − c2P 12

ξ = σ1(x)P 22 (36)

c2P
21
x − c1P 21

ξ = −σ2(x)P 11 (37)

c2P
22
x + c2P

22
ξ = −σ2(x)P 12 (38)

with boundary conditions:

P 11(0, ξ) = qP 21(0, ξ), P 12(x, x) =
σ1(x)

c1 + c2
(39)

P 21(x, x) = − σ2(x)

c1 + c2
, P 22(0, ξ) =

1

q
P 12(0, ξ) (40)

The observer gains p1(x) and p2(x) serve as additional
conditions on the output injection kernels as:

p1(x) = −c1P 11(x, 1), p2(x) = −c2P 21(x, 1) (41)

It has been shown in [12] that the kernel equations (35)-
(40) have a unique solution in C( L) and are invertible.
The inverse transformation is denoted by R(x, ξ) and is
given by:

γ̃(x, t) = Z(x, t) +

∫ 1

x

R(x, ξ)Z(ξ, t)dξ (42)

R(x, ξ) =

(
R11(x, ξ) R12(x, ξ)
R21(x, ξ) R22(x, ξ)

)
, (43)

with the following kernel equations:

c1R
11
x + c1R

11
ξ = −σ2(ξ)R12 (44)

c1R
12
x − c2R12

ξ = −σ1(ξ)R11 (45)

c2R
21
x − c1R21

ξ = σ2(ξ)R22 (46)

c2R
22
x + c2R

22
ξ = σ1(ξ)R21 (47)

with boundary conditions:

R11(0, ξ) = qR21(0, ξ), R12(x, x) =
σ1(x)

c1 + c2
(48)

R21(x, x) = − σ2(x)

c1 + c2
, R22(0, ξ) =

1

q
R12(0, ξ) (49)

In fact, using a quadratic Lyapunov function and the
method of characteristics, on can easily show that γ̃(x, t)
is L2 stable and that α ≡ β ≡ 0 is reached in finite time
for all 0 ≤ x ≤ 1. Referring back to (30) and (42), the sta-
bility properties of the γ̃(x, t) and Z(x, t) are equivalent.
The following Theorem (which is Theorem 2 in [12]) states
the stability results for the Z(x, t) system.

Theorem 1 ([12]). Consider the system (27)-(28) with
boundary conditions (29), initial conditions z01 , z

0
2 in

L2[0, 1] and with observer gains (41). The equilibrium
z1 ≡ z2 ≡ 0 is exponentially stable in the L2 sense, and
the equilbrium is reached in finite time tF = 1

c1
+ 1

c2
.

Remark 3. The convergence of Z(x, t) to zero in a finite
time is independent of the parameter update laws.

3.3. Boundedness of Λ(x, t)

In this section, we prove the boundedness of the swap-
ping filters Λ(x, t) in the L2 sense. This is necessary, as
introduced in Section 3.1 and shown in Section 3.5, to con-
clude on the exponential stability of E(x, t).

Theorem 2. Consider the two subsystems Λ1(x, t) and
Λ2(x, t) with the initial conditions Λ1(x, 0),Λ2(x, 0) ∈
L2[0, 1], the observer gains (41), and with φ1 and φ2
two bounded functions of class C1([ 0, 1] × [ 0,+∞);R).
Then we have that ||Λ1(., t)||L2[0,1] and ||Λ2(., t)||L2[0,1] are
bounded.

proof. First, consider Λ1(x, t). It’s clear that this sys-
tem has exactly the same shape as the Z(x, t) system
with the addition of the bounded function φ1(x, t) in the
spatial domain. As a result, it’s easy to check that the
same transformation R(x, ξ) defined by equations (44)-
(49) maps Λ1(x, t) to the following target system:

∆(x, t) = Λ1(x, t) +

∫ 1

x

R(x, ξ)Λ1(ξ, t)dξ (50)

∆(x, t) =

(
a(x, t)
b(x, t)

)
(51)

where the dynamics of ∆(x, t) is given by:

∂ta+ c1∂xa = f1(x, t) (52)

∂tb− c2∂xb = f2(x, t) (53)

a(0, t) = qb(0, t), b(1, t) = 0 (54)

where f1(x, t) = φ1(x, t) +
∫ 1

x
R11(x, ξ)φ1(ξ, t)dξ and

f2(x, t) =
∫ 1

x
R21(x, ξ)φ1(ξ, t)dξ. We recall that R(x, ξ)

is well-defined and continuous on C( L) (see [12]): thus
R(x, ξ) is also bounded on C( L). By the assumption that
φ1(x, t) is bounded, we can conclude that the two functions
f1(x, t) and f2(x, t) are also bounded on {(t, x) | t ≥ 0, x ∈
[ 0, 1] }. Now consider the following Lyapunov function:

V1(t) =
1

2

∫ 1

0

q1
c1
e−µxa2(x, t) +

q2
c2
eµxb2(x, t)dx (55)

where q1, q2 and µ are positive constants. Taking the time
derivative of (55) we get:

V̇1(t) =

∫ 1

0

q1
c1
e−µxa∂ta+

q2
c2
eµxb∂tb dx (56)
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Using (52)-(54) and integrating by parts, one has:

V̇1(t) = −1

2
q1e
−µa2(1, t) +

1

2
(q1q

2 − q2)b2(0, t)

− µ

2

∫ 1

0

q1e
−µxa2(x, t) + q2e

µxb2(x, t)dx

+

∫ 1

0

q1
c1
e−µxf1(x, t)a(x, t) +

q2
c2
eµxf2(x, t)b(x, t)dx

(57)

Applying Young’s inequality to the last term of (57), we
have, for all k1 > 0, k2 > 0, that:

V̇1(t) ≤ −1

2
q1e
−µa2(1, t) +

1

2
(q1q

2 − p2)b2(0, t)

+ (−µ
2

+
k1
2c1

)

∫ 1

0

q1e
−µxa2(x, t)dx

+ (−µ
2

+
k2
2c2

)

∫ 1

0

q2e
µxb2(x, t)dx

+
1

2k1

∫ 1

0

q1
c1
e−µxf21 (x, t)dx

+
1

2k2

∫ 1

0

q2
c2
eµxf22 (x, t)dx

(58)

We can choose µ = 1, and q1 and q2 such that:

q1q
2 − q2 ≤ 0 (59)

Let Γ ∈ ]0,min{c1, c2}[, k1 ∈ ]0, c1−Γ] and k2 ∈ ]0, c2−Γ],
then we have

V̇1(t) ≤ −ΓV1(t)+

1

2k1

∫ 1

0

q1
c1
e−µxf21 (x, t)dx+

1

2k2

∫ 1

0

q2
c2
eµxf22 (x, t)dx

(60)

It follows from (60) that V1(t) is bounded, as a direct con-
sequence of the boundedness of f1(x, t) and f2(x, t). Since
V1(t) serves as the weighted L2 norm of the ∆(x, t) system
and since the transformation R(x, ξ) is invertible, we can
deduce that ||Λ1(., t)||L2[0,1] is bounded and the proof is
complete.
The boundedness of ||Λ2(., t)||L2[0,1] is done in exactly the
same way, since the two systems are symmetric.

3.4. Parameter adaptation laws and exponential stability
of θ̃(t)

The authors in [30] synthesize adaptation laws for static
regressors equations of this general from:

y(t) = φT (t)θ (61)

where y is the vector of outputs, φ is the regressor and θ is
the vector of unknown parameters. The core of the designs
is based on minimizing cost functions of the squared esti-
mation errors. Then, sufficient conditions for the exponen-
tial convergence of the estimates are given using Lyapunov

analysis considering persistent excitation assumptions. In
this section, we adapt the analysis of [30] to synthesize an

adaptive law for our problem and prove that θ̂(t)→ θ ex-
ponentially fast.
In view of the available measurements given in (4), equa-
tions (12) and (13) are evaluated at x = 1 and x = 0,
respectively, and we have that:

Zp(t) = Ep(t)− Λp(t)θ̃(t) (62)

where:

Zp(t) =

(
z1(1, t)
z2(0, t)

)
, Ep(t) =

(
ũ(1, t)
ṽ(0, t)

)
Λp(t) =

[
λ11(1, t) λ12(1, t)
λ21(0, t) λ22(0, t)

]
Equation (62) has a form similar to (61) and sug-
gests the following normalized parameter adaptation law
(continuous-time recursive least squares estimator with a
forgetting factor):

˙̂
θ(t) = s(t)

P (t)ΛTp
1 + ||ΛTp Λp||2

Ep(t), (63)

Ṗ (t) = s(t)

[
βP (t)−

P (t)ΛTp ΛpP (t)

1 + ||ΛTp Λp||2

]
, (64)

s(t) =

{
1 if t > tF

0 else
(65)

where θ̂(t) is the estimated value of θ, P (t) ∈ R2×2, and

β > 0 is the forgetting factor. The initial conditions θ̂(0) =

θ̂0, and P (0) = P0 = PT0 > 0 are chosen arbitrarily.

To prove that θ̂(t) → θ exponentially fast, we assume the
following:

Assumption 1. We assume that Λp(t) is persistently ex-
citing i.e. for all t ≥ 0 there exist positive constants T0, c0
and c1 so that:

c0I ≤
1

T0

∫ t+T0

t

ΛTp (τ)Λp(τ)dτ ≤ c1I (66)

where I ∈ R2×2 denotes the identity matrix. The conver-
gence of the estimate θ̂(t) is then given by the following
Theorem.

Theorem 3. Consider the system (63)-(65) with initial

conditions given by θ̂0 and P0. Using Theorems 1 and 2,
and assuming that (66) holds, then θ̂(t)→ θ exponentially
fast.

proof. First, we compute the dynamics of the estimation
error on θ̃(t) using (14) and (63) as:

˙̃
θ(t) = − ˙̂

θ = −s(t)
P (t)ΛTp

1 + ||ΛTp Λp||2
Ep(t)

= −s(t)
P (t)ΛTp

1 + ||ΛTp Λp||2
Zp(t)− s(t)

P (t)ΛTp Λp

1 + ||ΛTp Λp||2
θ̃(t)

(67)
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it’s also easy to check that (64) is equivalent to

d

dt
(P−1) = s(t)

[
−βP−1 +

ΛTp Λp

1 + ||ΛTp Λp||2

]
(68)

where P−1(t) ∈ R2×2 is the inverse matrix of P (t). It can
be shown (see e.g. [30]), under Assumption 1, that P−1(t)
is positive definite and bounded. Now, we can define the
following Lyapunov function:

V (t) =
1

2
θ̃T (t)P−1(t)θ̃(t) (69)

Taking the time derivative of (69) we obtain:

V̇ (t) =
1

2
θ̃T (t)

d

dt
(P−1)θ̃(t) + θ̃TP−1(t)

˙̃
θ(t) (70)

Using (67)-(68), one gets from (70) that:

V̇ (t) = −s(t)
θ̃TΛTp

1 + ||ΛTp Λp||2
Zp

− β

2
s(t)θ̃T (t)P−1(t)θ̃(t)− 1

2
s(t)

θ̃TΛTp Λpθ̃

1 + ||ΛTp Λp||2
(71)

If t < tF , by (65) we have V̇ (t) = 0: the Lyapunov function
is non-increasing. When t become greater than tF (s(t) =
1), we have by Theorem 1 that Zp ≡ 0, then (71) becomes

V̇ (t) = −βV (t)− 1

2

θ̃TΛTp Λpθ̃

1 + ||ΛTp Λp||2
≤ −βV (t) (72)

since the matrix ΛTp Λp is positive semi-definite. As a
result, for all t ≥ tF , there exists K > 0 such that
V (t) ≤ Ke−βtV (0) and θ̃ is thus exponentially decaying

to zero with a rate β : θ̂ → θ exponentially fast and the
proof is complete.

3.5. Exponential stability of E(x, t)

In this section we prove the exponential stability of the
error system E(x, t), referring to the results in sections 3.2,
3.3 and 3.4.

Theorem 4. Consider the error system (9)-(10) with
boundary conditions (11) and initial conditions ũ0, ṽ0 in
L2[0, 1], with observer gains p1(x) and p2(x) given in (41)
and with feedback gains m1(x, t) and m2(x, t) given in (16)
and (18). Under Theorems 1, 2 and 3 the error system is
exponentially stable in the L2 sense.

proof. Using (14), one gets the following:

||E(., t)||L2[0,1] ≤ ||Z(., t)||L2[0,1]+||Λ(., t)θ̃(t)||L2[0,1] (73)

By definition:

||Λ(, t)θ̃(t)||2L2[0,1] =

∫ 1

0

(λ11(x, t)θ̃1(t)+λ12(x, t)θ̃2(t))2dx

+

∫ 1

0

(λ21(x, t)θ̃1(t) + λ22(x, t)θ̃2(t))2dx

(74)

After expanding the squared parentheses in (74) and using
basic identity inequalities we get:

||Λ(, t)θ̃(t)||2L2[0,1] ≤ 2θ̃1
2
||Λ1(., t)||2L2[0,1]

+ 2θ̃2
2
||Λ2(., t)||2L2[0,1] (75)

Then, by Theorem 2, there exist two positive constants
M1 and M2 such that:

||Λ(, t)θ̃(t)||2L2[0,1] ≤ 2M1θ̃1
2

+ 2M2θ̃2
2

≤
√
M ||θ̃(t)||2

(76)

where M = max{2M1, 2M2}. Considering (73) along with
(76) we have:

||E(., t)||L2[0,1] ≤ ||Z(., t)||L2[0,1] +
√
M ||θ̃(t)||2 (77)

Since ||Z(., t)||L2[0,1] and ||θ̃(t)||2 are exponentially decay-
ing (referring to Theorem 1 and Theorem 3, respectively),
then so is ||E(., t)||L2[0,1].

4. Experimental Setup: Modeling and Process De-
scription

We evaluate our observer on the TIF plant, a 15kW cool-
ing system built at CERN to run educative experiments
for developing and improving CO2 cooling technology [31].
This refrigeration system is shown in Fig. 1 and schemati-
cally depicted in Fig. 2. It consists of a circulation system
where the cold CO2 refrigerant is pumped by the pump
(LP3004) to the transfer lines (two concentric cylindrical
tubes in vacuum isolation) and then heated by means of
two heaters (EH7027 and EH7028) to provide the hot CO2

refrigerant. Both hot and cold refrigerants exchange heat
through the transfer lines, and finally the hot fluid is cooled
down by the chiller (HX3082) to be pumped again into the
cold line. The accumulator is used to set a desired out-
put pressure at the hot side. We focus on the transfer
line, as this part is particularly complex to model and ne-
cessitates an advanced observation scheme for distributed
systems. The plant is equipped with four temperature sen-
sors placed at the extremities of the tubes (shown in Fig.
2), which measure the input and output temperatures on
both hot and cold sides. The control input is through the
two heaters (EH7027 and EH7028), where we can vary the
temperature of the hot input by adding and removing heat
and thus create some transients in the system.

4.1. Modeling of the Heat Exchanger

We consider the concentric tubes heat exchanger
schematically depicted in Fig. 3. This exchanger is a
counter-flows heat exchanger, in which hot and cold fluids
flow in opposite directions to maximize the heat transfer.
Both the hot and the cold fluids enter in liquid phase and
leave in liquid phase (no change of phase inside the ex-
changer). The flow of heat from the hot side to the cold

7



Figure 1: 15kW TIF plant at CERN
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Figure 2: Schematic of the TIF plant

Figure 3: CO2 single phase heat exchanger

Table 1: Definition of system variables and constants (SI units)
k = C (cold fluid) or k = H (hot fluid)

Symbol Description Unit
L Length of the exchanger m
ρk Density kg/m3

Hk Specific Enthalpy J/kg
ṁk Mass flow rate kg/s
T k Temperature K
h Heat transfer coefficient (HTC) W/m2.K
Ak Tubes cross-sectional area m2

D1 Inner tube diameter m
CkP Specific heat at constant pressure J/kg.K

side is done through the wall interface.

The mathematical model is derived based on the follow-
ing assumptions :

• the flow is 1-D unidirectional (the hot fluid flows in
the positive x direction);

• the kinetic and potential energies of the flows entering
and leaving the tubes are neglected;

• the wall thickness is neglected (no wall dynamics)
and the heat transfer coefficient is uniform and quasi-
steady i.e. using the classical ”random walk” model,
ḣ = 0 + e(t) where e(t) is a small white noise;

• the flow is considered incompressible; i.e. no signifi-
cant change in density and equivalently in mass flow
rate with time and along the length of the exchanger
(only energy conservation equations are considered);

• in our working range of pressures and temperatures,
we can assume a linear relation between enthalpy and
temperature as follows:

HH = CHP T
H , HC = CCP T

C (78)

where Hk is the specific enthalpy, T k is the temperature
and CkP is specific heat at constant pressure.
Under these assumptions, the 1D flow transport can be
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described by a set of first order hyperbolic partial differ-
ential equations of balance laws (see e.g. [2]) as follows,
∀x ∈ [0, 1]:

∂tT
H + c1∂xT

H = −K1(TH − TC) (79)

∂tT
C − c2∂xTC = K2(TH − TC) (80)

where:

c1 =
ṁH

LAHρH
, c2 =

ṁC

LACρC

K1 =
hπD1

AHρHCHP
, K2 =

hπD1

ACρCCCP

where ρk is the density, ṁk is the mass flow rate, Ak is
the tube surface area, D1 is the inner tube diameter and h
is the heat transfer coefficient. This system has boundary
conditions:

TH(0, t) = THin (t) TC(1, t) = TCin(t) (81)

and initial conditions (assumed to be in L2[0, 1]):

TH(x, 0) = TH0 (x), TC(x, 0) = TC0 (x) (82)

The problem of estimating TH(x, t) and TC(x, t) using
boundary sensing is non-trivial because unknown param-
eters are present inside the domain (K1 and K2). For
example, the heat transfer coefficient h (encapsulated in
K1 and K2) affects the amount of energy transfered from
the hot side to the cold side, and is usually estimated using
correlations from physics (see e.g. [32]). The inaccurate
estimation of h affects the accuracy of the estimation algo-
rithm (as illustrated below in Section 4.4). In what follows,
we consider online estimation of h together with the dis-
tributed states from the four measurements we have at the
boundaries.

4.2. Reformulation as the general model of Section 2

The main difficulty induced by the dynamics (79)-(82)
is that it involves a bilinear parametric nonlinearity i.e.
the unknown parameter h multiples the unknown states
TH(x, t) and TC(x, t). We decrease the level of com-
plexity by augmenting the vector of states of the system
from (TH , TC) to (TH , TC , h) with ḣ = 0. The aug-
mented system is then linearized around the nominal sys-
tem (THN , T

C
N , h

N ) given by:

∂tT
H
N + c1∂xT

H
N = −KN

1 (THN − TCN ) (83)

∂tT
C
N − c2∂tTCN = KN

2 (THN − TCN ) (84)

with boundary conditions:

THN (0, t) = THin (t), TCN (1, t) = TCin(t) (85)

and initial conditions (assumed to be in L2[0, 1]):

THN (x, 0) = THN0(x), TC(x, 0) = TCN0(x) (86)

such that:
TH(x, t) = THN (x, t) + ∆TH(x, t),

TC(x, t) = TCN (x, t) + ∆TC(x, t),

h = hN + ∆h,

(87)

where ∆TH(x, t), ∆TC(x, t) and ∆h are perturbations
around the nominal states. Using a Taylor expansion of
order 1, one can obtain the dynamics of the perturbed
states:

∂t∆T
H + c1∂x∆TH = −KN

1 (∆TH −∆TC)

+∆h
πD1

AHρHCHP
(−THN + TCN )

(88)

∂t∆T
C − c2∂x∆TC = KN

2 (∆TH −∆TC)

+∆h
πD1

ACρCCCP
(THN − TCN )

(89)

with boundary conditions:

∆TH(0, t) = 0, ∆TC(1, t) = 0 (90)

The initial conditions ∆TH0 (x) and ∆TC0 (x) are assumed
to be in L2[0, 1]. Using a simple exponential transforma-
tion:

∆TH1 = e
KN

1
c1

x∆TH , ∆TC1 = e−
KN

2
c2

x∆TC (91)

The system (88)-(90) has exactly the same structure as the
general model (1)-(3), with u = ∆TH1 , v = ∆TC1 , σ1(x) =

KN
1 e

(
KN

1
c1

+
KN

2
c2

)x, σ2(x) = KN
2 e
−(KN

1
c1

+
KN

2
c2

)x, φ1(x, t) =

πD1e
−KN

1
c1

x

AHρHCH
P

(−THN + TCN ), φ2(x, t) = πD1e
KN

2
c2

x

ACρCCC
P

(THN − TCN )

and θ1 = θ2 = ∆h.

Remark 4. In practice and especially in heat exchanger
networks, it is common to have a prior knowledge of the
plant; e.g. ranges of pressures, ranges of temperatures,
fluid speeds etc. This practical understanding of the system
can help in deriving inaccurate estimates of the systems pa-
rameters, e.g. use correlations from the physics to calcu-
late an estimate for the heat transfer coeffcient as in [32].
These estimates are considered as the nominal values for
the exchanger parameters (c1, c2, KN

1 and KN
2 ) and they

are used in constructing the nominal model (83)-(86) along
with φ1(x, t) and φ2(x, t). Hence, by knowing the operating
point of the system and by measuring input/output temper-
atures, one can use our adaptive observer scheme to have
an online estimation of the distributed states TH(x, t),
TC(x, t) and also to recover the deviation of the heat trans-
fer coefficient h from the correlation-based nominal value
hN .

Remark 5. Only the estimation of the heat transfer co-
efficient is considered in the evaluation process. This re-
quires to remove the over-parameterization in system (1)-
(3) by letting θ1 = θ2 = θ, and as a consequence, the
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number of necessary swapping filters drops from four to
only two. More precisely, the adaptive observer will be:

∂tû+ c1∂xû = σ1(x)v̂ + θ̂(t)φ1(x, t)

− p1(x)(û(1, t)− y1(t)) +m1(x, t)

∂tv̂ − c2∂xv̂ = σ2(x)û+ θ̂(t)φ2(x, t)

− p2(x)(û(1, t)− y1(t)) +m2(x, t)

û(0, t) = U(t) + q(v̂(0, t)− y2(t))

v̂(1, t) = V (t)

The swapping filters are

∂tλ1 + c1∂xλ1 = σ1(x)λ2 − p1(x)λ1(1, t) + φ1(x, t)

∂tλ2 − c2∂xλ2 = σ2(x)λ1 − p2(x)λ1(1, t) + φ2(x, t)

λ1(0, t) = qλ2(0, t), λ2(1, t) = 0

with m1(x, t) = −λ1(x, t)
˙̃
θ and m2(x, t) = −λ2(x, t)

˙̃
θ.

θ̂(t) is calculated using the adaptive law (63)-(65) but with
Λp(t) = [λ1(1, t), λ2(0, t)] instead of (26). Furthermore,
there is no change in the calculation of p1(x) and p2(x) as
equation (41) is used.

4.3. In-domain evaluation of the observer through simula-
tions

As shown in Fig.2, temperatures can only be measured
at the extremities of the tubes using four input/output
temperature sensors. Hence, we can’t validate experimen-
tally the distributed state estimation because we can’t take
measurements from inside the domain. However, we eval-
uate the estimation of temperatures inside the domain
through numerical simulations. In this section, we also
discuss the effect of linearization done in Section 4.2.
First of all, assume that the model (79)-(82) represents
the real dynamics of the exchanger under study. We have
built our own simulator to simulate (79)-(82). The simu-
lator implements a finite difference scheme of second order
accuracy for the space derivatives, and ode15s (Matlab)
for the time derivatives. The kernel equations (35)-(40)
are solved by a method called successive approximations
[13]. The main idea of this method is to write the set
of PDEs (35)-(40) in the integral form using the method
of characteristics. Afterwards, the integral equations are
solved using recursion up to an order of accuracy defined
by the user (see [13] for more details). Since the observer is
not built directly on system (79)-(82) but on the linearized
version (88)-(90), we expect the quality of the estimation
to be better when the nominal model (83)-(86) is chosen
close to the real system. The simulations are done in the
following order:

1. Simulate system (79)-(82) with real measured inputs
(see section 4.4) and assume that the real heat transfer
coefficient is hreal = 290. We then consider the ob-
tained temperatures THreal(x, t) and TCreal(x, t) as the
real distributed temperatures of exchanger.

2. Use THreal(1, t) and TCreal(0, t) as the real boundary
measurements

3. Simulate the observer scheme starting with nominal
heat transfer coefficient hN1 = 180, hN2 = 230 and
hN3 = 250.

4. Compute the estimation T̂ (x, t) = TN (x, t)+∆T̂ (x, t)
and the estimation error E(x, t) = |Treal(x, t) −
T̂ (x, t)| on both hot and cold sides.

In order to choose different operating points, we vary the
nominal heat transfer coefficients; e.g. hN1 = 180 corre-
sponds to a far operating point (since hreal = 290) and so
on. The results of the steady state estimation errors are
shown in Fig.4. A first important remark is that the esti-
mation error inside the domain is greater than that at the
boundaries for all the operating points. A glimpse on the
observer design can actually give us the reason. Consider-
ing the linear case, the adaptation law uses only boundary
outputs to estimate the parameters. If the outputs are
informative enough, the estimated values of the parame-
ters will converge to the real ones when the outputs agree.
Since the observer is of Luenberger type and its stability is
guaranteed by the observer gains p1(x) and p2(x), the in-
domain estimates should also converge. When considering
the real system, the adaptation law ensures the conver-
gence of the boundary outputs, but this does not neces-
sarily imply an in-domain convergence since the observer
is built on the linearized version of the system and not on
the real plant. We can see from Fig.4 that as the nomi-
nal model approaches the real model (i.e. hN approaches
hreal), the estimation error in the domain is decreased. By
looking into the order of error magnitude, we find that the
maximum absolute estimation error on both sides is less
than 0.018 K in the hole domain. This is significantly a
negligible in-domain estimation error. We can then rea-
sonably deduce that the effect of linearization is almost
negligible and does not affect the quality of the in-domain
estimation. The reason is mainly because the bilinear pa-
rameter nonlinearity (K1(TH − TC)) encountered in the
plant is not a strong nonlinearity.

We now show the time series of the heat transfer co-
efficient on Fig.5. We can see that the estimations from
the three different nominal operating points stabilize at
steady states that do not correspond to hreal = 290. The
reason is clearly the linearization, since when the nominal
operating point is chosen close to the system’s real op-
erating point, the estimation is improved. This is more
significant if we compute the relative steady state error:

RSE(%) =
|hreal−ĥsteady|

hreal
∗ 100 for each operating point.
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Figure 4: Steady state error on the distributed temperature profiles
for three different operating points
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Figure 5: Estimated heat transfer coefficient ĥ(t) for three different
operating points

Table 2: RSE for three different operating points

Operating point RSE (%)
hN1 = 180 9.31
hN2 = 230 2.79
hN3 = 250 1.24

The RSE decreases when hN approaches hreal as shown
in Table 2 and its magnitude is less than 10% even for a
very far operating point (i.e. hN = 180). It is also impor-
tant to mention that there is always a physical limit on
the chosen values of the operating point hN (see Fig.5).
This limit is calculated using thermodynamical correla-
tions [30]. For the exchanger under study, the minimal
calculated physical limit is hN = 230, and we can notice
on Table 2 that the corresponding RSE is less than 3%.
This is considered very small, and we can conclude that
in the physical working ranges of the exchanger, the ef-
fect of linearization on the estimation of the heat transfer
coefficient is reasonably small.

4.3.1. Comparison with literature observers

Previously, several boundary observer designs for hy-
perbolic systems relying on an exact knowledge of the pa-
rameters of the system have been designed. We intend to
show the importance of the adaptive design in the case
where the nominal parameters differ from the real ones as
this is the main problem that we faced while designing an
observer for our experiment. To compare our results we
choose two designs already present in the literature: the
Lyapunov-based observer proposed in [18] and the two-
sided backstepping observer from [14].
We simulate the observers proposed in [18] and [14] at the
three different operating points (hN1 = 180, hN2 = 230, and
hN3 = 250), following exactly the procedure explained in
Section 4.3 (steps 1 to 3). We recall that the observer de-
signs in [18] and [14] are built directly using the nominal
parameters of the system. The main objective of the com-
parison is to check if the parameter adaptation improves
the accuracy of the temperature estimates.
We simulate the three observers with real measured inputs
(see Section 4.4) starting with the same initial conditions.
We have calculated the L1 norm of the estimation error on
both hot and cold sides for the three different operating
points:

||εK(t)||L1[0,1] =

∫ 1

0

|TKreal(x, t)− T̂K(x, t)|dx (92)

The results are shown on Fig.6. We can observe that in
all the plots the estimation error using the adaptive de-
sign is always less than that resulting from the observers
in [18] and [14]. The adaptive observer significantly ame-
liorates the estimation in transient states and contributes
to nearly 1K temperature improvement at steady states.
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Figure 6: Comparison of the L1 estimation error resulting from three
different methods for three different operating points

Table 3: Heating power modulation

Variation Time(s)
increase 0(s)
decrease 479(s)
increase 800(s)
increase 1391(s)
decrease 2050(s)

These estimation enhancements provided by the parame-
ter adaptation are very important to the designers of the
CO2 cooling technology at CERN, since they work with
highly accurate temperature sensors.

4.4. Experimental evaluation of the observer

Once the system has reached a steady state and liquid
CO2 starts circulating in all parts of the TIF plant, the ex-
periment is done by modulating the input heating power
by several increases and decreases at different instants in
time as shown in Table 3, thus inducing system transients
and exciting the system frequencies. Keeping in mind that
we have only one parameter to estimate, which is the heat
transfer coefficient, the input in Table 3 is considered suffi-
ciently persistently exciting. The temperature is measured
by the four sensors schematically depicted on Fig.2. They
are PT100 RTD sensors. In particular, they are ”in-flow”
sensors, i.e., they are mounted inside the tube to measure
the temperature of the refrigerant itself, instead of being
glued to the top of the tube. These PT100s output a resis-
tance to a ”Conditioner” which is an object that converts
the resistance signal into a 4-20 mA input for the PLC.
The PLC then has a range that determines what the min-
imum (4mA) and maximum (20mA) values for that par-
ticular sensor are, and uses this to convert the 4-20 mA
signal into a degree Celsius (C) value. On the computer,
we have a SCADA system called WinCCOA, which ex-
changes signals from the PLC and displays it for the user.
From the WinccOA interface, we are able to export the
data to a CSV file. We import the data into Matlab where
we make all the analysis. The observer schemes are not
implemented directly on the real plant. The experimental
evaluation of the observers is done in Matlab using the real
data collected in the CSV files.

The TIF plant is 17.665 m long (L = 17.665 m) with
cross-sectional areas AH = 7.6306 × 10−4 m2, AC =
1.131 × 10−4 m2. During this experiment, the exchanger
is operating in the liquid phase and in the following work-
ing ranges: pressure between [5 MPa, 6 MPa], tempera-
tures between [253 K, 288 K] and mass flow rates close to
0.047 Kg/s. With these given information, one can use the
equation of state (EoS) for CO2 [33] with the correlation
in [32] to calculate the nominal values for the exchanger
parameters. We found: c1 = 0.0237 s-1, c2 = 0.0037 s-1,
KN

1 = 0.0051 s-1 and KN
2 = 0.0351 s-1. The computed

nominal heat transfer coefficient is hN = 230 W/m2.K. Af-
terwards, the nominal model (83)-(86) is simulated with
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Figure 7: Comparison between the reference model and experiments

the measured inputs. By comparing the temperature out-
puts of the nominal model (THN (1, t) and TCN (0, t)) and the
experimental measures on Fig.7, one can notice that the
nominal model captures the main dynamics of the real sys-
tem. However, the temperatures predicted by the model
involve a temperature shift and this shift changes with
time. We know from the physics that the heat transfer co-
efficient is the parameter responsible for this shift in tem-
perature magnitudes, since it affects the amount of energy
transfered from the hot side to the cold side. One can
then draw two conclusions: first the linear system (79)-
(82) represents a good physical model for the exchanger,
second the real heat transfer coefficient is time -varying.
In fact, the dynamics of h are very complex since h can
vary with the variation of many physical quantities and
especially temperature. In our adaptive design, we have
assumed that h is quasi-steady (see the modeling assump-
tions list in Section 4.1). Doing so, we intend to use the
parameter adaptation algorithm to recover the values of
the heat transfer coefficient in the intervals were we have
slow variations in temperature (as we will show later in
the analysis).

As the nominal operating point is settled, we can pro-
ceed to the estimation part. Since we can’t take measure-
ments from inside the domain, we evaluate our theoretical
results against the output sensor measurements. We start
all observers with the same initial condition.
Fig.8 shows the temperatures estimated by the three ob-
servers along with the experimental measurements. One
can notice that the quality of the estimation is better using
our proposed adaptive estimator during both transient and
steady states. The estimation error magnitude on both hot
and cold sides is presented on Fig.9. Note that the error is
decreased by nearly 5K during the transient phase and 1K
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(a) Hot fluid temperature.
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(b) Cold fluid temperature.

Figure 8: Temperature trends estimated with three different meth-
ods.
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(b) Output cold estimation errors.

Figure 9: Output estimation errors of the three different observations
methods.
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Figure 10: Estimated heat transfer coefficient ĥ(t)

in the steady state, using the adaptive estimator. The es-
timations using the two other designs (Lyapunov and two-
sided backstepping observers) are comparable and with an
accuracy limited by their assumption of a perfect knowl-
edge of the system’s parameters. Considering a negligible
contribution of the linearization error as illustrated in Sec-
tion 4.3., we can conclude that the adaptive observer can
estimate the distributed state with enough degree of accu-
racy.
The estimation of the heat transfer coefficient is shown
on Fig.10: the estimation starts at the nominal value
hN = 230 and then after the time tF = 1

c1
+ 1

c2
= 310.54 s

the adaptation law starts functioning. Since we have im-
plicitly assumed that h is quasi-steady, we expect the es-
timated heat transfer coefficient to converge to different
steady states at different intervals of time. We can in-
fer from Fig.10 approximately three different values of the
heat transfer coefficient in three different time intervals:
h ≈ 312 for t ∈ [310s,1235s], h ≈ 325 for t ∈ [1625s,2530s]
and h ≈ 295 for t ∈ [3550s,8400s].

5. Conclusion

We have developed an adaptive observer that estimates
unknown parameters inside the domain for 2 by 2 first
order 1-D hyperbolic PDEs. The observer is based on a
swapping design, which allows us to write the estimation
error on the states as a static linear combination of the es-
timation error on the parameters. Standard backstepping
and parameter estimation techniques can then be used.
We thus proved boundedness of regressors filters and ob-
tained sufficient conditions to ensure the exponential con-
vergence of the estimation errors. The designed observer
uses only boundary sensing, and allows one to estimate
the full distributed states. Our method is evaluated ex-
perimentally on the TIF refrigeration system at CERN,
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and our results show that the adaptive observer captures
the main dynamics of the real system. For future works, it
would be interesting to consider the bilinear parameteriza-
tion directly in (79)-(82), i.e. to estimate h and TH(x, t),
TC(x, t) directly without passing through the linearization
step, using boundary sensing only.
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