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In this work, we consider the estimation of temperature along the pipes of concentric heat exchanger tubes in which CO 2 is the working fluid. The transport phenomena is modeled using (2x2) linear hyperbolic partial differential equations, with one rightward equation for the hot flow and one leftward equation for the cold flow. Both flows exchange energy through the wall interface, which physically induces a coupling between the two dynamics. Our objective is to estimate the temperature distribution along the flows from measurements at the tubes boundaries only. In this framework, we propose an adaptive boundary observer that can estimate not only the full state of the system, but also unknown indomain parameters. The design is based on transforming the error system via a finite-dimensional backstepping-like transformation into a desired filter-based system, for which standard backstepping observer techniques and adaptation laws can be used. The theoretical results are evaluated against the temperature measurements taken from a CO 2 refrigeration apparatus built at CERN, Switzerland.

Introduction

Heat exchangers are widely used in many industrial domains like food production, chemical plants or oil refineries. They also play an important role for cooling and heating of houses, offices, companies, cars etc. In the past decades fluorocarbons (C 2 F 6 , C 3 F 8 , R134a) were used as the working fluids for heat exchangers, but nowadays CO 2 (especially evaporative CO 2 ) cooling has become an interesting technology due to several advantages. Indeed, CO 2 has high heat transfer capabilities, high latent heat, low pressure drop and low viscosity (ability to use small size pipes), which allows us to cool networks of long small pipes over large distances. CO 2 has thus been retained as the best choice for HEP detectors cooling at CERN [START_REF] Verlaat | CO2 cooling for HEP experiments[END_REF]. Heat exchangers are key components that are present in any refrigeration system. The control of such units is vital in order to have low rates of energy consumption while maximizing the heat transfer rates. Considering the concentric tubes heat exchanger, both hot and cold fluids exchange energy through the wall interface. This transport and exchange of energy can be modeled by first order linear hyperbolic systems of balance laws [START_REF] Xu | Exponential stability and transfer functions of processes governed by symmetric hyperbolic systems[END_REF]. Synthesizing a control law may require a full knowledge of the distributed state while measurements are available only at the tube boundaries. Furthermore, full state knowledge helps in managing energy efficiently in complex and large heat exchanger networks, and to detect faults in case of an energy leakage. The classical approach used for solving control and estimation problems for hyperbolic partial differential equations is to discretize the partial differential equations (PDEs) and then apply classical control methods designed for finite dimensional systems. However, key information on the system transient behavior is lost, and the observability and controllability of the system will depend on the chosen space-discretization method. This leads to the idea of extending finite dimensional control theory to the infinite case. An extra challenge induced by our estimation problem is the lack of knowledge of some in-domain coupling parameters (e.g. the heat transfer coefficient). This adds more complexity to the estimation problem as we also have unmeasured distributed states. This motivates our work to consider the adaptive design of a boundary observer that can simultaneously estimate the distributed states and the unknown in-domain parameters, with only boundary measurements.

Hyperbolic systems and more specifically linear and quasi-linear hyperbolic systems are well studied by the control community. These systems can model many physical processes, like road traffic [START_REF] Goatin | The aw-rascle vehicular traffic flow model with phase transitions[END_REF], gas flow in pipelines [START_REF] Gugat | Time-delayed boundary feedback stabilization of the isothermal euler equations with friction[END_REF], flow of fluids in open channels [START_REF] Coron | A lyapunov approach to control irrigation canals modeled by saint-venant equations[END_REF], transmission lines [START_REF] Curro | A reduction procedure for generalized Riemann problems with application to nonlinear transmission lines[END_REF], multiphase flow [START_REF] Meglio | Dynamics and control of slugging in oil production[END_REF], etc.. The early results on stability and controllability of such systems can be dated back to the 70s [START_REF] Rauch | Exponential decay of solutions to hyperbolic equations in bounded domains[END_REF], [START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions[END_REF]. During that period, the stability issue was tackled by computing the explicit solution of the equations along the characteristic curves in the framework of the C 1 norm. Afterwards, using Lyapunov-based functions, dissipative boundary conditions (standard static boundary output feedback) are designed to guarantee exponential stability in the L 2 , C 1 and H 2 norms [START_REF] Xu | Exponential stability and transfer functions of processes governed by symmetric hyperbolic systems[END_REF][START_REF] Castillo | Dynamic boundary stabilization of linear and quasi-linear hyperbolic systems[END_REF][START_REF] Bastin | Stability and boundary stabilization of 1-d hyperbolic systems[END_REF]. One drawback of using this kind of boundary conditions to stabilize the system is that it imposes some restrictions on the magnitude of the coupling between the system states. However, this limitation can be overcome by the use of the so-called backstepping-method. The main idea of this method is to introduce an invertible Volterra transformation that maps the original system into a target system with the desired stability properties, for which static boundary controls and observer gains are synthesized to ensure the system convergence to a desired set in finite time. In [START_REF] Vazquez | Backstepping boundary stabilization and state estimation of a 2× 2 linear hyperbolic system[END_REF], the authors solve the problem of one-sided boundary stabilization (actuation only at one boundary) of a two by two quasilinear first-order hyperbolic system in finite time. The approach is then generalized by the authors in [START_REF] Hu | Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs[END_REF] to a general system of heterodirectional coupled hyperbolic equations. The backstepping method is also used for two-sided boundary control (actuation on both boundaries) of heterodirectional hyperbolic systems. The authors in [START_REF] Auriol | Two-sided boundary stabilization of heterodirectional linear coupled hyperbolic pdes[END_REF] derive control laws using a Fredholm transformation (unlike Volterra transformation, Fredholm transformation is not always invertible) that also ensures convergence in finite time. However, all the results mentioned so far do not allow unknown in-domain parameters or unknown boundary parameters to be present. In order to address this problem, we consider adaptive boundary control for hyperbolic systems. The first results on adaptive control for hyperbolic PDEs were obtained by the authors in [START_REF] Bernard | Adaptive output-feedback stabilization of non-local hyperbolic PDEs[END_REF], where a general first-order hyperbolic partial integro-differential equation(PIDE) with one rightward convecting PDE is adaptively stabilized by boundary sensing only. This result is extended by the authors in [START_REF] Anfinsen | Adaptive output-feedback stabilization of linear 2× 2 hyperbolic systems using anti-collocated sensing and control[END_REF] to 2 by 2 hyperbolic partial differential equations with unknown transport speeds, unknown couplings and also unknown boundary parameters.

Infinite dimensional boundary observers are less investigated in the literature. The problem with systems that have distributed parameters is that it is most of the time impossible to take measurements at every point in space. It is more natural for the sensors to be located at the boundaries of the domain, which led to the idea of boundary observers. Boundary control design is achieved using boundary observers based on two methods: Lyapunov and backstepping-based methods. Concerning Lyapunov methods, the authors in [START_REF] Castillo | Boundary observers for linear and quasi-linear hyperbolic systems with application to flow control[END_REF] design a boundary observer for n rightward hyperbolic transport equations. The observer uses measurements taken from the right boundary to correct the estimation error on the left one. This result is extended by the authors in [START_REF] Zobiri | PDE observer design for counter-current heat flows in a heat-exchanger[END_REF] to one rightward and one leftward transport equation for the plate heat exchanger. Nevertheless, both methods assume perfect knowledge of the model parameters. Backstepping-based boundary observers are also well established in the literature. In fact, static control design using backstepping requires a full knowledge of the distributed states. A collocated boundary observer is thus synthesized to fulfill this requirement (see previously mentioned results such as [START_REF] Vazquez | Backstepping boundary stabilization and state estimation of a 2× 2 linear hyperbolic system[END_REF], [START_REF] Hu | Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs[END_REF], [START_REF] Auriol | Two-sided boundary stabilization of heterodirectional linear coupled hyperbolic pdes[END_REF]). These designs also assume a perfect knowledge of the system. In many practical cases, some model parameters are unknown, which motivates the need for adaptive estimators. The objective of an adaptive boundary observer is to simultaneously construct the system's distributed states and the unknown parameters from only boundary sensing. The problem of adaptive boundary estimation was first addressed by the authors in [START_REF] Smyshlyaev | Adaptive control of parabolic PDEs[END_REF] for parabolic PDEs using backstepping techniques. Such method is applied to hyperbolic systems in [START_REF] Di Meglio | An adaptive observer for hyperbolic systems with application to underbalanced drilling[END_REF], where the authors design an adaptive observer for first-order hyperbolic systems with uncertain additive boundary parameters (the adaptive laws for these parameters are derived using Lyapunov analysis). This result is extended by the authors in [START_REF] Bin | Boundary estimation of boundary parameters for linear hyperbolic PDEs[END_REF] to unknown additive and multiplicative parameters in the boundary. We can also mention the results on disturbance rejection for hyperbolic systems (see e.g. [START_REF] Aamo | Disturbance rejection in 2 x 2 linear hyperbolic systems[END_REF], [START_REF] Aamo | Leak detection, size estimation and localization in pipe flows[END_REF]), which can be interpreted as results on adaptive observers for hyperbolic PDEs. As a different approach, swapping design is also used in the derivation of adaptive observers. This method relies on using K-filters to derive static relationships between the system states and the unknown parameters: this relationship is used to build Lyapunovbased adaptive laws to estimate the unknown parameters (see [START_REF] Krstic | Nonlinear and adaptive control design[END_REF] and [START_REF] Kreisselmeier | Adaptive observers with exponential rate of convergence[END_REF] for ODEs and [START_REF] Smyshlyaev | Adaptive control of parabolic PDEs[END_REF] for PDEs). In the work of the authors in [START_REF] Anfinsen | An adaptive observer design for n + 1 coupled linear hyperbolic pdes based on swapping[END_REF], [START_REF] Anfinsen | Estimation of boundary parameters in general heterodirectional linear hyperbolic systems[END_REF], and [START_REF] Anfinsen | Estimating the left boundary condition of coupled 1-D linear hyperbolic PDEs from right boundary sensing[END_REF] swapping design is used to estimate unknown boundary parameters for some classes of hyperbolic systems. However, few results exist in the literature on in-domain parameter estimation. The works [START_REF] Bernard | Adaptive output-feedback stabilization of non-local hyperbolic PDEs[END_REF] and [START_REF] Anfinsen | Adaptive output-feedback stabilization of linear 2× 2 hyperbolic systems using anti-collocated sensing and control[END_REF] on adaptive control include in-domain parameter estimations based on swapping design methods. In these works, an adaptive observer is designed for systems in the "canonical observable form" to serve as an intermediate step in deriving the control law. In this paper, we consider the problem of estimating the distributed states of a 2 × 2 hyperbolic system, two-sided actuated with unknwon in-domain parameters. The motivation behind considering such system is the application to heat exchanger networks. To the best of our knowledge, this type of estimation problem is not addressed yet in the literature. Inspired by [START_REF] Ahmed-Ali | Adaptive boundary observer for parabolic PDEs subject to domain and boundary parameter uncertainties[END_REF], the novelty of our adaptive design is to apply the swapping method on the error estimation system and not on the original plant. This gives more degrees of freedom for the designer to shape the boundary conditions of the resulting error system, which facilitates the use of a backstepping technique to derive the observer gains. In addition, we validate the proposed adaptive architecture experimentally using temperature measurements taken from a CO 2 refrigeration apparatus built at CERN. The paper is organized as follows: the observation problem formulation is described in Section 2. The adaptive observer design with the estimation convergence analysis is presented in Section 3. Section 4 is dedicated to the experimental setup together with the experimental evaluation results, and some concluding remarks are given in Section 5.

Observation problem formulation

We consider the following class of linear hyperbolic systems evolving in {(t, x) | t ≥ 0, x ∈ [ 0, 1] }:

∂ t u + c 1 ∂ x u = σ 1 (x)v + θ 1 φ 1 (x, t) (1) 
∂ t v -c 2 ∂ x v = σ 2 (x)u + θ 2 φ 2 (x, t) (2) 
u(0, t) = U (t), v(1, t) = V (t) (3) 
where u and v are the system states, [ u, v] T : [ 0, 1] × [ 0, +∞) → R 2 . c 1 > 0 and c 2 > 0 are the transport speeds, and σ 1 , σ 2 are assumed to be C 0 ([0, 1]; R) known functions. Furthermore, φ 1 and φ 2 are also bounded known functions of class C 1 ([ 0, 1] × [ 0, +∞); R), and θ 1 and θ 2 are unknown real scalar parameters. The initial conditions, denoted u 0 and v 0 , are assumed to belong to L 2 ([0, 1]). U (t) and V (t) are considered as known boundary inputs.

Our goal is to estimate the state of the system (1)-(3) and the unknown parameters θ 1 and θ 2 , assuming that the following measurements are available:

y 1 (t) = u(1, t), y 2 (t) = v(0, t) (4) 
Remark 1. While the method extends to spatially varying transport speeds c 1 (x) and c 2 (x), we consider here constant transport speeds for the sake of technical simplicity.

Remark 2. The method can be extended to include the estimation of unknown boundary parameters of the form u(0, t) = qv(0, t) + U (t) where q is the unknown boundary parameter. Nevertheless, this requires assuming that the plant is stable and does not diverge for all times.

Adaptive Observer Design

We introduce the following adaptive observer design:

∂ t û + c 1 ∂ x û = σ 1 (x)v + θ1 (t)φ 1 (x, t) -p 1 (x)(û(1, t) -y 1 (t)) + m 1 (x, t) (5) ∂ t v -c 2 ∂ x v = σ 2 (x)û + θ2 (t)φ 2 (x, t) -p 2 (x)(û(1, t) -y 1 (t)) + m 2 (x, t) (6) û(0, t) = U (t) + q(v(0, t) -y 2 (t)) (7) v(1, t) = V (t) (8) 
where p 1 (x) and p 2 (x) are the observer gains, q is a nonzero real parameter that can be chosen arbitrarily, and m 1 (x, t) and m 2 (x, t) are additional feedback gains to be determined later. The observer initial conditions are denoted by û0 and v0 , and are assumed to belong to L 2 [0, 1]. The estimates are denoted by hat, and we define the er-

ror variables ũ = u -û, ṽ = v -v, θ1 (t) = θ 1 -θ1 (t), θ2 (t) = θ 2 -θ2 (t).
Forming the error system by subtracting ( 5)-( 8) from ( 1)-(3) we have:

∂ t ũ+c 1 ∂ x ũ = σ 1 (x)ṽ+ θ1 (t)φ 1 (x, t)-p 1 (x)ũ(1, t)-m 1 (x, t) (9) 
∂ t ṽ-c 2 ∂ x ṽ = σ 2 (x)ũ+ θ2 (t)φ 2 (x, t)-p 2 (x)ũ(1, t)-m 2 (x, t) (10) 
ũ(0, t) = qṽ(0, t), ṽ(1, t) = 0 [START_REF] Bastin | Stability and boundary stabilization of 1-d hyperbolic systems[END_REF] The observer designed in ( 5)-( 8) is a Luenberger-type observer, which is a copy of the system with output injection terms (y 1 (t), y 2 (t)) added in the domain and at the left boundary. The problem is then to find the observer gains p 1 (x) and p 2 (x), and proper parameter update laws in order to guarantee the exponential convergence of the error system ( 9)- [START_REF] Bastin | Stability and boundary stabilization of 1-d hyperbolic systems[END_REF] to zero.

Swapping Design

In this section, we derive a static relationship which connects the estimation error on the states with the estimation error on the parameters. This relationship will then be used to derive the parameters adaption laws. By writing the error system (9)-( 11) using swapping filters we have: [START_REF] Hu | Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs[END_REF] We can write (12)- [START_REF] Hu | Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs[END_REF] in the compact form:

z 1 (x, t) = ũ(x, t) -λ 11 (x, t) θ1 (t) -λ 12 (x, t) θ2 (t) (12) z 2 (x, t) = ṽ(x, t) -λ 21 (x, t) θ1 (t) -λ 22 (x, t) θ2 (t)
Z(x, t) = E(x, t) -Λ(x, t) θ(t) (14) 
where:

Z(x, t) = z 1 (x, t) z 2 (x, t) , E(x, t) = ũ(x, t) ṽ(x, t) θ(t) = θ1 (t) θ2 (t) , Λ(x, t) = λ 11 (x, t) λ 12 (x, t) λ 21 (x, t) λ 22 (x, t)
The swapping filters

λ ij (x, t) : [ 0, 1] × [ 0, +∞) → R, (1 ≤ i ≤ 2, 1 ≤ j ≤ 2)
are to be defined later. Differentiating [START_REF] Vazquez | Backstepping boundary stabilization and state estimation of a 2× 2 linear hyperbolic system[END_REF] with respect to time and substituting with [START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions[END_REF] we get:

∂ t z 1 = -c 1 ∂ x ũ + σ 1 (x)ṽ + θ1 (t)φ 1 (x, t) -m 1 (x, t) -p 1 (x)ũ(1, t) -∂ t λ 11 θ1 -λ 11 θ1 -∂ t λ 12 θ2 -λ 12 θ2 (15)
In order to keep [START_REF] Bernard | Adaptive output-feedback stabilization of non-local hyperbolic PDEs[END_REF] linear in θ1 and θ2 , we choose the following feedback law m 1 (x, t):

m 1 (x, t) = -λ 11 (x, t) θ1 (t) -λ 12 (x, t) θ2 (t) (16) 
Using ( 16), and substituting with ( 14) in ( 15) leads to:

∂ t z 1 + c 1 ∂ x z 1 = σ 1 (x)z 2 -p 1 (x)z 1 (1, t) + θ1 (-∂ t λ 11 -c 1 ∂ x λ 11 +σ 1 (x)λ 21 -p 1 (x)λ 11 (1, t)+φ 1 (x, t)) + θ2 (-∂ t λ 12 -c 1 ∂ x λ 12 + σ 1 (x)λ 22 -p 1 (x)λ 12 (1, t)) (17) 
Similarly, deriving [START_REF] Hu | Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs[END_REF] with respect to time and following the same procedure, one gets:

m 2 (x, t) = -λ 21 (x, t) θ1 (t) -λ 22 (x, t) θ2 (t) (18) 
∂ t z 2 -c 2 ∂ x z 2 = σ 2 (x)z 1 -p 2 (x)z 1 (1, t) + θ1 (-∂ t λ 21 + c 2 ∂ x λ 21 + σ 2 (x)λ 11 -p 2 (x)λ 11 (1, t)) + θ2 (-∂ t λ 22 +c 2 ∂ x λ 22 +σ 2 (x)λ 12 -p 2 (x)λ 12 (1, t)+φ 2 (x, t))) (19) 
Equations ( 17) and ( 19) suggest the following dynamics of the swapping filters:

∂ t λ 11 +c 1 ∂ x λ 11 = σ 1 (x)λ 21 -p 1 (x)λ 11 (1, t)+φ 1 (x, t) (20) 
∂ t λ 21 -c 2 ∂ x λ 21 = σ 2 (x)λ 11 -p 2 (x)λ 11 (1, t) (21) 
∂ t λ 12 + c 1 ∂ x λ 12 = σ 1 (x)λ 22 -p 1 (x)λ 12 (1, t) (22) 
∂ t λ 22 -c 2 ∂ x λ 22 = σ 2 (x)λ 12 -p 2 (x)λ 12 (1, t)+φ 2 (x, t) (23) 
and we impose the following boundary conditions:

λ 11 (0, t) = qλ 21 (0, t), λ 21 (1, t) = 0 ( 24 
)
λ 12 (0, t) = qλ 22 (0, t), λ 22 (1, t) = 0 ( 25 
)
with zero distributed initial conditions Λ(x, 0) = 0. It is important to notice that the system ( 20)-( 21) with boundary conditions (24), and the system ( 22)-( 23) with boundary conditions (25) are independent of each other. Hence, we can denote by:

Λ 1 (x, t) = λ 11 (x, t) λ 21 (x, t) , Λ 2 (x, t) = λ 12 (x, t) λ 22 (x, t) (26) 
two separate subsystems of Λ(x, t). Doing so, and substituting equations ( 20)-( 23) in ( 17) and ( 19), the dynamics of the transformed state Z(x, t) becomes

∂ t z 1 + c 1 ∂ x z 1 = σ 1 (x)z 2 -p 1 (x)z 1 (1, t) (27) 
∂ t z 2 -c 2 ∂ x z 2 = σ 2 (x)z 1 -p 2 (x)z 1 (1, t) (28) 
Also, using the boundary conditions given in ( 11), ( 24) and ( 25), we can then derive the boundary conditions of Z(x, t) using transformation [START_REF] Auriol | Two-sided boundary stabilization of heterodirectional linear coupled hyperbolic pdes[END_REF] as:

z 1 (0, t) = qz 2 (0, t), z 2 (1, t) = 0 ( 29 
)
In view of the transformation ( 14), the state estimation error E(x, t) splits into two parts. The first component is the observation error represented by Z(x, t), which is always present whether we have parameters to estimate or not. The second component is the parameter-induced error represented by Λ(x, t) θ(t), which is proportional to the parameters mismatch. It is important to mention that the idea of state parametrization was was first introduced by the authors in [START_REF] Kreisselmeier | Adaptive observers with exponential rate of convergence[END_REF] for ODEs. To sum up, the problem of the exponential stability of the error system ( 9)-( 11) is equivalent to address three problems: the exponential stability of Z(x, t), the exponential stability of θ(t) and the boundedness of Λ(x, t).

Exponential stability of Z(x,t)

We start our analysis by considering the Z(x, t) system ( 27)-( 29) our goal is to select the observer gains p 1 (x) and p 2 (x) such that the equilibrium z 1 ≡ z 2 ≡ 0 is exponentially stable in the L 2 sense. In fact, equation ( 14) allows a straightforward application of the results in [START_REF] Vazquez | Backstepping boundary stabilization and state estimation of a 2× 2 linear hyperbolic system[END_REF] (section 4). The authors use a Volterra-backstepping transformation of the second kind to map the system ( 27)-( 29) into an exponentially stable target system. We present here the transformation for the sake of completeness:

Z(x, t) = γ(x, t) - 1 x P (x, ξ)γ(ξ, t)dξ (30) 
P (x, ξ) = P 11 (x, ξ) P 12 (x, ξ) P 21 (x, ξ) P 22 (x, ξ) , γ(x, t) = α(x, t) β(x, t) (31) 
The transformation evolves in the triangular domain L = {(x, ξ), 0 ≤ x ≤ ξ ≤ 1}, and maps the Z(x, t) system ( 27)-( 29) into the target system γ(x, t) given by:

∂ t α + c 1 ∂ x α = 0 (32) ∂ t β -c 2 ∂ x β = 0 (33) α(0, t) = qβ(0, t), β(1, t) = 0 (34)
To achieve this transformation, the kernel equations must satisfy the following equations:

c 1 P 11 x + c 1 P 11 ξ = σ 1 (x)P 21 (35) c 1 P 12 x -c 2 P 12 ξ = σ 1 (x)P 22 (36) 
c 2 P 21 x -c 1 P 21 ξ = -σ 2 (x)P 11 (37) 
c 2 P 22 x + c 2 P 22 ξ = -σ 2 (x)P 12 (38) 
with boundary conditions:

P 11 (0, ξ) = qP 21 (0, ξ), P 12 (x, x) = σ 1 (x) c 1 + c 2 (39) 
P 21 (x, x) = - σ 2 (x) c 1 + c 2 , P 22 (0, ξ) = 1 q P 12 (0, ξ) (40)
The observer gains p 1 (x) and p 2 (x) serve as additional conditions on the output injection kernels as:

p 1 (x) = -c 1 P 11 (x, 1), p 2 (x) = -c 2 P 21 (x, 1) (41) 
It has been shown in [START_REF] Vazquez | Backstepping boundary stabilization and state estimation of a 2× 2 linear hyperbolic system[END_REF] that the kernel equations ( 35)-( 40) have a unique solution in C( L) and are invertible. The inverse transformation is denoted by R(x, ξ) and is given by:

γ(x, t) = Z(x, t) + 1 x R(x, ξ)Z(ξ, t)dξ (42) R(x, ξ) = R 11 (x, ξ) R 12 (x, ξ) R 21 (x, ξ) R 22 (x, ξ) , (43) 
with the following kernel equations:

c 1 R 11 x + c 1 R 11 ξ = -σ 2 (ξ)R 12 (44) c 1 R 12 x -c 2 R 12 ξ = -σ 1 (ξ)R 11 (45) c 2 R 21 x -c 1 R 21 ξ = σ 2 (ξ)R 22 (46) c 2 R 22 x + c 2 R 22 ξ = σ 1 (ξ)R 21 (47) 
with boundary conditions:

R 11 (0, ξ) = qR 21 (0, ξ), R 12 (x, x) = σ 1 (x) c 1 + c 2 (48) R 21 (x, x) = - σ 2 (x) c 1 + c 2 , R 22 (0, ξ) = 1 q R 12 (0, ξ) (49)
In fact, using a quadratic Lyapunov function and the method of characteristics, on can easily show that γ(x, t) is L 2 stable and that α ≡ β ≡ 0 is reached in finite time for all 0 ≤ x ≤ 1. Referring back to [START_REF] Ioannou | Robust adaptive control[END_REF] and ( 42), the stability properties of the γ(x, t) and Z(x, t) are equivalent.

The following Theorem (which is Theorem 2 in [START_REF] Vazquez | Backstepping boundary stabilization and state estimation of a 2× 2 linear hyperbolic system[END_REF]) states the stability results for the Z(x, t) system.

Theorem 1 ([12]

). Consider the system ( 27)-( 28) with boundary conditions [START_REF] Ahmed-Ali | Adaptive boundary observer for parabolic PDEs subject to domain and boundary parameter uncertainties[END_REF], initial conditions z 0 1 , z 0 2 in L 2 [0, 1] and with observer gains (41). The equilibrium z 1 ≡ z 2 ≡ 0 is exponentially stable in the L 2 sense, and the equilbrium is reached in finite time t F = 1 c1 + 1 c2 . Remark 3. The convergence of Z(x, t) to zero in a finite time is independent of the parameter update laws.

Boundedness of Λ(x, t)

In this section, we prove the boundedness of the swapping filters Λ(x, t) in the L 2 sense. This is necessary, as introduced in Section 3.1 and shown in Section 3.5, to conclude on the exponential stability of E(x, t).

Theorem 2. Consider the two subsystems Λ 1 (x, t) and Λ 2 (x, t) with the initial conditions Λ 1 (x, 0), Λ 2 (x, 0) ∈ L 2 [0, 1], the observer gains (41), and with φ 1 and φ 2 two bounded functions of class

C 1 ([ 0, 1] × [ 0, +∞); R). Then we have that ||Λ 1 (., t)|| L 2 [0,1] and ||Λ 2 (., t)|| L 2 [0,1] are bounded.
proof. First, consider Λ 1 (x, t). It's clear that this system has exactly the same shape as the Z(x, t) system with the addition of the bounded function φ 1 (x, t) in the spatial domain. As a result, it's easy to check that the same transformation R(x, ξ) defined by equations ( 44)-(49) maps Λ 1 (x, t) to the following target system:

∆(x, t) = Λ 1 (x, t) + 1 x R(x, ξ)Λ 1 (ξ, t)dξ (50) ∆(x, t) = a(x, t) b(x, t) (51) 
where the dynamics of ∆(x, t) is given by:

∂ t a + c 1 ∂ x a = f 1 (x, t) (52) 
∂ t b -c 2 ∂ x b = f 2 (x, t) (53) a(0, t) = qb(0, t), b(1, t) = 0 (54)
where

f 1 (x, t) = φ 1 (x, t) + 1 x R 11 (x, ξ)φ 1 (ξ, t)dξ and f 2 (x, t) = 1 x R 21 (x, ξ)φ 1 (ξ, t)dξ. We recall that R(x, ξ)
is well-defined and continuous on C( L) (see [START_REF] Vazquez | Backstepping boundary stabilization and state estimation of a 2× 2 linear hyperbolic system[END_REF]): thus R(x, ξ) is also bounded on C( L). By the assumption that φ 1 (x, t) is bounded, we can conclude that the two functions f 1 (x, t) and f 2 (x, t) are also bounded on {(t, x) | t ≥ 0, x ∈ [ 0, 1] }. Now consider the following Lyapunov function:

V 1 (t) = 1 2 1 0 q 1 c 1 e -µx a 2 (x, t) + q 2 c 2 e µx b 2 (x, t)dx (55) 
where q 1 , q 2 and µ are positive constants. Taking the time derivative of (55) we get:

V1 (t) = 1 0 q 1 c 1 e -µx a∂ t a + q 2 c 2 e µx b∂ t b dx (56) 
Using ( 52)-( 54) and integrating by parts, one has:

V1 (t) = - 1 2 q 1 e -µ a 2 (1, t) + 1 2 (q 1 q 2 -q 2 )b 2 (0, t) - µ 2 1 0
q 1 e -µx a 2 (x, t) + q 2 e µx b 2 (x, t)dx

+ 1 0 q 1 c 1 e -µx f 1 (x, t)a(x, t) + q 2 c 2 e µx f 2 (x, t)b(x, t)dx (57) 
Applying Young's inequality to the last term of (57), we have, for all k 1 > 0, k 2 > 0, that:

V1 (t) ≤ - 1 2 q 1 e -µ a 2 (1, t) + 1 2 (q 1 q 2 -p 2 )b 2 (0, t) + (- µ 2 + k 1 2c 1 ) 1 0
q 1 e -µx a 2 (x, t)dx

+ (- µ 2 + k 2 2c 2 ) 1 0 q 2 e µx b 2 (x, t)dx + 1 2k 1 1 0 q 1 c 1 e -µx f 2 1 (x, t)dx + 1 2k 2 1 0 q 2 c 2 e µx f 2 2 (x, t)dx (58) 
We can choose µ = 1, and q 1 and q 2 such that:

q 1 q 2 -q 2 ≤ 0 (59) Let Γ ∈ ]0, min{c 1 , c 2 }[, k 1 ∈ ]0, c 1 -Γ] and k 2 ∈ ]0, c 2 -Γ],
then we have

V1 (t) ≤ -ΓV 1 (t)+ 1 2k 1 1 0 q 1 c 1 e -µx f 2 1 (x, t)dx + 1 2k 2 1 0 q 2 c 2 e µx f 2 2 (x, t)dx (60) 
It follows from (60) that V 1 (t) is bounded, as a direct consequence of the boundedness of f 1 (x, t) and f 2 (x, t). Since V 1 (t) serves as the weighted L 2 norm of the ∆(x, t) system and since the transformation R(x, ξ) is invertible, we can deduce that ||Λ 1 (., t)|| L 2 [0,1] is bounded and the proof is complete.

The boundedness of ||Λ 2 (., t)|| L 2 [0,1] is done in exactly the same way, since the two systems are symmetric.

Parameter adaptation laws and exponential stability of θ(t)

The authors in [START_REF] Ioannou | Robust adaptive control[END_REF] synthesize adaptation laws for static regressors equations of this general from:

y(t) = φ T (t)θ ( 61 
)
where y is the vector of outputs, φ is the regressor and θ is the vector of unknown parameters. The core of the designs is based on minimizing cost functions of the squared estimation errors. Then, sufficient conditions for the exponential convergence of the estimates are given using Lyapunov analysis considering persistent excitation assumptions. In this section, we adapt the analysis of [START_REF] Ioannou | Robust adaptive control[END_REF] to synthesize an adaptive law for our problem and prove that θ(t) → θ exponentially fast.

In view of the available measurements given in (4), equations ( 12) and ( 13) are evaluated at x = 1 and x = 0, respectively, and we have that:

Z p (t) = E p (t) -Λ p (t) θ(t) (62) 
where:

Z p (t) = z 1 (1, t) z 2 (0, t) , E p (t) = ũ(1, t) ṽ(0, t) Λ p (t) = λ 11 (1, t) λ 12 (1, t) λ 21 (0, t) λ 22 (0, t)
Equation ( 62) has a form similar to (61) and suggests the following normalized parameter adaptation law (continuous-time recursive least squares estimator with a forgetting factor):

θ(t) = s(t) P (t)Λ T p 1 + ||Λ T p Λ p || 2 E p (t), (63) 
Ṗ (t) = s(t) βP (t) - P (t)Λ T p Λ p P (t) 1 + ||Λ T p Λ p || 2 , (64) 
s(t) = 1 if t > t F 0 else (65) 
where θ(t) is the estimated value of θ, P (t) ∈ R 2×2 , and β > 0 is the forgetting factor. The initial conditions θ(0) = θ0 , and P (0) = P 0 = P T 0 > 0 are chosen arbitrarily. To prove that θ(t) → θ exponentially fast, we assume the following: Assumption 1. We assume that Λ p (t) is persistently exciting i.e. for all t ≥ 0 there exist positive constants T 0 , c 0 and c 1 so that:

c 0 I ≤ 1 T 0 t+T0 t Λ T p (τ )Λ p (τ )dτ ≤ c 1 I (66) 
where I ∈ R 2×2 denotes the identity matrix. The convergence of the estimate θ(t) is then given by the following Theorem.

Theorem 3. Consider the system (63)-( 65) with initial conditions given by θ0 and P 0 . Using Theorems 1 and 2, and assuming that (66) holds, then θ(t) → θ exponentially fast.

proof. First, we compute the dynamics of the estimation error on θ(t) using ( 14) and (63) as:

θ(t) = -θ = -s(t) P (t)Λ T p 1 + ||Λ T p Λ p || 2 E p (t) = -s(t) P (t)Λ T p 1 + ||Λ T p Λ p || 2 Z p (t) -s(t) P (t)Λ T p Λ p 1 + ||Λ T p Λ p || 2 θ(t) (67) 
it's also easy to check that (64) is equivalent to

d dt (P -1 ) = s(t) -βP -1 + Λ T p Λ p 1 + ||Λ T p Λ p || 2 (68) 
where P -1 (t) ∈ R 2×2 is the inverse matrix of P (t). It can be shown (see e.g. [START_REF] Ioannou | Robust adaptive control[END_REF]), under Assumption 1, that P -1 (t) is positive definite and bounded. Now, we can define the following Lyapunov function:

V (t) = 1 2 θT (t)P -1 (t) θ(t) (69) 
Taking the time derivative of (69) we obtain:

V (t) = 1 2 θT (t) d dt (P -1 ) θ(t) + θT P -1 (t) θ(t) (70) 
Using ( 67)-( 68), one gets from (70) that:

V (t) = -s(t) θT Λ T p 1 + ||Λ T p Λ p || 2 Z p - β 2 s(t) θT (t)P -1 (t) θ(t) - 1 2 s(t) θT Λ T p Λ p θ 1 + ||Λ T p Λ p || 2 (71)
If t < t F , by (65) we have V (t) = 0: the Lyapunov function is non-increasing. When t become greater than t F (s(t) = 1), we have by Theorem 1 that Z p ≡ 0, then (71) becomes

V (t) = -βV (t) - 1 2 θT Λ T p Λ p θ 1 + ||Λ T p Λ p || 2 ≤ -βV (t) (72) 
since the matrix Λ T p Λ p is positive semi-definite. As a result, for all t ≥ t F , there exists K > 0 such that V (t) ≤ Ke -βt V (0) and θ is thus exponentially decaying to zero with a rate β : θ → θ exponentially fast and the proof is complete.

Exponential stability of E(x, t)

In this section we prove the exponential stability of the error system E(x, t), referring to the results in sections 3.2, 3.3 and 3.4. Theorem 4. Consider the error system ( 9)- [START_REF] Castillo | Dynamic boundary stabilization of linear and quasi-linear hyperbolic systems[END_REF] with boundary conditions [START_REF] Bastin | Stability and boundary stabilization of 1-d hyperbolic systems[END_REF] and initial conditions ũ0 , ṽ0 in L 2 [0, 1], with observer gains p 1 (x) and p 2 (x) given in (41) and with feedback gains m 1 (x, t) and m 2 (x, t) given in ( 16) and [START_REF] Zobiri | PDE observer design for counter-current heat flows in a heat-exchanger[END_REF]. Under Theorems 1, 2 and 3 the error system is exponentially stable in the L 2 sense.

proof. Using [START_REF] Auriol | Two-sided boundary stabilization of heterodirectional linear coupled hyperbolic pdes[END_REF], one gets the following:

||E(., t)|| L 2 [0,1] ≤ ||Z(., t)|| L 2 [0,1] +||Λ(., t) θ(t)|| L 2 [0,1] (73)
By definition:

||Λ(, t) θ(t)|| 2 L 2 [0,1] = 1 0 (λ 11 (x, t) θ1 (t)+λ 12 (x, t) θ2 (t)) 2 dx + 1 0 (λ 21 (x, t) θ1 (t) + λ 22 (x, t) θ2 (t)) 2 dx (74)
After expanding the squared parentheses in (74) and using basic identity inequalities we get:

||Λ(, t) θ(t)|| 2 L 2 [0,1] ≤ 2 θ1 2 ||Λ 1 (., t)|| 2 L 2 [0,1] + 2 θ2 2 ||Λ 2 (., t)|| 2 L 2 [0,1] (75) 
Then, by Theorem 2, there exist two positive constants M 1 and M 2 such that:

||Λ(, t) θ(t)|| 2 L 2 [0,1] ≤ 2M 1 θ1 2 + 2M 2 θ2 2 ≤ √ M || θ(t)|| 2 (76) 
where M = max{2M 1 , 2M 2 }. Considering (73) along with (76) we have: 

||E(., t)|| L 2 [0,1] ≤ ||Z(., t)|| L 2 [0,1] + √ M || θ(t)

Experimental Setup: Modeling and Process Description

We evaluate our observer on the TIF plant, a 15kW cooling system built at CERN to run educative experiments for developing and improving CO 2 cooling technology [START_REF] Paola | Design, construction and commissioning of a 15 kW CO2 evaporative cooling system for particle physics detectors: lessons learnt and perspectives for further development[END_REF]. This refrigeration system is shown in Fig. 1 and schematically depicted in Fig. 2. It consists of a circulation system where the cold CO 2 refrigerant is pumped by the pump (LP3004) to the transfer lines (two concentric cylindrical tubes in vacuum isolation) and then heated by means of two heaters (EH7027 and EH7028) to provide the hot CO 2 refrigerant. Both hot and cold refrigerants exchange heat through the transfer lines, and finally the hot fluid is cooled down by the chiller (HX3082) to be pumped again into the cold line. The accumulator is used to set a desired output pressure at the hot side. We focus on the transfer line, as this part is particularly complex to model and necessitates an advanced observation scheme for distributed systems. The plant is equipped with four temperature sensors placed at the extremities of the tubes (shown in Fig. 2), which measure the input and output temperatures on both hot and cold sides. The control input is through the two heaters (EH7027 and EH7028), where we can vary the temperature of the hot input by adding and removing heat and thus create some transients in the system.

Modeling of the Heat Exchanger

We consider the concentric tubes heat exchanger schematically depicted in Fig. 3. This exchanger is a counter-flows heat exchanger, in which hot and cold fluids flow in opposite directions to maximize the heat transfer. Both the hot and the cold fluids enter in liquid phase and leave in liquid phase (no change of phase inside the exchanger). The flow of heat from the hot side to the cold The mathematical model is derived based on the following assumptions :

• the flow is 1-D unidirectional (the hot fluid flows in the positive x direction);

• the kinetic and potential energies of the flows entering and leaving the tubes are neglected;

• the wall thickness is neglected (no wall dynamics) and the heat transfer coefficient is uniform and quasisteady i.e. using the classical "random walk" model, ḣ = 0 + e(t) where e(t) is a small white noise;

• the flow is considered incompressible; i.e. no significant change in density and equivalently in mass flow rate with time and along the length of the exchanger (only energy conservation equations are considered);

• in our working range of pressures and temperatures, we can assume a linear relation between enthalpy and temperature as follows:

H H = C H P T H , H C = C C P T C (78)
where H k is the specific enthalpy, T k is the temperature and C k P is specific heat at constant pressure. Under these assumptions, the 1D flow transport can be described by a set of first order hyperbolic partial differential equations of balance laws (see e.g. [START_REF] Xu | Exponential stability and transfer functions of processes governed by symmetric hyperbolic systems[END_REF]) as follows, ∀x ∈ [0, 1]:

∂ t T H + c 1 ∂ x T H = -K 1 (T H -T C ) (79) ∂ t T C -c 2 ∂ x T C = K 2 (T H -T C ) ( 80 
)
where:

c 1 = ṁH LA H ρ H , c 2 = ṁC LA C ρ C K 1 = hπD 1 A H ρ H C H P , K 2 = hπD 1 A C ρ C C C P
where ρ k is the density, ṁk is the mass flow rate, A k is the tube surface area, D 1 is the inner tube diameter and h is the heat transfer coefficient. This system has boundary conditions:

T H (0, t) = T H in (t) T C (1, t) = T C in (t) (81) 
and initial conditions (assumed to be in L 2 [0, 1]):

T H (x, 0) = T H 0 (x), T C (x, 0) = T C 0 (x) (82)
The problem of estimating T H (x, t) and T C (x, t) using boundary sensing is non-trivial because unknown parameters are present inside the domain (K 1 and K 2 ). For example, the heat transfer coefficient h (encapsulated in K 1 and K 2 ) affects the amount of energy transfered from the hot side to the cold side, and is usually estimated using correlations from physics (see e.g. [START_REF] Gnielinski | New equations for heat and mass transfer in turbulent pipe and channel flow[END_REF]). The inaccurate estimation of h affects the accuracy of the estimation algorithm (as illustrated below in Section 4.4). In what follows, we consider online estimation of h together with the distributed states from the four measurements we have at the boundaries.

Reformulation as the general model of Section 2

The main difficulty induced by the dynamics (79)-( 82) is that it involves a bilinear parametric nonlinearity i.e. the unknown parameter h multiples the unknown states T H (x, t) and T C (x, t). We decrease the level of complexity by augmenting the vector of states of the system from (T H , T C ) to (T H , T C , h) with ḣ = 0. The augmented system is then linearized around the nominal system (T H N , T C N , h N ) given by:

∂ t T H N + c 1 ∂ x T H N = -K N 1 (T H N -T C N ) (83) ∂ t T C N -c 2 ∂ t T C N = K N 2 (T H N -T C N ) ( 84 
)
with boundary conditions:

T H N (0, t) = T H in (t), T C N (1, t) = T C in (t) (85) 
and initial conditions (assumed to be in L 2 [0, 1]):

T H N (x, 0) = T H N 0 (x), T C (x, 0) = T C N 0 (x) (86) 
such that:

     T H (x, t) = T H N (x, t) + ∆T H (x, t), T C (x, t) = T C N (x, t) + ∆T C (x, t), h = h N + ∆h, (87) 
where ∆T H (x, t), ∆T C (x, t) and ∆h are perturbations around the nominal states. Using a Taylor expansion of order 1, one can obtain the dynamics of the perturbed states:

∂ t ∆T H + c 1 ∂ x ∆T H = -K N 1 (∆T H -∆T C ) +∆h πD 1 A H ρ H C H P (-T H N + T C N ) ( 88 
)
∂ t ∆T C -c 2 ∂ x ∆T C = K N 2 (∆T H -∆T C ) +∆h πD 1 A C ρ C C C P (T H N -T C N ) (89) 
with boundary conditions:

∆T H (0, t) = 0, ∆T C (1, t) = 0 (90)
The initial conditions ∆T H 0 (x) and ∆T C 0 (x) are assumed to be in L 2 [0, 1]. Using a simple exponential transformation:

∆T H 1 = e K N 1 c 1 x ∆T H , ∆T C 1 = e -K N 2 c 2 x ∆T C (91) 
The system (88)-(90) has exactly the same structure as the general model ( 1)-( 3), with

u = ∆T H 1 , v = ∆T C 1 , σ 1 (x) = K N 1 e ( K N 1 c 1 + K N 2 c 2 )x , σ 2 (x) = K N 2 e -( K N 1 c 1 + K N 2 c 2 )x , φ 1 (x, t) = πD1e -K N 1 c 1 x A H ρ H C H P (-T H N + T C N ), φ 2 (x, t) = πD1e K N 2 c 2 x A C ρ C C C P (T H N -T C N ) and θ 1 = θ 2 = ∆h.
Remark 4. In practice and especially in heat exchanger networks, it is common to have a prior knowledge of the plant; e.g. ranges of pressures, ranges of temperatures, fluid speeds etc. This practical understanding of the system can help in deriving inaccurate estimates of the systems parameters, e.g. use correlations from the physics to calculate an estimate for the heat transfer coeffcient as in [START_REF] Gnielinski | New equations for heat and mass transfer in turbulent pipe and channel flow[END_REF]. These estimates are considered as the nominal values for the exchanger parameters (c 1 , c 2 , K N 1 and K N 2 ) and they are used in constructing the nominal model ( 83)-(86) along with φ 1 (x, t) and φ 2 (x, t). Hence, by knowing the operating point of the system and by measuring input/output temperatures, one can use our adaptive observer scheme to have an online estimation of the distributed states T H (x, t), T C (x, t) and also to recover the deviation of the heat transfer coefficient h from the correlation-based nominal value h N . Remark 5. Only the estimation of the heat transfer coefficient is considered in the evaluation process. This requires to remove the over-parameterization in system (1)-(3) by letting θ 1 = θ 2 = θ, and as a consequence, the number of necessary swapping filters drops from four to only two. More precisely, the adaptive observer will be:

∂ t û + c 1 ∂ x û = σ 1 (x)v + θ(t)φ 1 (x, t) -p 1 (x)(û(1, t) -y 1 (t)) + m 1 (x, t) ∂ t v -c 2 ∂ x v = σ 2 (x)û + θ(t)φ 2 (x, t) -p 2 (x)(û(1, t) -y 1 (t)) + m 2 (x, t) û(0, t) = U (t) + q(v(0, t) -y 2 (t)) v(1, t) = V (t)
The swapping filters are [START_REF] Anfinsen | An adaptive observer design for n + 1 coupled linear hyperbolic pdes based on swapping[END_REF]. Furthermore, there is no change in the calculation of p 1 (x) and p 2 (x) as equation ( 41) is used.

∂ t λ 1 + c 1 ∂ x λ 1 = σ 1 (x)λ 2 -p 1 (x)λ 1 (1, t) + φ 1 (x, t) ∂ t λ 2 -c 2 ∂ x λ 2 = σ 2 (x)λ 1 -p 2 (x)λ 1 (1, t) + φ 2 (x, t) λ 1 (0, t) = qλ 2 (0, t), λ 2 (1, t) = 0 with m 1 (x, t) = -λ 1 (x, t) θ and m 2 (x, t) = -λ 2 (x, t) θ. θ(t) is calculated using the adaptive law (63)-(65) but with Λ p (t) = [λ 1 (1, t), λ 2 (0, t)] instead of

In-domain evaluation of the observer through simulations

As shown in Fig. 2, temperatures can only be measured at the extremities of the tubes using four input/output temperature sensors. Hence, we can't validate experimentally the distributed state estimation because we can't take measurements from inside the domain. However, we evaluate the estimation of temperatures inside the domain through numerical simulations. In this section, we also discuss the effect of linearization done in Section 4.2. First of all, assume that the model ( 79)-(82) represents the real dynamics of the exchanger under study. We have built our own simulator to simulate (79)-(82). The simulator implements a finite difference scheme of second order accuracy for the space derivatives, and ode15s (Matlab) for the time derivatives. The kernel equations ( 35)-( 40) are solved by a method called successive approximations [START_REF] Hu | Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs[END_REF]. The main idea of this method is to write the set of PDEs ( 35)-(40) in the integral form using the method of characteristics. Afterwards, the integral equations are solved using recursion up to an order of accuracy defined by the user (see [START_REF] Hu | Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs[END_REF] for more details). Since the observer is not built directly on system (79)-(82) but on the linearized version (88)-(90), we expect the quality of the estimation to be better when the nominal model ( 83)-( 86) is chosen close to the real system. The simulations are done in the following order: 1. Simulate system (79)-(82) with real measured inputs (see section 4.4) and assume that the real heat transfer coefficient is h real = 290. We then consider the obtained temperatures T H real (x, t) and T C real (x, t) as the real distributed temperatures of exchanger.

Use T H

real (1, t) and T C real (0, t) as the real boundary measurements 3. Simulate the observer scheme starting with nominal heat transfer coefficient h N 1 = 180, h N 2 = 230 and h N 3 = 250.

4. Compute the estimation T (x, t) = T N (x, t)+∆ T (x, t) and the estimation error E(x, t) = |T real (x, t) -T (x, t)| on both hot and cold sides.

In order to choose different operating points, we vary the nominal heat transfer coefficients; e.g. h N 1 = 180 corresponds to a far operating point (since h real = 290) and so on. The results of the steady state estimation errors are shown in Fig. 4. A first important remark is that the estimation error inside the domain is greater than that at the boundaries for all the operating points. A glimpse on the observer design can actually give us the reason. Considering the linear case, the adaptation law uses only boundary outputs to estimate the parameters. If the outputs are informative enough, the estimated values of the parameters will converge to the real ones when the outputs agree. Since the observer is of Luenberger type and its stability is guaranteed by the observer gains p 1 (x) and p 2 (x), the indomain estimates should also converge. When considering the real system, the adaptation law ensures the convergence of the boundary outputs, but this does not necessarily imply an in-domain convergence since the observer is built on the linearized version of the system and not on the real plant. We can see from Fig. 4 that as the nominal model approaches the real model (i.e. h N approaches h real ), the estimation error in the domain is decreased. By looking into the order of error magnitude, we find that the maximum absolute estimation error on both sides is less than 0.018 K in the hole domain. This is significantly a negligible in-domain estimation error. We can then reasonably deduce that the effect of linearization is almost negligible and does not affect the quality of the in-domain estimation. The reason is mainly because the bilinear parameter nonlinearity (K 1 (T H -T C )) encountered in the plant is not a strong nonlinearity.

We now show the time series of the heat transfer coefficient on Fig. 5. We can see that the estimations from the three different nominal operating points stabilize at steady states that do not correspond to h real = 290. The reason is clearly the linearization, since when the nominal operating point is chosen close to the system's real operating point, the estimation is improved. This is more significant if we compute the relative steady state error: RSE(%) = The RSE decreases when h N approaches h real as shown in Table 2 and its magnitude is less than 10% even for a very far operating point (i.e. h N = 180). It is also important to mention that there is always a physical limit on the chosen values of the operating point h N (see Fig. 5). This limit is calculated using thermodynamical correlations [START_REF] Ioannou | Robust adaptive control[END_REF]. For the exchanger under study, the minimal calculated physical limit is h N = 230, and we can notice on Table 2 that the corresponding RSE is less than 3%. This is considered very small, and we can conclude that in the physical working ranges of the exchanger, the effect of linearization on the estimation of the heat transfer coefficient is reasonably small.

Comparison with literature observers

Previously, several boundary observer designs for hyperbolic systems relying on an exact knowledge of the parameters of the system have been designed. We intend to show the importance of the adaptive design in the case where the nominal parameters differ from the real ones as this is the main problem that we faced while designing an observer for our experiment. To compare our results we choose two designs already present in the literature: the Lyapunov-based observer proposed in [START_REF] Zobiri | PDE observer design for counter-current heat flows in a heat-exchanger[END_REF] and the twosided backstepping observer from [START_REF] Auriol | Two-sided boundary stabilization of heterodirectional linear coupled hyperbolic pdes[END_REF]. We simulate the observers proposed in [START_REF] Zobiri | PDE observer design for counter-current heat flows in a heat-exchanger[END_REF] and [START_REF] Auriol | Two-sided boundary stabilization of heterodirectional linear coupled hyperbolic pdes[END_REF] at the three different operating points (h N 1 = 180, h N 2 = 230, and h N 3 = 250), following exactly the procedure explained in Section 4.3 (steps 1 to 3). We recall that the observer designs in [START_REF] Zobiri | PDE observer design for counter-current heat flows in a heat-exchanger[END_REF] and [START_REF] Auriol | Two-sided boundary stabilization of heterodirectional linear coupled hyperbolic pdes[END_REF] are built directly using the nominal parameters of the system. The main objective of the comparison is to check if the parameter adaptation improves the accuracy of the temperature estimates. We simulate the three observers with real measured inputs (see Section 4.4) starting with the same initial conditions. We have calculated the L 1 norm of the estimation error on both hot and cold sides for the three different operating points:

|| K (t)|| L 1 [0,1] = 1 0 |T K real (x, t) -T K (x, t)|dx (92) 
The results are shown on Fig. 6. We can observe that in all the plots the estimation error using the adaptive design is always less than that resulting from the observers in [START_REF] Zobiri | PDE observer design for counter-current heat flows in a heat-exchanger[END_REF] and [START_REF] Auriol | Two-sided boundary stabilization of heterodirectional linear coupled hyperbolic pdes[END_REF]. The adaptive observer significantly ameliorates the estimation in transient states and contributes to nearly 1K temperature improvement at steady states. 

Experimental evaluation of the observer

Once the system has reached a steady state and liquid CO 2 starts circulating in all parts of the TIF plant, the experiment is done by modulating the input heating power by several increases and decreases at different instants in time as shown in Table 3, thus inducing system transients and exciting the system frequencies. Keeping in mind that we have only one parameter to estimate, which is the heat transfer coefficient, the input in Table 3 is considered sufficiently persistently exciting. The temperature is measured by the four sensors schematically depicted on Fig. 2. They are PT100 RTD sensors. In particular, they are "in-flow" sensors, i.e., they are mounted inside the tube to measure the temperature of the refrigerant itself, instead of being glued to the top of the tube. These PT100s output a resistance to a "Conditioner" which is an object that converts the resistance signal into a 4-20 mA input for the PLC. The PLC then has a range that determines what the minimum (4mA) and maximum (20mA) values for that particular sensor are, and uses this to convert the 4-20 mA signal into a degree Celsius (C) value. On the computer, we have a SCADA system called WinCCOA, which exchanges signals from the PLC and displays it for the user. From the WinccOA interface, we are able to export the data to a CSV file. We import the data into Matlab where we make all the analysis. The observer schemes are not implemented directly on the real plant. The experimental evaluation of the observers is done in Matlab using the real data collected in the CSV files.

The TIF plant is 17.665 m long (L = 17.665 m) with cross-sectional areas A H = 7.6306 × 10 -4 m 2 , A C = 1.131 × 10 -4 m 2 . During this experiment, the exchanger is operating in the liquid phase and in the following working ranges: pressure between [5 MPa, 6 MPa], temperatures between [253 K, 288 K] and mass flow rates close to 0.047 Kg/s. With these given information, one can use the equation of state (EoS) for CO 2 [START_REF] Bell | Pure and pseudopure fluid thermophysical property evaluation and the opensource thermophysical property library coolprop[END_REF] with the correlation in [START_REF] Gnielinski | New equations for heat and mass transfer in turbulent pipe and channel flow[END_REF] to calculate the nominal values for the exchanger parameters. We found: c 1 = 0.0237 s -1 , c 2 = 0.0037 s -1 , K N 1 = 0.0051 s -1 and K N 2 = 0.0351 s -1 . The computed nominal heat transfer coefficient is h N = 230 W/m 2 .K. Afterwards, the nominal model ( 83 N (1, t) and T C N (0, t)) and the experimental measures on Fig. 7, one can notice that the nominal model captures the main dynamics of the real system. However, the temperatures predicted by the model involve a temperature shift and this shift changes with time. We know from the physics that the heat transfer coefficient is the parameter responsible for this shift in temperature magnitudes, since it affects the amount of energy transfered from the hot side to the cold side. One can then draw two conclusions: first the linear system (79)-(82) represents a good physical model for the exchanger, second the real heat transfer coefficient is time -varying. In fact, the dynamics of h are very complex since h can vary with the variation of many physical quantities and especially temperature. In our adaptive design, we have assumed that h is quasi-steady (see the modeling assumptions list in Section 4.1). Doing so, we intend to use the parameter adaptation algorithm to recover the values of the heat transfer coefficient in the intervals were we have slow variations in temperature (as we will show later in the analysis).

As the nominal operating point is settled, we can proceed to the estimation part. Since we can't take measurements from inside the domain, we evaluate our theoretical results against the output sensor measurements. We start all observers with the same initial condition. Fig. 8 shows the temperatures estimated by the three observers along with the experimental measurements. One can notice that the quality of the estimation is better using our proposed adaptive estimator during both transient and steady states. The estimation error magnitude on both hot and cold sides is presented on Fig. 9. Note that the error is decreased by nearly 5K during the transient phase and 1K in the steady state, using the adaptive estimator. The estimations using the two other designs (Lyapunov and twosided backstepping observers) are comparable and with an accuracy limited by their assumption of a perfect knowledge of the system's parameters. Considering a negligible contribution of the linearization error as illustrated in Section 4.3., we can conclude that the adaptive observer can estimate the distributed state with enough degree of accuracy.

The estimation of the heat transfer coefficient is shown on Fig. 10: the estimation starts at the nominal value h N = 230 and then after the time t F = 1 c1 + 1 c2 = 310.54 s the adaptation law starts functioning. Since we have implicitly assumed that h is quasi-steady, we expect the estimated heat transfer coefficient to converge to different steady states at different intervals of time. We can infer from Fig. 10 approximately three different values of the heat transfer coefficient in three different time intervals: h ≈ 312 for t ∈ [310s,1235s], h ≈ 325 for t ∈ [1625s,2530s] and h ≈ 295 for t ∈ [3550s,8400s].

Conclusion

We have developed an adaptive observer that estimates unknown parameters inside the domain for 2 by 2 first order 1-D hyperbolic PDEs. The observer is based on a swapping design, which allows us to write the estimation error on the states as a static linear combination of the estimation error on the parameters. Standard backstepping and parameter estimation techniques can then be used. We thus proved boundedness of regressors filters and obtained sufficient conditions to ensure the exponential convergence of the estimation errors. The designed observer uses only boundary sensing, and allows one to estimate the full distributed states. Our method is evaluated experimentally on the TIF refrigeration system at CERN, and our results show that the adaptive observer captures the main dynamics of the real system. For future works, it would be interesting to consider the bilinear parameterization directly in (79)-(82), i.e. to estimate h and T H (x, t), T C (x, t) directly without passing through the linearization step, using boundary sensing only.
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 45 Figure 4: Steady state error on the distributed temperature profiles for three different operating points
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 6 Figure 6: Comparison of the L 1 estimation error resulting from three different methods for three different operating points
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 8 Figure 8: Temperature trends estimated with three different methods.
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 910 Figure 9: Output estimation errors of the three different observations methods.

Table 2 :

 2 RSE for three different operating points

	Operating point RSE (%)
	h N 1 = 180	9.31
	h N 2 = 230	2.79
	h N 3 = 250	1.24

Table 3 :

 3 Heating power modulation

	Variation Time(s)
	increase	0(s)
	decrease	479(s)
	increase	800(s)
	increase	1391(s)
	decrease	2050(s)
	These estimation enhancements provided by the parame-
	ter adaptation are very important to the designers of the
	CO 2 cooling technology at CERN, since they work with
	highly accurate temperature sensors.
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