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Abstract

This paper presents a data-based simple model for fitting the available data
of the Covid-19 pandemic evolution in France. The time series concerning the
13 regions of mainland France have been considered for fitting and validating the
model. An extremely simple, two-dimensional model with only two parameters
demonstrated to be able to reproduce the time series concerning the number of
daily demises caused by Covid-19, the hospitalizations, intensive care and emer-
gency accesses, the daily number of positive test and other indicators, for the
different French regions. These results might contribute to stimulate a debate on
the suitability of much more complex models for reproducing and forecasting the
pandemic evolution since, although relevant from a mechanistic point of view,
they could lead to nonidentifiability issues.
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1. Introduction

The Covid-19 pandemic spread affecting the whole world, causing several
millions of infected cases and thousands of deaths, attracted huge efforts of re-
searchers from different scientific fields aiming at a better understanding of the
virus evolution features. Besides the epidemiologists and the medical researchers,
also the data scientists and the automatic control community mobilize, one of the
major issue being the inference and identification of the dynamical system ruling
the pandemic evolution. The virus evolution dynamics knowledge, in fact, would
allow to estimate the pandemic state and predict its future evolution and thus serve
as modelling tool to infer the effects of the containment measures and support the
health institutions choices. A recent survey, [1] offers a detailed overview on the
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recent scientific publications regarding modelling, forecasting and controlling the
evolution of Covid-19 pandemic based on data science and control theory.

Among the simpler and more popular epidemic compartmental models, re-
cently used for fitting the data of the spread of Covid-19, there are the SIR model,
first formulated in the seminar work [2], and the SEIR model [3, 4, 5]. The SIR
model consists in simple differential equations representing the interaction be-
tween the populations of susceptible, infected, and recovered individuals, whereas,
the SEIR models, considers also the population of exposed individuals, for mod-
elling the incubation period. Variations are presented in the literature to take into
account other populations involved in the Covid-19 epidemic disease evolution,
for instance in [6, 7, 8] that included also the asymptomatic individuals, and [9, 10]
that introduces the SIDARTHE model, compartmental Covid-19 model composed
by 8 populations and 16 parameters. Also spatial models [11], to model the geo-
graphical interconnection between regions, and network models [12] to represent
the social interaction between individuals and populations, have been formulated
to reproduce the epidemic evolution. Also data-based, model-free models have
been proposed to predict the Covid-19 spread evolution, [13].

Besides non-parametric approaches for model inference, [14, 18] for instance,
parametric model identification has been widely used. The problem of paramet-
ric identification for fitting the model with the available data is strongly affected
by several issues, such that the time variation of the parameters [15], the lack of
full access to the data concerning the populations [16], the presence of uncertain-
ties affecting the model [17, 3]. These sources of uncertainties and lack of exact
knowledge may lead to the issue of nonidentifiability [18], that consists in prac-
tice in the existence of different sets of parameters that permits to reproduce the
available data. When this occurs, it is not possible to univocally identify the real
set of parameters, and then to discriminate them from all the other potential so-
lutions of the identification problem. The consequence might be a low accuracy
and a poor forecasting power of the identified model. The use of simple models
[19, 18, 20] and the validation of the identified system on several sets of data [21],
from different regions for instance, are possible solutions to the nonidentifiability
issue.

This paper is guided by the Ockham’s razor, or law of parsimony, criterion,
which substantially claims that the simplest solution is most likely the right one
since based on less hypotheses. As stated above for the nonidentifiability problem,
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indeed, the simpler is the model able to fit and reproduce the available data, the
higher is its reliability in terms of accuracy and forecasting power. Starting from
the available data concerning the Covid-19 pandemic evolution in the 13 regions
of mainland France, an extremely simple dynamical model has been formulated
with only two states and two parameters, common to all the regions. The model
has been identified on the measures of deaths caused by the Covid-19 and then
validated on several other time series, concerning hospitalizations, intensive care
accesses, emergency admissions etc. for all the 13 regions.

The paper is organized as follows: Section2 presents the time series concern-
ing the excess of deaths due to Covid-19, used to identify the model; Section 3
deals with the model and its fitting to deaths excess data; Section 4 regards the
validation of the identified model on other times series. The paper terminates with
some conclusions.

2. Deaths excess data for fitting

Several datasets concerning the evolution of the Covid-19 in France are avail-
able that can be used to identify the dynamics parameters. The data are organized
by gender, by department, by age and by region. In this work focuses on the dy-
namics of the Covid-19 evolution within the different regions of mainland France,
aiming at identifying a single model, as simple as possible, that permits to fit and
reproduce the regional evolution of Covid-19 pandemic.

Concerning the number of demises due to the Covid-19, in particular, three
time series are available. Firstly, the INSEE, the French National Institute of
Statistics and Economic Studies, provides the data of all the daily demises oc-
curred since January 1, 2018, in a single file, organized by region, in [22]. In
Fig 1 the evolution of deaths in Auvergne-Rhône-Alpes region, concerning the
years 2018, 2019 and 2020 are represented. Besides the time series, the smoothed
series, computed by averaging over a 14-days-long window, are drown in bold,
together with the average of values of 2018 and 2019. The data concerning the 13
regions of mainland France are shown in Appendix A.

A measure of the daily deaths for Covid-19 is the difference between the daily
demises occurred in 2020 and the average of those of 2018 and 2019. This dif-
ference, in fact, is supposed to represent (via some correction that are mentioned
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in the sequel) the excess of deaths occurred in the period of Covid-19 pandemic
spread in France and can be supposed to be the effect of the epidemic.

Excess of deaths in Auvergne-Rhône-Alpes
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Figure 1: Evolution of daily demises in 2018, 2019 and 2020, in Auvergne-Rhône-Alpes region.
In bold, the average over a 14-days-long window.

Other two time series are available that represent measures of the demises
caused by the Covid-19, in particular the number of deaths registered at the hos-
pitals, incid_dc and the number of demises that have been electronically reg-
istered and transmitted to the Inserm1 institute. More details on these two time
series can be found in Section 4. For obtaining a reasonably reliable guess of the
number of deaths caused by Covid-19, these two signals have been smoothed by
averaging them over a 14-days-long time window.

The time series considered for model fitting, depicted in Fig. 2 for Auvergne-
Rhône-Alpes region (see Appendix B for the other regions), are:

• the excess of deaths of 2020 with respect to the average of 2018 and 2019,
averaged over a 14-days-long window, denoted mean excess20;

• the average over a 14-days-long window of hospital demises time series
incid_dc, denoted mean incid_dc;

1French National Institute of Health and Medical Research.
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• the average over a 14-days-long window of demises registered by Inserm
inserm_dc, denoted mean Inserm.

Excess 2020 in Auvergne-Rhône-Alpes
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Figure 2: Excess of death in 2020 with respect to the average of 2018/2019, mean excess20;
deaths certified in hospitals mean incid_dc and deaths electronically certified to Inserm mean

Inserm, averaged over a 14-days-long window, in Auvergne-Rhône-Alpes region.

From the inspection of Fig. 2, and considering the excess of deaths of 2020 as
a reliable measure of the real amount of demises caused by Covid-19, it can be
inferred that:

• the cases registered in the hospitals and those certified to Inserm represent
a sub-estimation of the real number of demises due to Covid-19 in the first
weeks after the lockdown of March 17;

• the pandemic in Auvergne-Rhône-Alpes might have been starting at the be-
ginning of March, as the curve, although at negative values (i.e. deaths in
2020 below the average of 2018/2019), presents an exponentially increasing
behavior since the first days of March;

• the lockdown might have affected also the other causes of mortality (for in-
stance due to the traffic reduction, working activity partial stop, etc.) leading
to values of excess around 0 in the last week of April and in May, when the
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certified demises, both in hospitals and through electronic certification, are
higher than the mortality excess.

The last consideration, in particular, seems to indicate that the mortality excess
of 2020 represents an underestimation of cases of demises due to Covid-19, partic-
ularly in the last part of the period taken into account. To compensate this effect,
that can be observed in the data concerning many of the mainland France regions,
see the Appendix C, an heuristic criterion has been employed, to avoid that the
time series considered as a reliable measure of the deaths caused by Covid-19 is
lower than the number of observed cases.

In particular, a linear function of the time has been added to the time series
mean excess20 and the maximum between it and the signal mean incid_dc

is taken. The resulting time series mean excess20 corr in Fig 3 has been
employed to identify the system.

Death excess 2020 in Auvergne-Rhône-Alpes
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Figure 3: Excess of death in 2020 with respect to the average of 2018/2019, mean excess20;
deaths certified in hospitals mean incid_dc and deaths electronically certified to Inserm mean

Inserm, averaged over a 14-days-long window. Corrected average of excess mean excess20

corr, in Auvergne-Rhône-Alpes region.

3. Model fitting the deaths excess

A first hypothesis is formulated to express the fact that the demises caused by
Covid-19 is proportional to the number of infected individuals.
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Assumption 1. The number of daily deaths due to Covid-19 is proportional to
the number of infected individuals.

Consider the dynamics relating the number of Covid-19 deaths and the number
of infected cases employed in several epidemiological compartmental models:

dD(t)

dt
= αI(t). (1)

Assumption 1 is equivalent to suppose satisfaction of (1), often employed in
the compartmental epidemic models, and then that the number of new demises
for Covid-19 is proportional to the value of the infected cases, with proportional-
ity coefficient α . Thus, a reliable measure of the daily demises would provide a
scaled image of the Covid-19 infected cases.

Moreover, as a second hypothesis, the resulting signal mean excess20

corr in Fig. 2 is considered hereafter as a reasonably reliable guess of the amount
of daily demises due to Covid-19 infection.

Assumption 2. The time series mean excess20 corr, denoted f (t), is a re-
liable measure of the number of daily demises caused by Covid-19.

Under these assumptions, then, f (t) is a measured approximation of the value
of the function αI(t), from (1), in fact:

dD(t)

dt
= αI(t)≃ f (t). (2)

Given the time series f (t) that represents the evolution of the population of
Covid-19 infected individuals, multiplied by an known constant α , its dynamics
can be identified.

The simpler epidemic compartmental models, yet considered among the most
robust from the information theory point of view, see [19, 1], is the SIR model.
The SIR model, and its variation SEIR, have been recently used for fitting the
spread of Covid-19 [3, 4, 5]. In SIR (or SIRD) models, the populations of suscep-
tible (S), infected (I), recovered (R) and dead (D) individuals (often the recovered
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and dead individuals are considered in a single compartment R) are modeled by
the differential equations:

dS

dt
=−β IS

dI

dt
= β IS− γI−αI

dR

dt
= γI

dD

dt
= αI

(3)

To pursue the aim of fitting the data with simple model, though, consider the
evolution of the state variable defined as f (t) in (2). From f (t) = αI(t) and the
dynamics of I(t) in (3), then

d f (t)

dt
= β (t) f (t)S(t)− γ f (t)−α f (t)= δ (t) f (t) (4)

with δ (t) = β (t)S(t)− γ −α . Note that β (t), that is the coefficient of the rate
of infection, has been considered time-varying. In fact, the variation of suscepti-
ble individuals, i.e. the whole region population (more than 8 million people in
Auvergne-Rhône-Alpes ) at the beginning of the pandemic, might not be the cause
of the excess of deaths drastic decreasing. This demises drop should most likely
be caused by the containment measures, the lockdown in particular, that reduced
the rate of infection.

Concerning, the evolution of δ (t), related to the reproduction number, a first
analysis of the data showed a behavior typical of first order non-autonomous lin-
ear systems, evolving exponentially from positive values at the beginning of the
pandemic expansion to negative ones during its decreasing. Thus, denoting with
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• F the set of indices of the 13 regions of mainland France2;

• fi(t) the time series of the corrected excess of deaths in 2020, obtained as
illustrated above, for the i-th region with i ∈ F;

• δi(t) the parameter of equation (4), for the i-th region with i ∈ F;

we shall prove that the following simple two-parameter model can quite nicely
accounts for the measurements concerning the 13 regions in the mainland France:

d fi(t)

dt
= δi(t) fi(t)

dδi(t)

dt
= aδi(t)+u

(5)

for every region i, with two common parameters, a and u. The objective of the
identification is to find the optimal values of a and u, common to the dynamical
systems of all the 13 regions of mainland France, and the initial conditions fi(t0)
and δi(t0), for every i-th region, such that the simulation of (5) fits the signal mean
excess20 corr.

Hence, denoting:

• k0 the initial day of the identification interval, i.e. the lockdown date of
March 17th;

2Île-de-France (11), Grand Est (44), Auvergne-Rhône-Alpes (84), Hauts-de-France (32),
Provence-Alpes-Côte d’Azur (93), Bourgogne-Franche-Comté (27), Occitanie (76), Pays de la
Loire (52), Centre-Val de Loire (24), Bretagne (53), Normandie (28), Nouvelle-Aquitaine (75)
and Corse (94)
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• k f the final day of the identification interval, April 28th;

the following problem is posed:

min
a,u, f̂i,0,δi,0

∑
i∈F

k f

∑
k=k0

qi( f̂i(k)− fi(k))
2

s.t. f̂i(k+1) = (1+δi(k)) f̂i(k), ∀k0 ≤ k ≤ k f , ∀i ∈ F,

δi(k+1) = (1+a)δi(k)+u, ∀k0 ≤ k ≤ k f , ∀i ∈ F,

f̂i(k0) = f̂i,0, ∀i ∈ F,

δi(k0) = δi,0, ∀i ∈ F.

(6)

Problem (6) is a least-squared minimization problem with nonconvex con-
straints and 28 variables, that are:

• the two parameters a and u;

• the 26 initial conditions f̂i,0 and δi,0, with i ∈ F , for the 13 regions.

Parameters qi are chosen to appropriately weight the errors of regions with
different values of excess of deaths in 2020.

To solve the nonconvex problem (6), first an initial suboptimal solution has
been obtained by solving a convex problem involving only the dynamics of δi,
with variables a,u and δi,0. This solution, together with an ad-hoc selection of
f̂i,0, has been used as initial condition of the nonconvex optimization problem. In
particular, the Torczon algorithm has been employed, that is a derivative free non-
convex optimization algorithm and whose python implementation can be found at
[23].
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The optimal values for the parameters a and u in (5) obtained are

a =−7.1139 ·10−2
, u =−6.2489 ·10−3

, (7)

and the optimal initial conditions are given in Table 1. Notice the initial con-
dition of fi for the two regions most affected by the Covid-19 spread, i.e. Île-de-
France (11) and Grand Est (44), are around 40 units, much higher than those of
the other regions.

Table 1: Optimal initial conditions for (5) with region i ∈ F

δ84,0 δ27,0 δ24,0 δ44,0 δ32,0 δ11,0 δ75,0

0.3221 0.2667 0.3598 0.2054 0.3032 0.3211 0.3167

f84,0 f27,0 f24,0 f44,0 f32,0 f11,0 f75,0

7.0714 6.277 1.7143 42.8393 7.9161 37.0938 1

δ76,0 δ52,0 δ53,0 δ94,0 δ28,0 δ93,0

0.295 0.3088 0.2284 0.1204 0.3737 0.2923

f76,0 f52,0 f53,0 f94,0 f28,0 f93,0

3.4643 2.3189 1.8857 1.3255 1.2857 5.2883

The results of simulating system (5) with parameters (7) and initial conditions
as in Table 1, denoted estimation ID NL, are illustrated in Figs. 4 -7. Notice
that the y axis in all the figures ranges between 0 and 200, except Île-de-France
that reaches 450. The fitting, obtained with a two-parameters two dimensional
system, is remarkable.
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Excess in 2020 in Île-de-France
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Excess in 2020 in Auvergne-Rhône-Alpes
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Figure 4: Comparison of time series mean excess20 corr and trajectory of (5) with op-
timal parameters, denoted estimation ID NL, for Île-de-France (11) and Grand Est (44),
Auvergne-Rhône-Alpes (84) and Hauts-de-France (32) regions.
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Excess in 2020 in Provence-Alpes-Côte d'Azur
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Excess in 2020 in Bourgogne-Franche-Comté
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Excess in 2020 in Occitanie
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Figure 5: Comparison of time series mean excess20 corr and trajectory of (5) with op-
timal parameters, denoted estimation ID NL, for Provence-Alpes-Côte d’Azur (93) and
Bourgogne-Franche-Comté (27), Occitanie (76) and Pays de la Loire (52) regions.
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Excess in 2020 in Centre-Val de Loire

3/15 4/01 4/15 5/01 5/15

0

50

100

150

200

Excess in 2020 in Bretagne

3/15 4/01 4/15 5/01 5/15

0

50

100

150

200

Excess in 2020 in Normandie
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3/15 4/01 4/15 5/01 5/15

0

50

100

150

200

Figure 6: Comparison of time series mean excess20 corr and trajectory of (5) with opti-
mal parameters, denoted estimation ID NL, for Centre-Val de Loire (24) and Bretagne (53),
Normandie (28) and Nouvelle-Aquitaine (75) regions.
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Excess in 2020 in Corse

3/15 4/01 4/15 5/01 5/15

0

50

100

150

200

Delta(t)

3/15 4/01 4/15 5/01 5/15

-0.1

0

0.1

0.2

0.3

0.4

Figure 7: Comparison of time series mean excess20 corr and trajectory of (5) with optimal
parameters, denoted estimation ID NL, for Corse (94) region, and evolutions of δi(t).

3.1. Discussion on identifiability and forecast

Although the model that proved to reproduce the evolution of the Covid-19
spread in the 13 French regions is extremely simple, with only two parameters
and two states, the system involving the infected cases is nonidentifiable. In fact,
it is easy to see that every pair of time series Ii(t) and parameter α such that

fi(t) = αIi(t)

for the i ∈ F region, leads to the same trajectory of system (5). Then, from the
observation of the 2020 deaths access only it is not possible to identify the real
value of α and, then, at the same time the time series of the infected population.
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The perspective is even worse for what concerns the forecast power of sys-
tem (5). Indeed, the state evolution depends on the value of δi(t), that can be
seen as a time-varying parameter. In the case under analysis, its evolution, caused
most likely by the containment measures, the lockdown application and the peo-
ple habits adaptation, has been identified with satisfactory precision. This would
imply, then, that the effect of complete lockdown seems to be modelled by the
specific values of a and u, resulting from the optimization process. On the other
hand, it is not clear how to predict the future evolution of δi(t) for i ∈ F , whose
knowledge is unavoidable to forecast the evolution of the number of demises due
to the pandemic. Further knowledge, on historic data, epidemiology and clinical
data, as done for influenza pandemic for instance [24], might help to achieve this
crucial task.

4. Model validation on further data

In the previous sections, the model has been fitted with the data regarding the
daily deaths that can be considered as consequences of the Covid-19 pandemic.
As several other datasets are available from gouvernamental sources, though, that
might be related to the pandemic evolution, we aim at check whether simple re-
lations between these data and the identified model exist. In the affirmative case,
this would validate the fitted model.

As said above, many time series regarding the Covid-19 daily evolution in
France are available. In particular, in [25], the daily data on the Covid-19 can be
found, between mid-March and mid-June 2020, regarding:

• the number of new hospitalizations, signal incid_hosp;

• the number of patients entering the intensive care services, denoted incid_rea;

• the number of patient demises, incid_dc;

• and the number of recovered patients, incid_rad.
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Fig. 8 shows the evolution of the time series in the region Auvergne-Rhône-
Alpes, in thin lines the data from the files are depicted, while in bold the signals
smoothed by averaging the values over 5 days are drown.

Moreover, Fig.8 shows also the time series, [26], of the deaths for Covid-
19 that have been electronically certified by the CepiDc laboratory, which is the
Inserm laboratory in charge of elaborating the statistics regarding the medical
demises. This time series, denoted incid_inserm in Fig. 8, concerns the
deaths occurred in public or private hospitals, nursing homes, or other places,
that have been electronically registered. This time series considers also part of the
cases included in incid_dc. Recall that the average of time series incid_dc
and incid_inserm have been employed in the definition of the signal mean
excess20 corr, on which the model has been fitted, also see Fig. 2 and Fig. 3.

Variat. hospital and Inserm in Auvergne-Rhône-Alpes
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Figure 8: Daily evolution of: new hospitalizations (incid_hosp); patients entering in intensive
care (incid_rea); patient demises (incid_dc); recovered patients (incid_rad) and elec-
tronically certified demises, (incid_inserm), in Auvergne-Rhône-Alpes. In bold, the average
over a 5-days-long window.

The site of the French government gives also to access to the data concerning
the daily Covid-19 tests realized in every region and to the number of positive
tests, see [27]. The evolution of the time series concerning the Auvergne-Rhône-
Alpes region, smoothed by averaging it over a 5-days-long window, are depicted
in Fig. 9.
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Tests in labs in Auvergne-Rhône-Alpes
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Figure 9: Daily evolution of Covid-19 test (test) and tests resulted positive (pos), in Auvergne-
Rhône-Alpes. In bold, the average over a 5-days-long window.

At the site [28], files are available reporting, for every French region and every
day since mid-February, the data concerning the accesses to the hospital emer-
gency services and the activity of SOS Médecins, an association of doctors pro-
viding emergency assistance. In particular, the data series regard:

• the overall number of admissions to hospital emergency services,

nbre_pass_tot;

• the number of admissions to emergency for presumed Covid-19 cases,

nbre_pass_corona;

• the number of hospitalizations among the admissions to emergency for pre-
sumed Covid-19 cases, nbre_hospit_corona;

• the overall number of medical acts of SOS Médecins, nbre_act_tot;

• the number of medical acts of SOS Médecins of presumed Covid-19 cases,
nbre_act_corona.

18



As can be noticed in Fig 10, the number of admissions to emergency and the
SOS Médecins, in Auvergne-Rhône-Alpes region, dropped around the middle of
March, when the Covid-19 epidemic spread started in France and the lockdown
was imposed by the French health authorities, on March 17. Nevertheless, as
can be remarked from Fig 10, the number of presumed or overt Covid-19 cases
started consistently growing at the same time in Auvergne-Rhône-Alpes region.
Analogous data evolution can be observed in several French regions, where the
Covid-19 pandemic spread relevantly.

Emergency and SOS medecins in Auvergne-Rhône-Alpes
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Figure 10: Daily evolution of: admissions to emergency, nbre_pass_tot; admissions to emer-
gency for Covid-19,nbre_pass_corona; hospitalizations among the admissions to emergency
for Covid-19, nbre_hospit_corona; medical acts of SOS Médecins, nbre_act_tot;
medical acts of SOS Médecins of Covid-19 cases, nbre_act_corona. In bold, the average
over a 5-days-long window.

Consider here the i-th region, the index is omitted for notation simplicity. Sup-
pose that the number of hospitalizations, that is the time series incid_hosp in
Fig. 8 denoted here as H(t), is proportional to the number of infected individuals
at a previous instant:

H(t) = µ f (t −η).

The time series f (t) being known, parameters µ and η can be identified by
simple least-squared minimization, repeated for different values of η . The same
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can be done for the other time series illustrated in Section 2, that is

• new hospitalizations, incid_hosp;

• new intensive cares patients, incid_rea;

• daily patient demises, incid_dc;

• recovered patients, incid_rad,

• positive tested cases, pos,

• daily demises certified to Inserm, incid_inserm,

• admissions to emergency for presumed Covid-19 cases, nbre_pass_corona
(denoted pass_corona in the tables);

• new hospitalizations among the admissions to emergency for presumed Covid-
19 cases, nbre_hospit_corona (denoted hospit_corona in the ta-
bles);

• medical acts of SOS Médecins of presumed Covid-19 cases, nbre_act_corona
(denoted act_corona in the tables)

The results of the fitting for the three regions that experienced the most rel-
evant pandemic spread, i.e. Île-de-France (11), Grand Est (44) and Auvergne-
Rhône-Alpes (84) are shown in Sections 4.1, 4.2, and 4.3, respectively, those con-
cerning the other regions can be found in Appendix D.
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The optimal values of parameters η and µ for the three regions are given in
Tables 2 and 3. It can be noticed that the curves of the excess of deaths are re-
produced, scaled and shifted in time, in the measured time series. A coherent
sequence of event could be inferred from the values of η . It seems, in fact, that
the peak of SOS Médecins acts occurred first, followed three days later by the
peaks at the emergency services; then the peaks at intensive care units happened
followed by the peaks of hospitalizations. Afterward, the peak of the excess of
deaths, i.e. of fi, occurred, while the peaks of the deaths registered at hospitals
and by Inserm came, few days later. Finally, the curve of recovered patients ar-
rived.

It is also interesting to note that, while the temporal sequence are substan-
tially the same for Île-de-France (11) and Auvergne-Rhône-Alpes (84), in Grand
Est (44) region, where the most important and early Covid-19 cluster revealed,
the events appear to be compressed in time, the peaks at the emergency units, for
SOS Médecins and for positive test occurred around 5 days before than the other
two regions.

Moreover, from the comparison between the values of µ parameters, that are
the proportionality coefficients between the evolution of excess of deaths and the
considered time series, interesting informations can be recovered, in particular on
the degree of stress and saturation of the regional health systems. Considering
for instance the acts of SOS Médecins, while there have been almost 2 acts for
every demise of Covid-19 in Auvergne-Rhône-Alpes , in Grand Est the number
of deaths have been higher than the capability of the institution diagnosis, while
in Île-de-France the number of demises seems to be more than the double of the
SOS Médecins acts. Analogous conclusions can be drawn by other indicators:
the activity of the emergency units (pass_corona and hospit_corona);
the number of positive test; the hospitalization and intensive care accesses, in
the three regions. It appear evident the degree of overwhelming saturation of the
health systems of Grand Est and, even more dramatically, of Île-de-France region.
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Table 2: Optimal initial conditions for (5) with region i ∈ F

incid_hosp incid_rea incid_dc incid_rad incid_inserm

η11 4 6 −2 −5 −1
µ11 2.890469 0.530296 0.474127 0.951683 0.275693

η44 3 5 −1 −5 0
µ44 2.846007 0.524773 0.505064 0.966889 0.331267

η84 5 6 −3 −3 −2
µ84 3.430858 0.806820 0.399725 1.261361 0.343933

Table 3: Optimal initial conditions for (5) with region i ∈ F

pos pass_corona hospit_corona act_corona

η11 5 7 7 11
µ11 1.496454 1.053246 0.470787 0.385416

η44 −1 2 3 6
µ44 0.853961 2.487286 1.116551 0.859851

η84 5 6 7 10
µ84 0.693771 5.060418 2.269344 1.831710
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4.1. Île-de-France
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Figure 11: Comparison of time series incid_hosp and incid_rea averaged over a 14-days-
long window, with the fitted outputs, for Île-de-France (11) region.
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Figure 12: Comparison of time series incid_dc and incid_rad averaged over a 14-days-long
window, with the fitted outputs, for Île-de-France (11) region.
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Figure 13: Comparison of time series incid_inserm and pos averaged over a 14-days-long
window, with the fitted outputs, for Île-de-France (11) region.
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Figure 14: Comparison of time series nbre_pass_corona and nbre_hospit_corona av-
eraged over a 14-days-long window, with the fitted outputs, for Île-de-France (11) region.
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Figure 15: Comparison of time series nbre_acte_corona averaged over a 14-days-long win-
dow, with the fitted output, for Île-de-France (11) region.
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4.2. Grand Est
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Figure 16: Comparison of time series incid_hosp and incid_rea averaged over a 14-days-
long window, with the fitted outputs, for Grand Est (44) region.
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Figure 17: Comparison of time series incid_dc and incid_rad averaged over a 14-days-long
window, with the fitted outputs, for Grand Est (44) region.
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Figure 18: Comparison of time series incid_inserm and pos averaged over a 14-days-long
window, with the fitted outputs, for Grand Est (44) region.
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Figure 19: Comparison of time series nbre_pass_corona and nbre_hospit_corona av-
eraged over a 14-days-long window, with the fitted outputs, for Grand Est (44) region.
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Figure 20: Comparison of time series nbre_acte_corona averaged over a 14-days-long win-
dow, with the fitted output, for Grand Est (44) region.
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4.3. Auvergne-Rhône-Alpes
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Figure 21: Comparison of time series incid_hosp and incid_rea averaged over a 14-days-
long window, with the fitted outputs, for Auvergne-Rhône-Alpes (84) region.
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Figure 22: Comparison of time series incid_dc and incid_rad averaged over a 14-days-long
window, with the fitted outputs, for Auvergne-Rhône-Alpes (84) region.
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Figure 23: Comparison of time series incid_inserm and pos averaged over a 14-days-long
window, with the fitted outputs, for Auvergne-Rhône-Alpes (84) region.
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Figure 24: Comparison of time series nbre_pass_corona and nbre_hospit_corona av-
eraged over a 14-days-long window, with the fitted outputs, for Auvergne-Rhône-Alpes (84) re-
gion.
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Figure 25: Comparison of time series nbre_acte_corona averaged over a 14-days-long win-
dow, with the fitted output, for Auvergne-Rhône-Alpes (84) region.
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5. Conclusions

In this paper, the available data concerning the Covid-19 spread in the 13 dif-
ferent regions of mainland France have been considered to build and identify a
dynamical model. The aim was to fit the data with a model as simple as possible,
to prevent and overcome the possible problem of nonidentifiability. An extremely
simple dynamical system, with two states and only two common parameters for
all the regions, permitted to reproduce the considered time series, that are the
data concerning hospitalizations, intensive cares accesses, emergency and SOS
Médecins activity, Covid-19 testing. These results seem to indicate that, with the
available data only, more complex epidemiological models might incur in non-
identifiability and raise issues on their forecasting power. Exploiting additional
data and further knowledge could be a solution to this problem.
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Appendix

Appendix A. Deaths excess in French regions
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Figure A.26: Evolution of daily demises in 2018, 2019 and 2020, in Île-de-France (11) and Grand
Est (44) regions. In bold, the average over a 14-days-long window.
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Figure A.27: Evolution of daily demises in 2018, 2019 and 2020, in Auvergne-Rhône-Alpes (84)
and Hauts-de-France (32) regions. In bold, the average over a 14-days-long window.
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Figure A.28: Evolution of daily demises in 2018, 2019 and 2020, in Provence-Alpes-Côte d’Azur
(93) and Bourgogne-Franche-Comté (27) regions. In bold, the average over a 14-days-long win-
dow.
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Excess of deaths in Occitanie
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Figure A.29: Evolution of daily demises in 2018, 2019 and 2020, in Occitanie (76) and Pays de la
Loire (52) regions. In bold, the average over a 14-days-long window.
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Figure A.30: Evolution of daily demises in 2018, 2019 and 2020, in Centre-Val de Loire (24) and
Bretagne (53) regions. In bold, the average over a 14-days-long window.
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Figure A.31: Evolution of daily demises in 2018, 2019 and 2020, in Normandie (28) and Nouvelle-
Aquitaine (75) regions. In bold, the average over a 14-days-long window.
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Figure A.32: Evolution of daily demises in 2018, 2019 and 2020, in Corse (94) region. In bold,
the average over a 14-days-long window.
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Appendix B. Deaths time series in French regions

Excess 2020 in Île-de-France

1/2020 2/2020 3/2020 4/2020 5/2020 6/2020

0

100

200

300

400

Excess 2020 in Grand Est

1/2020 2/2020 3/2020 4/2020 5/2020 6/2020

0

50

100

150

Figure B.33: Excess of death in 2020 with respect to the average of 2018/2019, mean

excess20; deaths certified in hospitals mean incid_dc and deaths electronically certified
to Inserm mean Inserm, averaged over a 14-days-long window from January to June 2020, in
Île-de-France (11) and Grand Est (44) regions.
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Figure B.34: Excess of death in 2020 with respect to the average of 2018/2019, mean

excess20; deaths certified in hospitals mean incid_dc and deaths electronically certified to
Inserm mean Inserm, averaged over a 14-days-long window, in Auvergne-Rhône-Alpes (84)
and Hauts-de-France (32) regions.
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Figure B.35: Excess of death in 2020 with respect to the average of 2018/2019, mean

excess20; deaths certified in hospitals mean incid_dc and deaths electronically certified
to Inserm mean Inserm, averaged over a 14-days-long window from January to June 2020, in
Provence-Alpes-Côte d’Azur (93) and Bourgogne-Franche-Comté (27) regions.
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Excess 2020 in Occitanie
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Figure B.36: Excess of death in 2020 with respect to the average of 2018/2019, mean

excess20; deaths certified in hospitals mean incid_dc and deaths electronically certified
to Inserm mean Inserm, averaged over a 14-days-long window from January to June 2020, in
Occitanie (76) and Pays de la Loire (52) regions.
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Figure B.37: Excess of death in 2020 with respect to the average of 2018/2019, mean

excess20; deaths certified in hospitals mean incid_dc and deaths electronically certified
to Inserm mean Inserm, averaged over a 14-days-long window from January to June 2020, in
Centre-Val de Loire (24) and Bretagne (53) regions.
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Figure B.38: Excess of death in 2020 with respect to the average of 2018/2019, mean

excess20; deaths certified in hospitals mean incid_dc and deaths electronically certified
to Inserm mean Inserm, averaged over a 14-days-long window from January to June 2020, in
Normandie (28) and Nouvelle-Aquitaine (75) regions.
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Excess 2020 in Corse
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Figure B.39: Excess of death in 2020 with respect to the average of 2018/2019, mean

excess20; deaths certified in hospitals mean incid_dc and deaths electronically certified
to Inserm mean Inserm, averaged over a 14-days-long window from January to June 2020, in
Corse (94) region.
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Appendix C. Deaths time series for fitting in French regions

Death excess 2020 in Île-de-France
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Figure C.40: Excess of death in 2020 with respect to the average of 2018/2019, mean

excess20; deaths certified in hospitals mean incid_dc and deaths electronically certified
to Inserm mean Inserm, averaged over a 14-days-long window. Corrected average of excess
mean excess20 corr, in the identification interval March 17th - April 28th, in Île-de-France
(11) and Grand Est (44) regions.
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Figure C.41: Excess of death in 2020 with respect to the average of 2018/2019, mean

excess20; deaths certified in hospitals mean incid_dc and deaths electronically certified
to Inserm mean Inserm, averaged over a 14-days-long window. Corrected average of excess
mean excess20 corr, in the identification interval March 17th - April 28th, in Auvergne-
Rhône-Alpes (84) and Hauts-de-France (32) regions.
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Figure C.42: Excess of death in 2020 with respect to the average of 2018/2019, mean

excess20; deaths certified in hospitals mean incid_dc and deaths electronically certified
to Inserm mean Inserm, averaged over a 14-days-long window. Corrected average of excess
mean excess20 corr, in the identification interval March 17th - April 28th, in Provence-
Alpes-Côte d’Azur (93) and Bourgogne-Franche-Comté (27) regions.
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Death excess 2020 in Occitanie
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Figure C.43: Excess of death in 2020 with respect to the average of 2018/2019, mean

excess20; deaths certified in hospitals mean incid_dc and deaths electronically certified
to Inserm mean Inserm, averaged over a 14-days-long window. Corrected average of excess
mean excess20 corr, in the identification interval March 17th - April 28th, in Occitanie (76)
and Pays de la Loire (52) regions.
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Figure C.44: Excess of death in 2020 with respect to the average of 2018/2019, mean

excess20; deaths certified in hospitals mean incid_dc and deaths electronically certified
to Inserm mean Inserm, averaged over a 14-days-long window. Corrected average of excess
mean excess20 corr, in the identification interval March 17th - April 28th, in Centre-Val de
Loire (24) and Bretagne (53) regions.
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Figure C.45: Excess of death in 2020 with respect to the average of 2018/2019, mean

excess20; deaths certified in hospitals mean incid_dc and deaths electronically certified
to Inserm mean Inserm, averaged over a 14-days-long window. Corrected average of excess
mean excess20 corr, in the identification interval March 17th - April 28th, in Normandie
(28) and Nouvelle-Aquitaine (75) regions.
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Death excess 2020 in Corse
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Figure C.46: Excess of death in 2020 with respect to the average of 2018/2019, mean

excess20; deaths certified in hospitals mean incid_dc and deaths electronically certified
to Inserm mean Inserm, averaged over a 14-days-long window. Corrected average of excess
mean excess20 corr, in the identification interval March 17th - April 28th, in Corse (94)
region.
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Appendix D. Validation on other data: results

Appendix D.1. Provence-Alpes-Côte d’Azur

incid_hosp in Provence-Alpes-Côte d'Azur

4/01 4/15 5/01 5/15

50

100

150

200

incid_rea in Provence-Alpes-Côte d'Azur

4/01 4/15 5/01 5/15

5

10

15

20

25

30

35

Figure D.47: Comparison of time series incid_hosp and incid_rea averaged over a 14-
days-long window, with the fitted outputs, for Provence-Alpes-Côte d’Azur (93) region.
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Figure D.48: Comparison of time series incid_dc and incid_rad averaged over a 14-days-
long window, with the fitted outputs, for Provence-Alpes-Côte d’Azur (93) region.
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Figure D.49: Comparison of time series incid_inserm and pos averaged over a 14-days-long
window, with the fitted outputs, for Provence-Alpes-Côte d’Azur (93) region.
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Figure D.50: Comparison of time series nbre_pass_corona and nbre_hospit_corona
averaged over a 14-days-long window, with the fitted outputs, for Provence-Alpes-Côte d’Azur
(93) region.
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Figure D.51: Comparison of time series nbre_acte_corona averaged over a 14-days-long
window, with the fitted output, for Provence-Alpes-Côte d’Azur (93) region.

37



Appendix D.2. Bourgogne-Franche-Comté
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Figure D.52: Comparison of time series incid_hosp and incid_rea averaged over a 14-
days-long window, with the fitted outputs, for Bourgogne-Franche-Comté (27) region.
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Figure D.53: Comparison of time series incid_dc and incid_rad averaged over a 14-days-
long window, with the fitted outputs, for Bourgogne-Franche-Comté (27) region.
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Figure D.54: Comparison of time series incid_inserm and pos averaged over a 14-days-long
window, with the fitted outputs, for Bourgogne-Franche-Comté (27) region.
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Figure D.55: Comparison of time series nbre_pass_corona and nbre_hospit_corona
averaged over a 14-days-long window, with the fitted outputs, for Bourgogne-Franche-Comté (27)
region.
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Figure D.56: Comparison of time series nbre_acte_corona averaged over a 14-days-long
window, with the fitted output, for Bourgogne-Franche-Comté (27) region.
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Appendix D.3. Occitanie
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Figure D.57: Comparison of time series incid_hosp and incid_rea averaged over a 14-
days-long window, with the fitted outputs, for Occitanie (76) region.
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Figure D.58: Comparison of time series incid_dc and incid_rad averaged over a 14-days-
long window, with the fitted outputs, for Occitanie (76) region.
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Figure D.59: Comparison of time series incid_inserm and pos averaged over a 14-days-long
window, with the fitted outputs, for Occitanie (76) region.
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Figure D.60: Comparison of time series nbre_pass_corona and nbre_hospit_corona
averaged over a 14-days-long window, with the fitted outputs, for Occitanie (76) region.
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Figure D.61: Comparison of time series nbre_acte_corona averaged over a 14-days-long
window, with the fitted output, for Occitanie (76) region.
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Appendix D.4. Pays de la Loire
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Figure D.62: Comparison of time series incid_hosp and incid_rea averaged over a 14-
days-long window, with the fitted outputs, for Pays de la Loire (52) region.
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Figure D.63: Comparison of time series incid_dc and incid_rad averaged over a 14-days-
long window, with the fitted outputs, for Pays de la Loire (52) region.
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Figure D.64: Comparison of time series incid_inserm and pos averaged over a 14-days-long
window, with the fitted outputs, for Pays de la Loire (52) region.
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Figure D.65: Comparison of time series nbre_pass_corona and nbre_hospit_corona
averaged over a 14-days-long window, with the fitted outputs, for Pays de la Loire (52) region.
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Figure D.66: Comparison of time series nbre_acte_corona averaged over a 14-days-long
window, with the fitted output, for Pays de la Loire (52) region.
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Appendix D.5. Centre-Val de Loire
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Figure D.67: Comparison of time series incid_hosp and incid_rea averaged over a 14-
days-long window, with the fitted outputs, for Centre-Val de Loire (24) region.
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Figure D.68: Comparison of time series incid_dc and incid_rad averaged over a 14-days-
long window, with the fitted outputs, for Centre-Val de Loire (24) region.
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Figure D.69: Comparison of time series incid_inserm and pos averaged over a 14-days-long
window, with the fitted outputs, for Centre-Val de Loire (24) region.
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Figure D.70: Comparison of time series nbre_pass_corona and nbre_hospit_corona
averaged over a 14-days-long window, with the fitted outputs, for Centre-Val de Loire (24) region.
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Figure D.71: Comparison of time series nbre_acte_corona averaged over a 14-days-long
window, with the fitted output, for Centre-Val de Loire (24) region.
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Appendix D.6. Bretagne
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Figure D.72: Comparison of time series incid_hosp and incid_rea averaged over a 14-
days-long window, with the fitted outputs, for Bretagne (53) region.
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Figure D.73: Comparison of time series incid_dc and incid_rad averaged over a 14-days-
long window, with the fitted outputs, for Bretagne (53) region.
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Figure D.74: Comparison of time series incid_inserm and pos averaged over a 14-days-long
window, with the fitted outputs, for Bretagne (53) region.
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Figure D.75: Comparison of time series nbre_pass_corona and nbre_hospit_corona
averaged over a 14-days-long window, with the fitted outputs, for Bretagne (53) region.
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Figure D.76: Comparison of time series nbre_acte_corona averaged over a 14-days-long
window, with the fitted output, for Bretagne (53) region.
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Appendix D.7. Normandie
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Figure D.77: Comparison of time series incid_hosp and incid_rea averaged over a 14-
days-long window, with the fitted outputs, for Normandie (28) region.
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Figure D.78: Comparison of time series incid_dc and incid_rad averaged over a 14-days-
long window, with the fitted outputs, for Normandie (28) region.
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Figure D.79: Comparison of time series incid_inserm and pos averaged over a 14-days-long
window, with the fitted outputs, for Normandie (28) region.
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Figure D.80: Comparison of time series nbre_pass_corona and nbre_hospit_corona
averaged over a 14-days-long window, with the fitted outputs, for Normandie (28) region.
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Figure D.81: Comparison of time series nbre_acte_corona averaged over a 14-days-long
window, with the fitted output, for Normandie (28) region.
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Appendix D.8. Nouvelle-Aquitaine
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Figure D.82: Comparison of time series incid_hosp and incid_rea averaged over a 14-
days-long window, with the fitted outputs, for Nouvelle-Aquitaine (75) region.
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Figure D.83: Comparison of time series incid_dc and incid_rad averaged over a 14-days-
long window, with the fitted outputs, for Nouvelle-Aquitaine (75) region.
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Figure D.84: Comparison of time series incid_inserm and pos averaged over a 14-days-long
window, with the fitted outputs, for Nouvelle-Aquitaine (75) region.
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Figure D.85: Comparison of time series nbre_pass_corona and nbre_hospit_corona
averaged over a 14-days-long window, with the fitted outputs, for Nouvelle-Aquitaine (75) region.
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Figure D.86: Comparison of time series nbre_acte_corona averaged over a 14-days-long
window, with the fitted output, for Nouvelle-Aquitaine (75) region.
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Appendix D.9. Corse
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Figure D.87: Comparison of time series incid_hosp and incid_rea averaged over a 14-
days-long window, with the fitted outputs, for Corse (94) region.
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Figure D.88: Comparison of time series incid_dc and incid_rad averaged over a 14-days-
long window, with the fitted outputs, for Corse (94) region.
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Figure D.89: Comparison of time series incid_inserm and pos averaged over a 14-days-long
window, with the fitted outputs, for Corse (94) region.

nbre_pass_corona in Corse

4/01 4/15 5/01 5/15 6/01

100

200

300

400

500

nbre_hospit_corona in Corse

4/01 4/15 5/01 5/15

50

100

150

200

Figure D.90: Comparison of time series nbre_pass_corona and nbre_hospit_corona
averaged over a 14-days-long window, with the fitted outputs, for Corse (94) region.
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Figure D.91: Comparison of time series nbre_acte_corona averaged over a 14-days-long
window, with the fitted output, for Corse (94) region.
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