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Abstract

This paper proposes a novel kind of Unknown Input Observer
(UIO) called Reset Unknown Input Observer (R-UIO) for state and
fault estimation of a class of nonlinear uncertain systems using lin-
ear matrix inequality (LMI) techniques. In the devised R-UIO, the
states of the observer are reset to the after-reset value based on an
optimal H∞ reset law in order to decrease the L2 norm and settling
time of estimation error. It is shown that the utilization of such an
observer can significantly improve the transient response of the ob-
server. Moreover, the devised approach can be applied to both SISO
and MIMO systems. Furthermore, the robust stability analysis of the
devised R-UIO is addressed. Finally, the capabilities of the proposed
method are demonstrated by applying it to a Continuous Stirred-Tank
Reactor (CSTR) as a practical model.

Keywords— Reset Theory, Unknown Input Observer, Stability Analysis,
State Estimation, Fault Estimation



1 Introduction

Observer design is an attractive research field due to its importance in many
practical applications such as observer-based control, fault diagnosis and fault
tolerant control. In those areas, the problem of simultaneous state and fault
estimation is very appealing since it has the capability of providing the re-
quired information about state and fault within one design.

Most of the practical systems include unknown inputs such as the pa-
rameter perturbation [1], actuator faults, and external disturbance [2]. All
of the mentioned problems can be viewed as unknown inputs (UI) in indus-
trial process, which can degrade the performance. Therefore, the problem of
state and fault estimation of systems with UIs is very important and it is still
an open problem. One of the widely used methods to tackle this problem is
unknown input observer (UIO) design which has attracted many attentions
since the past decades especially in the fields of observer-based control [3, 4],
observer-based fault detection and isolation [2, 5].

In [6] and [7] an observer for linear systems subject to unknown inputs is
developed. Besides, UIO design is investigated in [8] for linear non-minimum
phase systems. The existence of a UIO is investigated in [9, 10], and the
necessary and sufficient conditions for it are presented. Besides, the reduced
order UIO can be designed using a systematic procedure [11, 12]. The capa-
bilities of the UIOs for state and fault estimation in the presence of uncer-
tainty and disturbance are demonstrated in [13, 14] and different approaches
for designing an UIO have been developed. In [15], linear matrix inequalities
are used to design a full-order nonlinear UIO for a class of nonlinear Lips-
chitz systems with unknown input. Moreover, a reduced order UIO for the
one-sided nonlinear Lipschitz system is proposed in [16].

The performance of UIO is affected negatively by the modeling errors, pa-
rameter variations or other uncertain factors. Due to presence of uncertainty
in the model of a physical system for designing a UIO, it is necessary that
the designed UIO is robust against the uncertain factors and disturbance.
Considering the factors, robust UIO is designed for unknown inputs Takagi-
Sugeno models [17, 18] and linear parameter varying (LPV) system [19]. In
[14], an LMI approach is used to design robust UIO for linear systems and
a class of nonlinear systems. A robust UIO for fault detection using linear
parameter varying model with uncertainties is presented in [20].

On the other hand, several control strategies are developed for dynamical
systems in the past decades. However, most of them suffer from having oscil-
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latory transient responses [21]. In order to mitigate this issue and overcome
the fundamental limitations of linear controllers, the idea of reset control
theory can be utilized. In this theory, the states of the controller can be
reset to a proper value, named after-reset value, based on an appropriately
defined reset law. The idea of reset control originates from the Clegg Inte-
grator which is aimed at tackling the drawbacks of the traditional integrators
[22]. Based on this idea, the First Order Reset Element is developed [23].
In [24], the authors used the state-space representation rather than transfer
functions and since then on, this control design method turns out to be an
attractive field especially for practical applications [25, 26].

The stability and performance of the reset control systems are investi-
gated in [27, 28]. The existence and uniqueness of solutions based on the
well-posedness of reset instants are demonstrated in [29] and the necessary
and sufficient conditions for them are provided. Moreover, reset systems sta-
bility has been used to check the global exponential stability of sample data
systems [30]. In [31], state reset is used to stabilize switched linear singular
systems. A similar idea is used in [32] for robust control and fault detection
for these systems. A robust reset control law for systems with Lipschitz non-
linearity is designed in [33]. In [34], quadratic and exponential stability for
the systems with saturation and nested saturations are investigated. In [35],
an optimal adaptive reset control is used to enhance the transient perfor-
mance and error bounds. A model predictive reset strategy is used to design
a reset control for polytopic LPV systems, in [36].

Similarly, a traditional observer can change to a reset observer by utilizing
the reset mechanism. A reset observer is a nonlinear observer consisting of
a base observer and a reset law that resets the states of the observer when
some predefined reset conditions are satisfied. In [37], a new type of adaptive
observer is proposed by applying the reset to the observer states. In [38], an
optimization problem is solved to obtain an optimal reset adaptive observer.
In [39], the application of reset strategy to a proportional-integral observer
for fault estimation problem is investigated. In [40] reset unknown input
observer for linear systems is designed. In [41] reset proportional-integral
observer for time-varying dynamics is developed.

In this paper, a class of nonlinear uncertain systems is considered and
reset strategy is extended to the UIO to form a novel sort of UIOs called
Reset UIO. An optimal after-reset value along with a proper jump sector is
obtained by solving H∞ optimization problem. Furthermore, the stability
analysis for the reset error dynamics is given. In addition, unlike most of the

2



previous reset observers, the proposed approach can be applied to the MIMO
systems as well as SISO systems. Moreover, the problem of fault estimation
using the devised method is investigated. In this regard, an augmented
system is constructed firstly and then the R-UIO for the augmented system
is designed. The efficiency of the method is demonstrated by exploiting a
CSTR as a practical example. It has been shown that exploiting the reset
mechanism in the UIO can improve the performance of the observer in the
sense of accuracy and rapidity.

The remainder of the paper is organized as follows: in Section 2, a con-
ventional approach to design the base UIO is investigated. In Section 3,
optimal reset UIO for state estimation is designed. In Section 4 the problem
of simultaneous state and fault estimation is considered. In Section 5, the
application of the proposed method to a practical model is presented and
the results are compared with literature to validate the performance of the
proposed estimation strategy. Finally, the concluding remarks are provided
in Section 6.

2 Conventional UIO (C-UIO)

Consider the following uncertain nonlinear system:

ẋ = (A+ ∆A)x+ (B + ∆B)u+Dv + g(x)

y = Cx, (1)

where x ∈ IRn, u ∈ IRm, v ∈ IRd and y ∈ IRp are the state vector, known
input vector, unknown input vector and output of the system respectively.
A,B,C and D are known matrices with appropriate dimension. Without
loss of generality, it is assumed that D is of full column rank [9]. g(x) is a
nonlinear function and the matrices ∆A and ∆B are time-varying matrices
corresponding to uncertainty of nominal system. The following assumptions
are also used throughout:

Assumption 1. g(x) is locally Lipschitz on a domain (open and connected
set) D ⊂ IRn if each point of D has a neighborhood D0 such that g(x) satisfies

‖g(x)− g(x̂)‖ ≤ γ ‖x− x̂‖ , ∀x, x̂ ∈ D0.
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Assumption 2. The vector space of the uncertainty matrices can be defined
as follows:

Γ1 = {∆A|∆A = TaΣaNa,∀Σa ∈ Rpa×qa s.t. ΣT
aΣa ≤ I}

Γ2 = {∆B|∆B = TbΣbNb,∀Σb ∈ Rpb×qb s.t. ΣT
b Σb ≤ I}

for appropriate values of pa, qa ∈ N and matrices Ta, Tb, Na and Nb.

For the state estimation of the aforementioned system a full-order C-UIO
can be defined in a way such that the observer leads to robustness against
the uncertainties. Consider the UIO dynamics as

ż = Nz +Gu+ Ly +Mg(x̂)
x̂ = z − Ey
ŷ = Cx̂,

(2)

where z ∈ IRn is the state of this full-order observer, x̂ ∈ IRn is the estimated
state vector and N,G,L,M,E are design matrices for unknown input decou-
pling goal and other required performances. For simplicity g(x̂) is shown as
ĝ from now on. The parameters of the C-UIO can be obtained using [15]:


N = MA−KC
G = MB
L = K(I + CE)−MAE
M = I + EC
MD = 0.

(3)

It is assumed that rank(CD) = rank(D) and the pair (C,MA) is detectable.
Using the last equation in (3), E can be obtained as

E = −D(CD)+ + Y (I − (CD)(CD)+), (4)

in which, (CD)+ is defined as (CD)+ = ((CD)T (CD))−1(CD)T and Y is a
free tunable parameter that can be used to improve the performance, and K
is a chosen such that N is Hurwitz [9]. Note that the second term in (4) is
such that (I − (CD)(CD)+)(CD) = 0 and it generalizes the special solution
−D(CD)+ [42].

Define the estimation error as

e = x− x̂.
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As a result

ė = ẋ− ˙̂x

= ẋ− ż + ECẋ

= (I + EC)ẋ− ż = Mẋ− ż. (5)

Substituting ẋ and ż from equations (1) and (2) results in

ė = M [(A+ ∆A)x+ (B + ∆B)u+Dv + g]−Nz −Gu− LCx−Mĝ

= (MA+M∆A− LC)x+ (MB +M∆B −G)u+MDv +Mg

−Nz −Mĝ. (6)

Using equations in (3) and replacing z = x̂+ ECx one has

ė = (MA+M∆A−KC −KECE +MAEC −NEC)x+M∆Bu

+M(g − ĝ)−Nx̂
= [(MA−KC) +M∆A+ (MA−KC)EC −NEC)]x+M∆Bu

+M(g − ĝ)−Nx̂. (7)

replacing N = MA−KC results in

ė = [N +M∆A]x+M∆Bu+M(g − ĝ)−Nx̂ (8)

which leads to the continuous error dynamics

ė = Ne+M∆Ax+M∆Bu+M(g − ĝ). (9)

Now it it possible to find the gain K such that the error dynamics (9) is
robustly stable and satisfies the following requirement

sup
∆A∈Γ1,∆B∈Γ2

‖e‖2

‖wd‖2

< λ, (10)

in which λ > 0 and wd = [xT , uT , vT ]T . In the next section, the reset theory
is used to introduce a nonlinear observer which can reduce the L2 norm and
the settling time of the estimation error.
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3 Reset UIO

In this part, reset action is added to the C-UIO to improve the performance
of the observer. Thus, the R-UIO can be formulated as

ż = Nz +Gu+ Ly +Mĝ
x̂ = z − Ey
ŷ = Cx̂

 if e ∈ F

{
z+ = (M − AREC)z − (I − AR)MEy
x̂+ = z+ − Ey

}
if e ∈ J , (11)

in which AR is the after reset matrix, F = {e ∈ IRn|eTCTFCe ≥ 0} is the
flow set and J = {e ∈ IRn|eTCTFCe ≤ 0} is the jump set and a jump
happens as soon as e ∈ J . It’s worth noting that F and AR will be obtained
by solving some inequalities.

For the discrete error dynamics one has

e+ = x− x̂+

= x− z+ + Ey = (I + EC)x− z+ (12)

substituting z+ from (11) results in

e+ = x− (M − AREC)z + (I − AR)MEy + Ey (13)

using z = x̂+ ECx implies that

e+ = x− (M − AREC)(x̂+ Ey) + (I − AR)MEy + Ey

simplifying the equation leads to

e+ = Me+ ARECx̂− ARECx (14)

adding and subtracting ARe, e
+ can be obtained as

e+ = Me− AR(I + EC)e+ ARe

= (AR − ARM +M)e. (15)

Therefore, defining H = AR−ARM +M , the error dynamics can be written
as {

ė = Ne+M∆Ax+M∆Bu+M(g − ĝ) if e ∈ F
e+ = He if e ∈ J . (16)

Based on reset error dynamics the following theorem on the convergence
of R-UIO can be stated:
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Theorem 1. For the system (1) and the observer (11), if there exist symmet-
ric matrices P > 0, F , matrices Q, K̄ and positive scalars ε1, ε2, λ,γf , τf , τj
and 0 < γj ≤ 1 such that

min
P,Q,F,AR,K̄,ε1,ε2,γf ,γj ,τf ,τj

λ

, subject to

Ω11 0 0 0 0 0 0
0 Ω22 0 0 PMTa PMTb γσP
0 0 Ω33 0 0 0 0
0 0 0 −λ2I 0 0 0
0 T Ta M

TP 0 0 −ε1I 0 0
0 T Tb M

TP 0 0 0 −ε2I 0
0 γσP 0 0 0 0 −I


< 0, (17a)

[
γjP + τjF (Q−QM + PM)T

Q−QM + PM P

]
≥ 0, (17b)

HTFH + τwC
TFC > 0, (17c)

in which

Ω11 = ε1N
T
a Na − λ2I

Ω22 = PMA− K̄C + (PMA− K̄C)T + 2I + γfP + τfC
TFC

Ω33 = ε2N
T
b Nb − λ2I.

The error dynamics (16) is robustly stable and has a L2 gain from wd to e
which is smaller than λ and the optimal gain K can be computed as K =
P−1K̄.

To prove the theorem, some useful lemmas are presented first.

Lemma 1. Majoration Lemma [43].
Let X, Y and F (t) be real matrices of appropriate dimensions. Then, for

any ε > 0 and F (t)TF (t) ≤ I we have

XF (t)Y + Y TF T (t)XT ≤ εXXT + ε−1Y TY. (18)

Lemma 2. Schur complement [44]
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Let Q ≤ 0, S, and R be given matrices. The following statements are
equivalents [

Q R
RT S

]
≤ 0,

Q−RS−1RT ≤ 0. (19)

Lemma 3. If the nonlinear function g satisfies the Assumption 1, then the
following inequality holds:

2eTPM(g − ĝ) ≤ γ2σ2eTPPe+ eT e,

in which σ is the largest singular value of M [45].

Proof. Consider the Lyapunov function V = eTPe where P = P T > 0. The
error dynamics (16) is robustly stable and satisfies the condition (10) if{

V̇ < −γfV + λ2uTu+ λ2xTx+ λ2vTv − eT e if e ∈ F
V + ≤ γjV if e ∈ J . (20)

Derivation of V can be obtained as follows:

V̇ = ėTPe+ eTP ė

= (Ne+M∆Ax+M∆Bu+M(g − ĝ))TPe

+ eTP (Ne+M∆Ax+M∆Bu+M(g − ĝ))T . (21)

Using equation (3), Assumption 2 and change of variable K̄ = PK one has

V̇ = eT ((PMA− K̄C)T + PMA− K̄C)e+ 2eTPMTaΣaNax

+ 2eTPMTbΣbNbu+ 2eTPM(g − ĝ). (22)

Applying Lemma 1 and 3 lead to

V̇ ≤ eT ((PMA− K̄C)T + PMA− K̄C)e+ ε−1
1 eTPMTa(PMTa)

T e

+ ε1x
TNT

a Nax+ ε−1
2 eTPMTb(PMTb)

T e+ ε2u
TNT

b Nbu

+ γ2σ2eTPPe+ eT e. (23)
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Therefore, the first condition in (20) holds if

eT ((PMA− K̄C)T + PMA− K̄C)e+ ε−1
1 eTPMTa(PMTa)

T e

+ ε1x
TNT

a Nax+ ε−1
2 eTPMTb(PMTb)

T e+ ε2u
TNT

b Nbu

+ γ2σ2eTPPe+ eT e+ γfV − λ2uTu− λ2xTx− λ2vTv + eT e < 0 (24)

is satisfied for all e such that eTCTFCe ≥ 0. Using S-procedure [44] with a
positive constant τf , the above condition can be written in the matrix form
as 

x
e
u
v


T 

Ω11 0 0 0
0 Ω22 + Λ22 0 0
0 0 Ω33 0
0 0 0 −λ2I



x
e
u
v

 < 0, (25)

in which

Λ22 = ε−1
1 PMTa(MTa)

TP + ε−1
2 PMTb(MTb)

TP + γ2σ2PP.

Using Schur complement lemma repeatedly, the condition (25) results in

Ω11 0 0 0 0 0 0
0 Ω22 0 0 PMTa PMTb γσP
0 0 Ω33 0 0 0 0
0 0 0 −λ2I 0 0 0
0 T Ta M

TP 0 0 −ε1I 0 0
0 T Tb M

TP 0 0 0 −ε2I 0
0 γσP 0 0 0 0 −I


< 0. (26)

Similarly, for the discrete error dynamics, one has

V + − γjV ≤ 0. (27)

Using V + = e+Pe+ and substituting e+ from (16) result in

(He)TP (He)− γjeTPe ≤ 0

eT (HTPH − γjP )e ≤ 0. (28)
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Therefore, it is inferred that

HTPH − γjP ≤ 0, (29)

when eTCTFCe ≤ 0 is satisfied, and with the aid of S-procedure [44] the
condition eTCTFCe ≤ 0 can be added to (29) by using a constant τj > 0 as
follows:

HTPH − γjP − τjCTFC ≤ 0. (30)

Using the Schur complement lemma the inequality (30) can be rewritten as[
γjP + τjC

TFC HT

H P−1

]
≥ 0 (31)

pre and post multiplying (31) by [
I 0
0 P

]
results in [

γjP + τjC
TFC HTP

PH P

]
≥ 0. (32)

Replacing H, (32) results in[
γjP + τjC

TFC ATRP −MTATRP +MTP
PAR − PARM + PM P

]
≥ 0. (33)

The inequality (33) is not linear since it contains multiplication of unknown
parameters P and AR. Therefore, using the variable change Q = PAR, one
gets

[
γjP + τjC

TFC (Q−QM + PM)T

Q−QM + PM P

]
≥ 0. (34)

Moreover, for the well-posedness of the system it is required that after a
jump, the error trajectory jumps out of the jump set i.e:

(e+)TF (e+) > 0 if eTFe ≤ 0. (35)

Thus, using S-procedure, the inequality

HTFH + τwF > 0 (36)

with the constant τw > 0 must holds and this completes the proof. �
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Remark 1. It’s worth mentioning that the inequality (36) is checked a poste-
riori, in practice. It means that as H and F are obtained previously in (17a)
and (17b), if there is τw such that the inequality (36) holds then the system
is well-posed and in this case, the reset will be applied to the system.

Remark 2. To avoid Zeno solution, temporal regularization time can be
included in reset dynamics (11). Including an auxiliary variable τ guarantees
that the time interval between two successive jumps is not smaller than ρ ∈
IR+. If ρ tends to infinity, no reset will occur and if it tends to zero, the Zeno
phenomenon may happen [38]. In this case, the error dynamics (16) can be
considered as follows:

{
ė = Ne+M∆Ax+M∆Bu+M(g − ĝ)
τ̇ = 1

}
if e ∈ F ∨ τ ≤ ρ{

e+ = He
τ+ = 0

}
if e ∈ J ∧ τ > ρ. (37)

Remark 3. Considering the effect of temporal regularization, if the R-UIO
hits the reset sector and τ ≤ ρ, it has to continue flowing until τ > ρ. In this
case stability cannot be assured [40]. To deal with this problem, for a very
small ρ a slightly inflated flow region can be considered [38].

Remark 4. The flow set F and the jump set J are implementable since the
errors Ce are available.

4 State and fault estimation using R-UIO

The proposed observer can be used to estimate faults. Consider the following
system dynamics:

ẋ = (A+ ∆A)x+ (B + ∆B)u+Dv + Eff + g(x)

y = Cx, (38)

in which f ∈ IRr and Ef is a known matrix with appropriate dimension. The
number of output channels is greater than or equal to the number of fault
inputs i.e p ≥ r. Moreover, it is assumed that ḟ ' 0. Therefore, the system
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(38) can be rewritten as follows:

[
ẋ

ḟ

]
=

([
A Ef

0r×n 0r

]
+

[
∆A 0
0r×n 0r

])[
x
f

]
+

([
B

0r×m

]
+

[
∆B
0r×m

])
u

+

[
D

0r×d

]
v +

[
g(x)

0

]
y =

[
C 0

] [x
f

]
.

(39)

For conciseness, some new variables and matrices are denoted as follows:

x̄ =

[
x
f

]
, Ā =

[
A Ef

0r×n 0r

]
, B̄ =

[
B

0r×m

]
,

D̄ =

[
D

0r×d

]
, C̄ =

[
C 0

]
, ḡ(x) =

[
g(x)

0

]
,

∆Ā =

[
∆A 0
0 0

]
,∆B̄ =

[
∆B

0

]
, (40)

then system (38) becomes:{
˙̄x = (Ā+ ∆Ā)x̄+ (B̄ + ∆B̄)u+ D̄v + ḡ
y = C̄x̄.

(41)

Now, the system (41) is similar to the system (1) and the observer (2) should
be designed for this new augmented system. Moreover, the same procedure
explained in Theorem 1 can be applied to estimate fault and states. In this
regard, the following Theorem is devised.

Remark 5. It is readily concluded that this fault estimation observer design
can be extended to a large class of typical faults, i.e. f (n)(t) = 0. Moreover,
this method can be used for slowly time varying faults as well.

Corollary 1. For the augmented system (41), which includes fault as an
auxiliary state, the observer (11) can be designed, provided that the conditions
in Theorem 1 are satisfied. Then, the error dynamics for the augmented
system is robustly stable and has a L2 gain from wd to e which is smaller
than λ.
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Proof. The proof of this theorem is the same as the Theorem 1, provided
that the augmented matrices are used. �

Remark 6. The existence conditions of UIO for the augmented system should
be check, firstly.

Moreover, for tuning the observer gain, the following lemma can be useful.

Lemma 4. The eigenvalues of a given matrix N ∈ IRn×n belong to the cir-
cular region D(α, τ) with center α + j0 and radius τ if and only if there
exists a symmetric positive definite matrix P ∈ IRn×n such that the following
condition holds: [

−P P (N − αIn)
∗ −τ 2P

]
< 0. (42)

5 Simulation

Consider a well-mixed CSTR in which the following isothermal, liquid-phase,
multi-component chemical reaction A� B → C is being carried out [46–48].
The system model can be described as:

ẋ1 = −(1 +Da1)x1 + 2Da2x2dx2 +Da2x
2
2

ẋ2 = Da1x1 − (1 + 2Da2x2d + 2Da3x2d)x2 − (Da2 +Da3)x2
2 + u

ẋ3 = 2Da3x2dx2 − x3 +Da3x
2
2

y1 = x3

y2 = x1,

(43)

in which Da1, Da2, Da3 are system parameters and x1d, x2d, , x3d are steady-
state value of the system states. This dynamics can be divided into linear
and nonlinear part and rewritten as follows:

ẋ =

−(1 +Da1) 2Da2x2d 0
Da1 −(1 + 2Da2x2d + 2Da3x2d) 0

0 2Da3x2d −1

x+

0
1
0

u
+

 Da2x
2
2

−(Da2 +Da3)x2
2

Da3x
2
2


y =

[
0 0 1
1 0 0

]
x. (44)
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Under assumptions in [46–48] there is unmodeled first-order dynamics and
also an error in measuring the molar feed rate. Moreover, assume that there
is uncertainty in system parameters Da1, Da2, Da3. In addition, suppose
that system is subject to external disturbance. Under such a circumstance,
the true process is described by

ẋ = (A+ ∆A)x+ (B + ∆B)u+Dv + g(x)

y = Cx, (45)

in which

∆A =

−∆Da1 2∆Da2x2d 0
∆Da1 −2∆Da2x2d − 2∆Da3x2d) 0

0 2∆Da3x2d 0


∆B =

0
b
0

 , D =

1
0
0

 , g(x) =

 Da2

−(Da2 +Da3)
Da3

x2
2. (46)

The nominal values for the various constants are Da1 = 3.0, Da2 = 0.5,
and Da3 = 1. The steady-state values of the states are x1d = 0.3467, x2d =
0.8796, x3d = 0.8796 and b = 0.3.

Consequently, the final nominal dynamic model is found accordingly as
follows:

ẋ =

−4 0.8796 0
3 −3.6388 0
0 1.7592 −1

x+

0
1
0

u+

1
0
0

 v +

 0.5
−1.5

1

x2
2

y =

[
1 0 0
0 0 1

]
x. (47)

It is supposed that there is a 10 percent variation in the system parameters
from the nominal value. Therefore, the uncertainty matrices can be described
as follows:

Ta = I3, Na = 0.1

−Da1 2Da2x2d 0
Da1 −2Da2x2d − 2Da3x2d 0

0 2Da3x2d 0


Tb = B, Na = 0.1b. (48)
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Moreover, Σa and Σb can be chosen as sin(t)I3 and sin(t) respectively. The
input u is a step with amplitude 1 and the disturbance is v = sin(5t).

Now, to obtain the unknown parameters, the R-UIO should be designed
by solving the inequalities (17a) and (17b) of Theorem 1. It is worth noting
that, γf , γj, τf and τj are unknown and result in multiplication of parameters.
Therefore, to solve these inequalities, a change of variable is used to remove
one of them. Consider τjF = F̄ thus, τfF can be replaced with

τf
τj
F̄ = τ̄f F̄ . It

is the same as letting τj = 1 and solving the inequalities. Since an analytical
solution for the optimal value of the unknown parameters can’t be obtained,
a numerical approach is used to find a suboptimal solution.

One way to deal with the aforementioned problem is to consider a grid
for γf , γj and τj, then the inequalities are solved at each point of the grid
to obtain a feasible solution. An alternative method is to suppose, there
is no jump and uncertainty in the model firstly. Therefore only inequality
(17a) should be solved to obtain the γf and τf . In this case, the unknown
parameters γf and τf can be obtained by just griding in two dimensions.
Now the γf and τf can be fixed and make a one-dimensional grid to obtain
γj and try to minimize λ.

Remark 7. The matrix F should be chosen such that it is neither positive
definite nor negative definite in order to represent a sector.

5.1 State estimation

First, the system dynamics (1) without any fault is considered. Initial con-
dition of the system and the observer are x = [0.3, 0.3, 0.5]T and zero respec-
tively. Following the previously explained procedure, the parameters can be
obtained as γf = 1.2, γj = 1, τf = 60 and let γ = 0.1. Choosing

Y =

 0.3368 −0.3454
−0.3892 1.1948
−0.4291 0.8448


and applying the Theorem 1 to the system, the unknown parameters can be
obtained as:

P =

 1.1107 0.0228 −0.0275
0.0228 0.4874 0.0386
−0.0275 0.0386 1.1070

 , F =

[
−0.0178 0.0296
0.0296 0.0334

]
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AR =

0.0000 −0.8655 0.0003
0.0468 1.2551 −0.0099
0.0000 −1.4822 0.0141

 , K =

1.3611 2.9107
2.1631 4.0027
0.9769 −0.0636

 ,
N =

−2.9107 0.5925 −1.6979
−1.0027 −4.3235 −1.7739
0.0636 1.0043 −1.5478

 .
Using the proposed observer, the state estimation and the estimation errors
in both C-UIO and R-UIO are shown in the Figure 1. This Figure shows that
state estimation using R-UIO can be more accurate and faster. Moreover, it
can be seen that utilizing the proposed method can decrease the undershoot.
In addition, R-UIO shows more robust behavior and performance in the pres-
ence of uncertainty. It means that R-UIO not only robustly estimates the
states, but also improves the estimation in the presence of norm bounded
uncertainty resulting from the modeling and disturbances. It is worth men-
tioning that after the first reset in about t = 0.15s the state estimation
error jump toward zero suddenly. This shows the proper choice of after reset
value. As a result, it can be seen that a direct consequence of the jump in
the estimations is reduction of L2 norm of error and settling time. Table 1
shows the L2 norm and the settling time (5%) of the estimation error. It
can be seen that the devised R-UIO outperforms the C-UIO and improves
the results in both L2 norm and the settling time of estimation error. The
last row in Table 1 presents the percentage of improvement in performance
measures using R-UIO with respect to C-UIO.

Table 1: L2 norm and Settling time comparison

Method R-UIO C-UIO Improvement(%)
Tstl(s) 0.2113 1.6222 86.9745√∫∞
0
eT edt 0.2098 0.3239 35.2466

Furthermore, a statistical analysis has been done to demonstrate the effec-
tiveness of the proposed method. Regarding this, a Monte-Carlo simulation
with the different initial conditions has been run and the improvement in
the performance indices are shown in Table 2. As can been seen, for the
63.1% of the initial conditions the L2 norm improved using reset. Besides,
for the 68.6% of the samples the settling time reduces. Moreover, the average
improvement is 7.7% and 5.8%.
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Table 2: Result of Monte-Carlo simulation

Average Total
||e||2 Tstl ||e||2 Tstl
7.7 5.8 63.1 68.6

5.2 State and fault estimation

Now consider the CSTR dynamics in (44), which is in the general form of
(45). Suppose that there is an actuator fault in the system model with
Ef = B. Hence, the faulty model can be described in the general form of
(38). The fault is considered as an abrupt fault as follows:

f(t) =

{
1 3 ≤ t ≤ 7
0 else.

(49)

Constructing the augmented system and applying Theorem 1 along with the
Lemma 4 with α = −3.5, τ = 1.5, the unknown parameters can be obtained
as: γf = 1, γj = 1, τf = 2 and let γ = 0.1. Choosing

Y =


−0.6537 −0.2857
−1.2294 −0.4624
−0.2710 −0.4098
−0.9000 −0.5035


and applying the Theorem 1 to the system, the unknown parameters can be
obtained as:

P =


324.5537 15.2064 30.9417 5.1134
15.2064 386.8132 −31.4134 −88.4059
30.9417 −31.4134 275.6123 −10.5633
5.1134 −88.4059 −10.5633 22.1028

 , F =

[
6.7706 28.7999
28.7999 −38.7831

]

AR =


−0.0000 0.1213 0.0938 0.3797
1.0737 −1.1097 −0.6701 −2.5316
0.0000 −0.2982 −0.0908 −0.8244
4.5259 −4.7495 −2.9348 −13.3870

 , K =


4.4974 −0.4310
−0.5205 7.7351
−0.7167 5.0409
−15.6523 32.8381

 ,

N =


−4.4974 −0.5026 0.7167 0
3.5205 −4.4523 −7.2727 1.0000
0.7167 1.0383 −5.6311 0
15.6523 −0.8858 −32.3346 0

 .
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Table 3: Fault estimation L2 norm and Settling time comparison

Method R-UIO C-UIO R-PIO Improvement(%)
Tstl(s) 1.50 2.30 2.2 34.78√∫∞
0
eT edt 0.94 1.16 1.24 18.97

The result of state and fault estimation with the initial condition x̄0 =
[1, 0.1, 0.23, 0.1]T can be seen in the Figure 2 and 3 respectively. In Fig-
ure 2 the estimation of states subject to fault and disturbance is presented.
In this figures, the results of our method is compared with the C-UIO and
proportional-integral reset observer (R-PIO) [38] and [39]. The results show
that state estimation using R-UIO can result in smaller overshoot and faster
estimation compared to the C-UIO and R-PIO. In addition, the Figure 3 de-
picts the fault estimation and the result of the proposed R-UIO is compared
with the other methods. It can be seen that the R-UIO fault estimation
outperforms the C-UIO and R-PIO and estimates the states and fault more
rapidly and accurately. Besides, it can be deduced that despite the presence
of modeling uncertainties, R-UIO can estimate the fault and states better
than the other mentioned methods which in turn demonstrates the robust
stability of the CSTR error dynamics. Just like the state estimation in pre-
vious section, in this case, due to proper choice of reset law and after reset
value, state estimation error jumps toward zero after the first reset moment.
Moreover, in Table 3 a comparison of the R-UIO, C-UIO and R-PIO in es-
timating the fault is presented. It shows that using the devised method can
result in about 35% and 19% improvement in settling time and L2 norm of
the estimation error with respect to C-UIO.

It is worth mentioning that for reset-based approaches, the choice of the
reset law and the after reset value is the key stage. It is not always evident
how to choose them. Care should be taken to choose these parameters.

To wrap it up, from the results, three important conclusions can be re-
vealed:

a) Resetting action can improve the fault and state estimation.
b) R-UIO provides estimation with better transient response than the

other methods.
c) The improvement in the fault estimation using R-UIO in comparison

with the C-UIO is about 35% in settling time 19% in L2 norm of the estima-
tion error.
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6 Conclusion

In this paper, optimal Reset Unknown Input Observer for a class of nonlinear
uncertain systems was proposed. In this observer, the states are reset to an
optimal value based on aH∞ optimization problem. The devised observer can
be used to estimate fault and states simultaneously by considering fault as an
auxiliary state and constructing the augmented system. Robust stability of
the proposed method is addressed by utilizing a CSTR model as a practical
example. It is shown that using the reset in the UIO can decrease the L2

cost and the settling time of the estimation error.
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