
HAL Id: hal-02976058
https://hal.univ-grenoble-alpes.fr/hal-02976058

Submitted on 23 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Understanding seismic waves generated by train traffic
via modelling: implications for seismic imaging and

monitoring
François Lavoué, Olivier Coutant, Pierre Boué, Laura Pinzon-Rincon, Florent
Brenguier, Romain Brossier, Philippe Dales, Meysam Rezaeifar, Christopher J

Bean

To cite this version:
François Lavoué, Olivier Coutant, Pierre Boué, Laura Pinzon-Rincon, Florent Brenguier, et al.. Un-
derstanding seismic waves generated by train traffic via modelling: implications for seismic imaging
and monitoring. Seismological Research Letters, 2020, �10.1785/0220200133�. �hal-02976058�

https://hal.univ-grenoble-alpes.fr/hal-02976058
https://hal.archives-ouvertes.fr


Understanding seismic waves generated by train traffic via
modelling: implications for seismic imaging and monitoring

François Lavoué1,∗, Olivier Coutant1, Pierre Boué1,
Laura Pinzon-Rincon1, Florent Brenguier1, Romain Brossier1,
Philippe Dales1, Meysam Rezaeifar2, and Christopher J. Bean2

1Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre,

38000 Grenoble, France

2Dublin Institute for Advanced Studies, School of Cosmic Physics, Geophysics Section,

5 Merrion square, Dublin, Ireland

∗francois.lavoue@univ-grenoble-alpes.fr

(Accepted version for publication in the Seismological Research Letters)

1

francois.lavoue@univ-grenoble-alpes.fr


Contents
Abstract 3

Introduction 4

Modelling strategy 5
General approach and workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Computation of Green functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Train source time functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Characteristic lengths and expected frequencies at play . . . . . . . . . . . . . 7
Effect of train geometry on frequency content . . . . . . . . . . . . . . . . . . 8
Effect of the distribution of axle loads over sleepers on frequency content . . . . 9

Modelling results 11
Two end-member cases: single stationary source vs. single moving load . . . . . 11
Realistic cases (all sleepers, all wheels): effect of sleeper regularity . . . . . . . . 12

Discussion 13
Limitations of the modelling strategy . . . . . . . . . . . . . . . . . . . . . . . . 13
Parameters controlling signal amplitudes: implications for seismic detection . . . 14
Variable train speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Wave propagation effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Short vs. long distance signals . . . . . . . . . . . . . . . . . . . . . . . . . 16
Effect of seismic properties (velocities and attenuation) . . . . . . . . . . . 16
Wave partitioning (body vs. surface waves) . . . . . . . . . . . . . . . . . . 17

Conclusions 17

Data and resources 19

Acknowledgments 19

Bibliography 20

Tables 23

Figures 24

2



Abstract

Trains are now recognized as powerful sources for seismic interferometry based on noise
correlation, but the optimal use of these signals still requires a better understanding of
their source mechanisms. Here we present a simple approach for modelling train-generated
signals inspired by early work in the engineering community, assuming that seismic waves
are emitted by sleepers regularly spaced along the railway and excited by passing train
wheels. Our modelling reproduces well seismological observations of tremor-like emergent
signals and of their harmonic spectra. We illustrate how these spectra are modulated by
wheel spacing, and how their high-frequency content is controlled by the distribution of
axle loads over the rail, which mainly depends on ground stiffness beneath the railway.
This is summarized as a simple rule of thumb that predicts the frequency bands where
most of train-radiated energy is expected, as a function of train speed and of axle distance
within bogies. Furthermore, we identify two end-member mechanisms –single stationary
source vs. single moving load– that explain two types of documented observations, char-
acterized by different spectral signatures related to train speed and either wagon length
or sleeper spacing. In view of using train-generated signals for seismic applications, an
important conclusion is that the frequency content of the signals is dominated by high-
frequency harmonics and not by fundamental modes of vibrations. Consequently, most
train traffic worldwide is expected to generate signals with a significant high-frequency
content, in particular in the case of trains travelling at variable speeds which produce
truly broadband signals. By proposing a framework for predicting train-generated seis-
mic wavefields over meters to kilometers distance from railways, this work paves the way
for high-resolution passive seismic imaging and monitoring at different scales with appli-
cations to near-surface surveys (aquifers, civil engineering), natural resources exploration,
and natural hazard studies (landslides, earthquakes and volcanoes).
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Introduction

Trains have recently been recognized as powerful seismic noise sources for imaging (e.g.
Nakata et al., 2011; Quiros et al., 2016; Dales et al., 2020) and monitoring (Brenguier et al.,
2019) the Earth’s subsurface, from tens of meters to kilometers depth. By correlating
train-generated noise between sensors, Nakata et al. (2011), Quiros et al. (2016) and
Dales et al. (2020) were able to recover body waves that can be processed to reveal
subsurface structures, in a similar fashion as from active seismic data. Brenguier et al.
(2019) showed that train-generated body waves can be used to illuminate fault zones at
a few kilometers depth, thereby allowing in situ monitoring of real faults in the field in
similar conditions as those achieved in laboratory experiments (e.g. Scuderi et al., 2016).
However, the appropriate use of train-generated seismic noise for extracting information
about the subsurface still requires a better understanding of their source mechanisms
and of their spectral characteristics in the frequency band [1 - 50] Hz of interest for
seismological applications targeting the shallow crust.

While there exists detailed modelling studies in the engineering community of how
trains generate ground vibrations in the vicinity of the railway (up to ' 100 m), in-
cluding all the complexity of the interactions between trains, rail tracks and ballast (e.g.
Kouroussis et al., 2011 or Li et al., 2018b, see also Connolly et al., 2015 for a review),
there is a relative lack of modelling for understanding distant seismic observations (Fuchs
et al., 2018; Li et al., 2018a; Inbal et al., 2018; Brenguier et al., 2019).

Fuchs et al. (2018) provided many clues for interpreting the signals recorded in a range
of distances from the railway (300 to 1500 m). A striking observation is the presence of
equidistant spectral lines in the spectrograms, which they explained as being caused by
the repeated excitation of stationary sources (which they did not precisely identify) by
the successive wheels of the train. They proposed that the fundamental frequency of the
resulting harmonic signal may be expressed as f1 = Vtrain/∆b and controlled by the train
speed Vtrain and the bogie distance ∆b. Their explanations, however, are mainly based
on observations and on rules of thumb derived from short-distance modelling (Connolly
et al., 2015; Degrande and Schillemans, 2001; Ditzel et al., 2001; Wu and Thompson, 2001;
Sheng et al., 2003). Moreover, while these propositions seem to well explain most of the
observations, they are not entirely satisfactory for explaining the larger spacing between
frequency peaks or the Doppler effects that are sometimes observed (e.g. Fuchs et al.,
2018, figs 6a,b and S2b). In this study, we further investigate these hypotheses via the
simulation of seismic wave propagation.

The interest of this paper is threefold. First, we present an effective strategy for
modelling train-generated signals. Without entering into the complexity of train-track
interactions, our simple modelling strategy well reproduces the main characteristics of
the signals recorded by seismic stations located at moderate distances from the railway
(a few hundreds of meters to a few kilometers). Second, we clarify the mechanisms at
play in the generation of seismic waves by trains. Although they are well known and
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documented in the engineering community (e.g. Krylov and Ferguson, 1994), we feel a
need to illustrate these mechanisms in relation to seismological observations. Third, we
identify the main parameters that control these mechanisms, and therefore the amplitude
and frequency content of the observed signals, and we highlight perspectives for seismic
applications.

The outline of the paper is the following: we start by presenting our modelling strategy,
based on 3D visco-elastic simulations and on Krylov’s model of the quasi-static excitation
generated by trains (Krylov and Ferguson, 1994). We detail the design of the source time
functions representing the train load applied on the ground and how we expect these
functions and their spectral characteristics to control the final results. We then focus on
two end-member cases: single moving load vs. single stationary source, and show that they
generate spectral signatures that are very similar to the two categories of observations
made by Fuchs et al. (2018). Then we show how to reproduce signals similar to the
observations, both in the time and frequency domain, when considering realistic cases
of entire trains exciting many sources along the railway. We conclude by discussing the
parameters that control the amplitudes and frequency content of train-generated signals,
and we derive guidelines for detecting these signals in seismic ambient noise.

Modelling strategy

General approach and workflow

Following Krylov and Ferguson (1994) and Li et al. (2018b), we assume that the train
load is applied onto the ground surface as point-source, stationary, quasi-static vertical
forces acting on the sleepers, located every ∆sleeper along the rail way, and activated by
the passage of the train wheels (Fig. 1). Before going further, we shall specify that we
use the term stationary in the same sense of spatially stationary as Fuchs et al. (2018),
meaning that the sleepers are located at fixed positions and therefore constitute stationary
sources. Besides, we describe the excitation as quasi-static because we only consider
the effect of quasi-static pressure of wheel axles onto the track and ground (Krylov and
Ferguson, 1994), and disregard dynamic excitations between wheels and track due for
instance to wheel or rail irregularities (e.g. Sheng et al., 2003; Lombaert and Degrande,
2009; Galvín et al., 2010a,b; Xia et al., 2010). Finally, the sleepers are small compared
to the propagating wavelengths and are assumed to be rigid. Therefore we consider only
one series of sources, indicated as a single rail in Fig. 1(b), which amounts to assume that
the load of each train axle is applied as a single point source (i.e. the two wheels of each
axle act simultaneously on each sleeper). Using source-receiver reciprocity, we simulate
the signal that would be generated by a train passing over the sleepers and recorded by
a sensor away from the railway as the sum of the signals resulting from a virtual source
located at the sensor position and recorded at the sleepers positions (Fig. 1b).

Our workflow is therefore the following:
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1. Simulation of wave propagation between one (virtual) source and all (virtual) re-
ceivers, using a Dirac delta source time function such as to convolve the resulting
impulse responses with any desired source time function at the post-processing stage.

2. Lowpass filter (using a zerophase Butterworth filter) below the maximum frequency
allowed by the simulation (f simulation

max = 100 Hz).

3. Resample at 250 Hz (> 2f simulation
max in order to satisfy Nyquist criterion). This

is just to facilitate post-processing, given that the original simulation time step is
usually of the order of 0.2 ms (5000 Hz) to satisfy the Courant-Friedrichs-Lewy
(CFL) condition and ensure the stability of the numerical scheme.

4. Take time derivative to convert the simulated displacement (in m) into ground
velocity (in m/s), which is the quantity that is usually recorded by seismic stations.
Note that this time derivative has an effect on the high-frequency content of the
signals.

5. (optional) Select or mute specific arrivals (e.g. direct P or S, refracted P or S,
surface waves).

6. Convolve individual impulse responses with source time functions representing the
train passage over each sleeper.

7. Sum all the individual convolved seismograms to get the final seismogram resulting
from the contributions of all sleepers.

Steps 6 and 7 can be formalized as

vz(xr, t) =
NS∑
j=1

Sj(t) ∗Gzz(xr, xj, t), (1)

where vz(xr, t) is the vertical component of the ground velocity recorded at receiver lo-
cation xr along time t, NS is the number of sources (sleepers) along the railway, and ∗
denotes time convolution between the source time function Sj(t) of source j and the Green
function Gzz(xr, xj, t) of the medium between the location xj of the vertical source j and
the receiver location xr.

In the following, we give more details on some stages of this workflow, in particular
on the computation of the individual impulse responses (Green functions Gzz) and on the
design of the source time functions Sj(t) representing the train passage over each sleeper.

Computation of Green functions

The method used to compute the individual impulse responses before convolution and
stacking is not critical to our argument and could be performed via a number of different
techniques, either (semi)analytical or numerical. In this work we compute these individual

6



impulse responses using the SEM46 software (Trinh et al., 2019) based on time-domain
spectral elements under the visco-elastic approximation and for a maximum frequency of
100 Hz, so as to investigate the generation of high frequencies.

The use of spectral-element simulations presents numerous advantages. For instance,
spectral elements enable an accurate localisation of the very densely-spaced virtual re-
ceivers and a consistent extraction of the simulated wavefield at these locations, on the
same basis of Gauss-Lebatto-Legendre (GLL) polynoms as used in the modelling scheme.
Second, the use of source-receiver reciprocity with a very high number (' 20,000) of
virtual receivers (actual sources) partly mitigates the computational cost of this fully-
numerical method. Needless to say, we only need a short simulation duration (4 s, i.e.
the time for waves to travel from the source to the furthest receiver), and we do not sim-
ulate the entire duration of the train passage (' 540 s in the examples shown hereafter).
Finally, spectral elements enable us to consider media with realistic physical properties
(including attenuation) and with arbitrary heterogeneity. In this paper, we restrict our-
selves to examples in a homogeneous medium, because we want to focus on the source and
it turns out that the main mechanisms can be easily exemplified in such simple models
(see Table 1 for the properties considered in our numerical experiments). Further work
may investigate the effects of medium heterogeneity in real-scale cases, e.g. in southern
California (Brenguier et al., 2019) or in our test sites in Ontario (Canada, Dales et al.,
2020) and in the Dublin basin (Ireland, Rezaeifar et al., 2020).

Train source time functions

Characteristic lengths and expected frequencies at play

According to the considered mechanism consisting of sleepers hit by wheels, we may expect
two fundamental frequencies, related

1. to the excitation of each source (sleeper) by the successive wheel pairs, spaced every
∆, resulting in a frequency f1 = Vtrain/∆, where the spacing ∆ may a priori be

• the distance ∆a between axles within a given bogie,

• the distance ∆b1 between two bogies of the same wagon (as suggested by Fuchs
et al., 2018),

• the distance ∆b2 between two bogies of consecutive wagons (which is typically
shorter than ∆b1),

• or the wagon length Lw (as indicated by Krylov and Ferguson, 1994).

2. to the passage of each wheel pair over successive sleepers, resulting in a frequency
f2 = Vtrain/∆sleeper called passage frequency by Krylov and Ferguson (1994). Note
that in this case, we consider the wheels as moving sources which may induce a
Doppler effect.
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Figure 1 depicts these characteristic lengths within a schematic train and Table 1 indicates
the values considered in our numerical experiments.

As a first task of this paper, let us define the source time function describing the
passage of a train at a given source (sleeper) location, and clarify which spacing ∆ controls
the frequency f1.

Effect of train geometry on frequency content

To define the source time function for a given sleeper, we must consider the passage of
each wheel of the train over this particular sleeper. Let us start by considering a simplistic
train with only one wheel axle per wagon, i.e. where the only characteristic distance is
the wagon length, assumed the same for all wagons. In this case, a simple source time
function can be defined as a Dirac comb with regular peaks at the arrival times of each
wheel at the source location, with a period Lw/Vtrain related to wagon length Lw and
train speed Vtrain. Figure 2 shows such a simple Dirac comb (in greeny yellow), together
with its spectrum, corresponding to a 8-wagon train with 1 wheel pair per wagon hitting
a single sleeper. The spectrum is harmonic, presenting peaks at frequencies that are
multiples of the fundamental frequency f1 = Vtrain/Lw. Because the train has a finite
length (a finite number of wagons), the spectrum also presents some frequency leakage
which causes the frequency peaks to broaden and not to be as sharp as their time-domain
counterparts (this may have its importance later on, when convolving this Dirac comb
with more sophisticated functions that might amplify minor peaks). We shall now ask
ourselves what happens if we simulate a more realistic train, with 4 wheel axles per wagon
(Fig. 1a).

Figure 2 presents in blue the Dirac comb that corresponds to a 8-wagon train with 4
axles per wagon, following the geometry of Fig. 1(a) and the values of Table 1. Intuitively,
the time intervals between peaks reflect the distances between the wheels of the train. Less
intuitively, we observe in the spectrum that adding more wheels (i.e. more characteristic
lengths, see Fig. 1) does not introduce extra fundamental frequencies but modulates the
original spectrum, as expected from the Fourier transform of a doublet of Dirac peaks
(e.g. Krylov and Ferguson, 1994, eq. 18). This is shown in Fig. 2 as black dots for
the modulation due to the axle distance ∆a, whose maxima correspond to frequency
fa = Vtrain/∆a (pink dashed line), and as black dashes for the modulation due to both the
axle distance ∆a and the bogie distance ∆b1 within one wagon, with peaks corresponding
to frequency fb1 = Vtrain/∆b1 (purple dashed line). Although this description does not
fully correspond to the train geometry (as it does not account for the bogie distance
∆b2 between consecutive wagons), note how the black dots and dashes well matches the
amplitude of the blue peaks, while cancelling out some of the initial greeny-yellow peaks.
As a side note, Krylov and Ferguson (1994) suggested that the zeroes introduced by the
modulation effect may serve to suppress vibrations at chosen frequencies, for example at
the passage frequency, by designing train and track geometry accordingly.
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Another conclusion is that it is the wagon length Lw that controls the main fun-
damental frequency f1, and not the interval between bogies as intuited by Fuchs et al.
(2018). This leads us to suggest that the high-speed trains generating the signals ob-
served by Fuchs et al. (2018) at AlpArray station A002A, with a spectral line spacing of
∆f = f1 = 1.25 Hz, are not travelling at a speed of 85 km/h, as the authors suggested
based on bogie distance, but rather at 119.25 km/h (' 120 km/h), which is therefore the
train speed we will consider in our numerical experiments.

These simple Dirac combs provide us with a first understanding of the source time
functions and of their spectral characteristics. However, they are not entirely satisfactory,
as they assume that the load of each wheel is applied as an instantaneous point source on
a single sleeper. As a consequence, assuming simple Dirac combs tends to over-estimate
the high-frequency content of the source time functions, and therefore of the resulting
seismograms. For more realistic source time functions, we need to account for the fact
that the load of each axle is actually distributed over several sleepers, via the elastic
response of the rail track (e.g. Krylov and Ferguson, 1994; Li et al., 2018b).

Effect of the distribution of axle loads over sleepers on frequency content

Figure 3 presents examples of functions which may be used to describe the distribution of
the load of a single wheel over rail track and sleepers. The first approximation discussed in
the previous section is a simple Dirac comb (in blue). More realistically, we may consider
that, due to the elasticity of the track, point-source loads like wheels actually affect several
sleepers simultaneously. A first way to take this into account is to consider simple weights
as given for instance by Paderno (2009, their fig. 4) on 5 sleepers (black line in Fig. 3).
Considering a load distributed over a certain width has an effect on the spectrum of the
temporal loading function and tends to decrease its high-frequency content (intuitively,
the wider the distribution, the lower the frequency content). We can expect to retrieve
this effect in the final signal that will result from the convolution of the Green function
with a source time function (such as the ones shown in Fig. 2) that will itself be convolved
with this loading function.

Alternatively, we may consider a smoothed version of these weights, for instance using
a Gaussian function (in green in Fig. 3). It is important here to notice that not only
the width but also the shape of the loading function is critical in controlling the high-
frequency content of the spectrum: for a comparable width, a Gaussian function will yield
much less high frequencies (> 20 Hz) than a triangular function.

The use of ad hoc loading functions is therefore dubious and may result in incorrect
results in the high-frequency band that is of interest to us. As a consequence, we base our
source time functions on a more physical approach and consider as a loading function the
(opposite of the) counteracting force exerted by the track on the wheel, which is also the
force exerted by the track on the ground via the sleepers, as given by the Euler-Bernoulli
elastic beam (E-BEB) model (Krylov and Ferguson, 1994, eqs 2 and 7; Li et al., 2018a,
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eqs 2 and 3):

Pj(xi) = 2Fi e
−β|xi − xj|

[
cos(β|xi − xj|) + sin(β|xi − xj|)

] ∆sleeper

x0
. (2)

In this formulation, the loading function Pj(xi) corresponds to the vertical force (in N) at
sleeper j caused by the axle load of wheel i, and depends on the distance xi− xj between
wheel i and sleeper j, on the axle load Fi (assumed known for a given train weight), on
the sleeper spacing ∆sleeper (quite standard and assumed to be ∆sleeper = 24” = 0.6096 m
in our numerical experiments, see Table 1), on the elastic modulus E (in N/m2) and
cross-sectional momentum I (in m4) of the rail (assumed known for standard steel rails),
and finally on the stiffness α (in N/m2) of the ground beneath the rail, via the coefficient
β = (α/4EI)0.25 (in m−1) and the total deflection distance x0 = π/β (in m, Krylov
and Ferguson, 1994). Among these parameters, we identify the ground stiffness α as
the main parameter susceptible to vary in real-life situations, depending not only on the
actual stiffness of the ground locally, but more generally on the coupling between the
rail track, the sleepers and the ground, via the ballast and substratum. Figure 3 shows
loading functions given by the E-BEB model with various values of ground stiffness:
α = 10 MN/m2 (Li et al., 2018b, in greeny yellow), α = 61.8 MN/m2 (in orange, after
Krylov and Ferguson, 1994, who document this as a typical value for British railways),
and α = 800 MN/m2 (in red, which matches the weights of Paderno, 2009 and –more
importantly– best matches the seismic observations, as we will see later in Fig. 4b,c). The
stiffer the ground beneath the rail is, the narrower is the spatial loading function, and
the higher the frequencies in the source time functions, and therefore –we expect– in the
final seismograms. Moreover, amplitudes are normalised in Fig. 3. In absolute, ground
stiffness also has an effect on the magnitude of the force exerted on the ground: the stiffer
the ground beneath the rail is, the larger the vertical force exerted by the track on the
ground (see Fig. S1).

In conclusion, our final source time function Sj(t) (in orange in Fig. 2) is the result of
the convolution of the Dirac comb corresponding to 4 wheel axles per wagon (in blue in
Fig. 2) with the time derivative of the loading function Pj(t) given by the E-BEB model:

Sj(t) =
dPj(t)

dt
∗

Naxles∑
i=1

δ(t− tij), (3)

where tij is the arrival time of wheel i at sleeper j, and the time derivative is needed to
simulate ground velocities instead of displacements.

In summary, just looking in detail at the design and characteristics of this source
time function already enables us to draw the following conclusions (or, more precisely, to
retrieve the conclusions of Krylov and Ferguson, 1994):

1. The sharp frequency peaks observed by Fuchs et al. (2018) correspond to a funda-
mental frequency f1 = Vtrain/Lw controlled by train speed and wagon length Lw,
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which is the true spatial periodicity of the train wheels.

2. The spectrum of the source time functions is modulated by the spacing of the wheels
within each wagon, in particular by the distance ∆a between axles within each bogie.

3. The frequency bandwidth of the source time functions is further controlled by the
distribution of the load of each wheel axle over the rail track and sleepers, which
can be estimated through the E-BEB model and parameterised through an effective
ground stiffness (which in practice may also reflect the coupling between track and
ground): the stiffer the ground (the better the coupling), the narrower the loading
function, and the higher the frequency content.

4. Whether we look at ground displacement or velocity matters since the time deriva-
tive relating both also has an effect on the spectra.

5. From points 2, 3 and 4, we may derive a rough rule of thumb according to which
we expect most of the energy of ground velocity spectra to be in the frequency
band [ 0.5 fa , 1.5 fa ], where fa = Vtrain/∆a is controlled by the train speed and the
distance ∆a between axles within each bogie. Secondary energy packets can also be
expected in subsequent frequency bands of the form [ (k − 0.5) fa , (k + 0.5) fa ], in
between zero-energy notches located at frequencies (k + 0.5) fa. This is illustrated
in Fig. 2(b) where most of the energy of the final source time function (in orange)
lies between 7 and 20 Hz, while another packet of energy lies between 20 Hz and
33 Hz. It is further illustrated in the Supplemental Material (Figs S2 and S3).

We expect these characteristics of the source time functions to be reflected in the final
seismograms generated by train passages, which we shall now investigate in more details
by adding the contributions of all sleepers.

Modelling results

Two end-member cases: single stationary source vs. single moving

load

Figure 4(a) shows the seismogram (top), spectrogram (bottom left) and spectrum (right)
obtained with a single stationary source (one sleeper only) excited by all wheels of a
train with 8x 26.5-m-long wagons, moving at 119.25 km/h (' 120 km/h), as suggested
by revisiting Fuchs et al. (2018)’s calculation (see above). Note the zoom on the time
axis which makes visible the individual spikes corresponding to the signal of each wheel
pair. Since only one sleeper is involved, the spectrum is very similar to the spectrum
of the individual source time functions (Fig. 2), with a spectral line spacing related to
frequency f1 = Vtrain/Lw, controlled by the wagon length Lw, and a modulation related
to frequency fa = Vtrain/∆a, linked to axle distance ∆a. We indicate frequency f2 =
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Vtrain/∆sleeper related to sleeper spacing ∆sleeper on the figure, but of course since there
is no sleeper spacing in this case, this frequency does not appear at all. As the source
is stationary, we do not observe any Doppler effect either. It is worth noting that these
spectral characteristics correspond well to most of Fuchs et al.’s observations, one of which
is reproduced in Fig. 4(b) (same as fig. 5a in Fuchs et al., 2018).

On the other hand, Figure 4(d) shows the seismogram, spectrogram and spectrum
obtained with a single moving load (one wheel pair only) passing all sleepers at a speed
of 105 km/h (the choice of this value shall be justified later on). Here the spectrum
and spectrogram are completely different from Fig. 4(a), with a spectral line related to
f2 = Vtrain/∆sleeper controlled by the sleeper spacing ∆sleeper, and with a clear Doppler
effect typical of a moving source. Interestingly, this spectral signature is very close to
another type of observations made by Fuchs et al. (2018) (their figs 6a, 6b and S2b), one
of which is reproduced in Fig. 4(e) (same as fig. 6a in Fuchs et al., 2018) and displays a
clear Doppler effect. In this case, Fuchs et al. (2018) interpreted the frequency spacing
as ∆f2 = 2 f1, i.e. as being related to f1 = Vtrain/Lw and therefore controlled by wagon
length Lw (Fuchs et al., 2018, figs 6a,b), while the Doppler frequency shift rather suggests
the effect of a moving load. Yet, the frequency spacing ∆f2 = 2.54 Hz suggests that the
characteristic length at play is not as short as the sleeper spacing, but may be a longer
spatial period related to irregularities of the railway (e.g. unwelded rails). For instance,
considering that loads are applied only every 19 sleeper introduces a spatial period of
19∆sleeper ' 11.6 m, therefore resulting in a fundamental frequency f ′2 = f2/19 = 2.52 Hz
(Fig. 4f) which would reasonably explain the observations (Fig. 4e).

These two end-member cases, single stationary source vs. single moving load, therefore
enable us to understand the two main mechanisms at play, and nicely relate to the two
types of observations made by Fuchs et al. (2018), at least in terms of their spectral
characteristics. But they are only end-member, simplistic cases, and the question now
is: what happens when considering all wheels exciting all sleepers? How do we generate
signals similar to the observations, both in the frequency domain (harmonic spectra) and
in the time domain (tremor-like emergent shapes)?

Realistic cases (all sleepers, all wheels): effect of sleeper regularity

Figure 4(f) shows the signal obtained with a realistic wheel geometry (see Fig. 1a) and
loads applied every 19 sleeper along the railway, with a regular spacing of 19∆sleeper '
11.6 m, for a train with 6x 23-m-long wagons moving at 105 km/h (such as to try and
match the observations in Fig. 4(e), which Fuchs et al. (2018) attributed to a local com-
muter train, see their table 1)1. Surprisingly, the spectrogram is much closer to the case
of a single moving load (Fig. 4d, see also Fig. S4c-d), with a clear Doppler effect and a

1Here our choice of train parameters aims at presenting the example that best illustrates the under-
lying mechanisms but we realize that it makes the comparison between Figs 4(a,c) and Figs 4(d,f) not
straightforward. For the sake of completeness, we present more results in the Supplemental Material
(Fig. S4) for one-to-one comparison.
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spectrum dominated by frequency f ′2 = Vtrain/(19∆sleeper), than to the stationary source
case (Fig. 4a). However, this result matches well the few observations made by Fuchs et al.
(2018) (their figs 6a, 6b and S2b) where the Doppler effect is visible. In this specific case,
it is indeed easy to get confused and to interpret the main spectral line spacing in terms of
multiples of f1 but a close inspection of the spectrum indicates that the frequency peaks
are much better explained by the moving load mechanism and the frequency f2/19 than
by frequency f1, which barely plays a role here (further tests in this sense are presented
in the Supplemental Material, Fig. S4).

The question is then: how can we reproduce seismograms similar to Fig. 4(b), with a
tremor-like emergent signal in the time-domain and a spectrum dominated by frequency
f1 = Vtrain/Lw, controlled by wagon length Lw?

Figure 4(c) shows the signal obtained with all wheels and all sleepers, with slightly
irregular sleepers spaced every ∆sleeper = 0.6096 ± 0.05 m (i.e. we add a random per-
turbation to the original spacing, with a maximum perturbation of ±5 cm, which [very
roughly] corresponds to a sleeper half-width). Again, we consider a train with 8x 26.5-m-
long wagons, moving at 119.25 ' 120 km/h such that f1 = 1.25 Hz, as observed by Fuchs
et al. (2018). A striking observation here is that it is sufficient to assume slightly irregular
sleepers to reproduce a signal and spectrum that are very close to most of the observations
made by Fuchs et al. (2018) on station A002A (emergent tremor-like time-domain signal
and harmonic spectrum dominated by frequency f1 = Vtrain/Lw, controlled by wagon
length Lw). While it does not dominate the spectrum anymore, the peak at frequency
f2 = Vtrain/∆sleeper still appears because of the mean sleeper spacing ∆sleeper = 0.6096 m.
This f2-peak is not visible in Fig. 4(b) because it is above the Nyquist frequency of 50 Hz
but we expect that it should be seen in seismograms resulting from trains travelling at
slower speeds. We actually suspect that it is responsible for the secondary maximum that
is sometimes observed around 40 Hz by Fuchs et al. (2018) in the spectra generated by
commuter trains (e.g. Fuchs et al., 2018, fig. 3). Finally, we speculate that our modelling
parameter of sleeper regularity that controls the predominance of one or the other end-
member mechanisms (single stationary source vs. single moving load) actually reflects the
properties of the railway infrastructure in real cases, i.e. not only the actual regularity of
sleeper locations but also their coupling with the ground via the ballast and substratum.

Discussion

Limitations of the modelling strategy

A careful reader will have noticed that our modelling does not quantitatively reproduce the
absolute amplitudes of observed ground velocities: while the ground velocities generated
by high-speed trains observed at station A002A are of the order of 10−6 to 10−5 m/s
(Fig. 4b,e), the signals simulated in similar configurations have amplitudes of the order
of 10−8 m/s (Fig. 4c,f). This discrepancy may be partly related to poorly-controlled
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parameters such as sensor-ground coupling or possible site effects, or to our choice of
medium properties, which consist of low quality factors and high seismic velocities in order
to reduce computation costs, while in reality station A002A is located in a sedimentary
basin where soft, low-velocity materials may amplify the amplitude of surface waves.
Future work will focus on quantitative comparisons with data acquired in better-controlled
environments in order to calibrate our synthetic amplitudes.

It may also be argued that this discrepancy between observed and simulated ampli-
tudes could be due to the fact that our modelling does not include all the mechanisms
involved in reality. Indeed, by following Krylov’s model (Krylov and Ferguson, 1994),
we only consider a quasi-static excitation caused by the axle load on the rail track, and
we neglect dynamic effects related to other excitation mechanisms due for instance to
wheel and rail roughness, rail joints, and sleeper-ground coupling (e.g. Xia et al., 2010).
Similarly, we do not account for the generation of horizontal forces due to friction and
rail curvature, for the heavier axle loads of locomotives at the front and end of the train,
or for the elasticity and spatial extension of the sleepers which actually support two rails
while we considered only one (which, again, amounts to assume that the sleepers are rigid
and that the load of each train axle is applied as a single point source). In hindsight,
we think that the discrepancy between observed and simulated amplitudes is most likely
due to the latter point, i.e. to the fact that we inject energy via point sources in the
spectral-element simulations, without considering the surface of the sleepers.

Nevertheless, we have shown that our simple modelling considering only quasi-static
excitations is able to reproduce – qualitatively at least – the seismic observations, which
is also consistent with Krylov and Ferguson (1994)’s statement that the quasi-static ap-
proximation is sufficient in the frequency range [0 - 100] Hz. We are confident that this
modelling strategy is sufficient to catch the main mechanisms at play and enables us to
investigate the general behaviour of generated amplitudes with respect to some parame-
ters. Because we do not reproduce absolute amplitudes accurately, however, we restrict
the discussion of amplitudes to a qualitative analysis in the following, and present related
results in Supplemental Material (Figs S2 and S3).

Parameters controlling signal amplitudes: implications for seismic

detection

In view of using train-generated signals for seismic applications, it is important to assess
in which conditions we can expect to detect these signals. Having all the above assump-
tions and limitations in mind, we may therefore attempt to understand the parameters
that control the amplitudes of train-generated signals. According to our approach and
assumptions, signal amplitude depends on

• the stiffness of the ground beneath the rail: the magnitude of the vertical force
acting on the sleepers increase non-linearly with ground stiffness (except for its
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quasi-static component which depends only on axle load, see Fig. S1).

• the length and total weight of the train, with two different effects:

– via the weight of individual wagons which will reflect on the axle load Fi carried
by each wheel: eq. 2 shows that the magnitude of the vertical force acting on
the sleepers increase linearly with axle load Fi, and so will the amplitude of
the resulting signal.

– via the number of wagons, as the amplitude of the signals also increase with the
number of wheel loads Nwl. More precisely, our numerical experiments show
that the maximum amplitude of the time-domain signals increases as

√
Nwl,

while the energy in a given frequency bandwidth increases linearly with the
number of wheel axles (see Fig. S2).

• the train speed: faster trains make more noise. More precisely, our numerical ex-
periments show that both the maximum time-domain amplitude and the total sig-
nal energy increase supra-linearly with train speed, and so does the energy in fre-
quency bands that evolve proportionally with train speeds, such as [ 0.5 , 1.5 ] fa,
with fa = Vtrain/∆a (see Fig. S3). Interestingly, frequency bands of the form
[ k − 0.5 , k + 0.5 ] fa always contain approximately the same proportion of the
spectrum, which brings us back to our rule of thumb stating that most of the energy
of train-generated signals is expected to be in the [ 0.5 , 1.5 ] fa frequency band con-
trolled by train speed and axle distance ∆a within each bogie. A direct implication
of this for detecting train-generated signals in seismic records is that the considered
frequency band should be adapted to the estimated speed of the trains generating
these signals.

In conclusion, if we want to maximize the detection of train-generated signals, we
should targets portions of railways that enable a good transmission of vibrations to the
ground (i.e. with sleepers well coupled to a stiff ground) and where long and/or heavy
trains travel at relatively high, and ideally variable, speeds. Moreover, the considered
frequency band should be adapted to the estimated speed of the trains generating the
signals, targeting the frequency band [ 0.5 , 1.5 ] fa where we expect most of the energy, or
higher-frequency bands of the form [ k − 0.5 , k + 0.5 ] fa, and avoiding narrow frequency
bands around the zeroes of the modulated spectrum ([k + 0.5] fa and, in a lesser extent,
[k+ 0.5] fb1). If the trains travel at variable speeds, their signal becomes more broadband
and the effect of these notches might be less critical (see next section). Of course, the
detection of these signals in field recordings will also depend on the surrounding noise
level, as well as on medium heterogeneity, attenuation and scattering.
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Variable train speed

Figure 5 presents the example of a signal generated by a train travelling at a variable
speed. When the speed of the train varies, the fundamental frequencies f1 = Vtrain/Lw

and f2 = Vtrain/∆sleeper vary too, as well as their harmonics, which results in undulating
spectral lines in the spectrograms, and in a blurring of the frequency peaks (and notches)
in the corresponding spectra, where it is then difficult to identify individual rays. The
spectrum is not harmonic anymore but becomes truly broadband as frequency notches
disappear, which is actually an advantage for seismic applications based on noise cross-
correlations, as distinct spectral rays are difficult to handle by seismic interferometry.
Note however that our rule of thumb remains useful: the frequency band [ 0.5 , 1.5 ] fa,
where fa can be estimated from a maximum or averaged train speed, still contains most of
the energy of the signal. Note also that the variable speed might lead to other prominent
maxima in the spectrum, as for instance around 37 Hz in Fig. 5 where a change of train
speed happens to occur when the train is closest to the station, which enhances the
secondary maximum related to the Doppler effect.

Wave propagation effects

So far we have eluded wave propagation effects on purpose in order to focus on source
mechanisms. Of course, once generated, train vibrations propagate as any other seismic
wave. For the sake of completeness, we discuss here how wave propagation effects impact
train-generated signals. We present associated results in Supplemental Material (Figs S5
and S6).

Short- vs. long-distance signals

Our tests suggest that long-range signals recorded at several kilometers distance have the
same properties as the examples we have shown here at short range (300 to 1200 m). In
particular, the main characteristics of the spectra obtained at short vs. long distances are
nearly identical. The only differences between short- and long-distance signals that we
could notice are related to foreseeable wave propagation effects, namely (1) to the expected
decay of high frequencies at long distances, and (2) to the relative decay of amplitudes:
short-distance signals have a shorter apparent duration because their relative amplitudes
are dominated by the effect of the few closest sleepers, while long-distance signals have a
longer apparent duration because they see a larger number of sources contributing with
an equivalent importance (Figs S5a,b).

Effect of seismic properties (velocities and attenuation)

Obviously, intrinsic attenuation also has an effect on the relative decay of amplitudes and
of high frequencies in the spectra. Besides, higher velocities also result in a longer apparent
duration of the signal, which can be explained in terms of relative decay of amplitudes due
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to geometrical spreading over a smaller number of longer wavelengths. Less intuitively,
higher velocities yield lower amplitudes, due to the fact that the amplitude of surface
waves is enhanced in soft, low-velocity media. As already mentioned, this may be one
of the reasons why the amplitudes of observed train-generated signals are larger than
our synthetic amplitudes, obtained for seismic velocities that have been chosen artificially
high to mitigate computation costs. Finally, a last effect of seismic velocities relates
to the Doppler frequency shift, which will increase if seismic velocities get closer to the
(apparent) train speed (i.e. if seismic velocities decrease, or if train speed increases, or if
the sensor is aligned with the train trajectory).

Wave partitioning (body vs. surface waves)

We also conducted tests in a medium with a velocity gradient where we selected either the
refracted P wave (first arrival) or the surface waves (most energetic arrivals) in the impulse
response, before convolving with the train source time functions and stacking. These tests
aimed at mimicking long-distance wave propagation in heterogeneous media where high-
frequency surface waves would vanish due to strong scattering and attenuation in the
shallow subsurface, which is difficult to reproduce in our synthetic simulations. Again,
we observe nearly identical spectra in both cases, which suggests that our conclusions,
although mostly based on short-distance signals dominated by surface waves, remain valid
for long-distance body waves that sample deeper regions of the crust (Brenguier et al.,
2019).

Finally, it is worth mentioning that simulations performed in similar configurations
but in media with homogeneous vs. gradient velocity structures yield very similar results,
suggesting that medium structure plays little role in the patterns of the resulting signals,
which complexity mostly comes from the source, i.e. from the train source time functions
and from the interferences between waves generated by the many sources involved.

Conclusions

In this paper, we have presented a modelling strategy for simulating seismic waves gener-
ated by trains, explained the main mechanisms at play, and derived implications for seis-
mic applications. Our results showed that simple assumptions following Krylov’s model of
a quasi-static excitation due to axle loads applied as vertical forces distributed on discrete
sleepers are sufficient to generate signals that reproduce very well the main characteristics
of seismic observations (emergent tremor-like signals with harmonic spectra). Our mod-
elling enabled a detailed understanding of the spectral characteristics of train-generated
signals and of their fundamental frequencies. As already noted by Krylov and Ferguson
(1994), the exact frequency content of the signals results from a modulation of the initial
harmonic spectrum by the wheel spacing within each wagon, and their high-frequency
content is further controlled by the distribution of the load of each wheel over the track
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and sleepers, which most notably depends on the stiffness of the ground beneath the
railway (i.e. on track-ground coupling).

Moreover, we have identified two end-member mechanisms that correspond to the two
types of observations made by Fuchs et al. (2018) and depend on sleeper regularity (i.e. on
the properties of the railway infrastructure in real cases). In the case of perfectly regular
sleepers, signals are dominated by the signature of each wheel acting as a single moving
load passing over the sleepers. The spectrum then displays peaks corresponding to the
fundamental frequency f2 = Vtrain/∆sleeper controlled by train speed and sleeper spacing
∆sleeper, and to its harmonics. In the case of irregular sleepers, signals are dominated by
the response of each sleeper acting as a stationary source excited by the passage of the
wheels. The spectrum then displays peaks at harmonics of the fundamental frequency
f1 = Vtrain/Lw controlled by train speed and wagon length Lw.

Beyond these technical explanations, we were able to derive important consequences
for the future use of train-generated signals for seismic applications. First, it is worth
noting that trains generate a very broad and high frequency content [1 - 50 Hz or above],
as observed by (e.g.) Fuchs et al. (2018); Brenguier et al. (2019); Dales et al. (2020),
because most of the energy actually comes from high-frequency harmonics and not from
the fundamental frequencies, which are not necessarily very high (f1 ' 0.25 to 5 Hz,
depending on train speed and wagon length). To summarize this, we have derived a simple
rule of thumb according to which most of the energy radiated by trains should be expected
in the range [ 0.5 , 1.5 ] fa, where the frequency fa = Vtrain/∆a is controlled by train speed
and by the distance ∆a between axles within a bogie (usually of the order of ∆a ' 1.5

to 3 m). Higher frequency bands of the form [ k − 0.5 , k + 1.5 ] fa are also expected
to contain some energy which may prove particularly useful when looking specifically for
body waves (e.g. Nakata et al., 2015; Brenguier et al., 2019; Dales et al., 2020). Second,
we were able to identify the parameters that control the amplitudes of train-generated
signals, and therefore to give guidelines in order to maximize their detection: an ideal
seismic source is a long, heavy and fast train traveling on a railway whose sleepers are
well coupled to a stiff soil.

Of course, the detection of train-generated signals will also depend on the noise level
due to natural or other anthropic noise sources, as well as on medium heterogeneity,
attenuation and scattering. While we cannot give general and quantitative rules, we
believe that this paper provides elements of understanding and guidelines that will help
future case-specific studies to detect and process train-generated seismic signals in ambient
noise data (e.g. Nakata et al., 2011; Quiros et al., 2016; Inbal et al., 2018; Li et al., 2018a;
Dales et al., 2020), or to design experiments that will explicitly target these signals (e.g.
Nakata et al., 2011; Quiros et al., 2016; Brenguier et al., 2019).
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Data and resources

Simulations have been performed with the SEM46 code developed in the SEISCOPE Con-
sortium (http://seiscope2.osug.fr). Most of the computations were performed us-
ing the GRICAD infrastructure (https://gricad.univ-grenoble-alpes.fr), which is
partly supported by the Equip@Meso project (reference ANR-10-EQPX-29-01) of the pro-
gramme Investissements d’Avenir supervised by the Agence Nationale pour la Recherche.
This study is based on data from the AlpArray Seismic Network (2015) which at the time
of publication was not publicly available. Please visit the project page (http://www.
alparray.ethz.ch/en/seismic_network/backbone/data-policy-and-citation) for
more details on data access. All data processing and plotting were done using Python
and the ObsPy toolbox (Krischer et al., 2015).

Supplemental Material for this article includes (1) more details on the effect of ground
stiffness on the amplitude of the loading force according to the E-BEB model, (2) exam-
ples of signals dominated by the signature of moving loads, (3) details on the effect of train
length and train speed on the amplitude of the signals discussed in the paper, and (4)
examples of wave propagation effects mentioned in the discussion. For the sake of repro-
ducibility, the computer programs developed for the convolutions of Green functions with
train source time functions are available at https://gricad-gitlab.univ-grenoble-

alpes.fr/pacific/publications/2020_Lavoue-et-al_SRL_supplemental-material.
All websites were last accessed on September 2020.
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Tables

Medium properties
VP = 3400 m/s, VS = 2000 m/s, ρ = 2600 kg/m3, QP = 100, QS = 50

ground stiffness beneath railway: α = 800 MN.m−2

Train properties
Lw = 26.5 m, ∆a = 2.5 m, ∆b1 = 19 m, ∆b2 = 7.5 m

or Lw = 23 m, ∆a = 2.3 m, ∆b1 = 18.5 m, ∆b2 = 4.5 m
axle load: 17 t (167 kN)

Acquisition and railway geometry
sleeper spacing ∆sleeper = 24” = 0.6096 m

number of sleepers Nsleeper = 19358
railway length Lrailway = 11800 m ' 12 km

distance between sensor and railway dmin = 300 to 1200 m

Table 1: Settings of the numerical experiments presented in the paper. Train properties
are taken from Fuchs et al. (2018, Table 1). Note that seismic velocities are deliberately
quite high in order to reduce computational costs. Attenuation is also deliberately high
in order to better mimic a finite-size medium. We have checked that our main conclusions
do not depend on medium properties.
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Figure 1: Geometry of a train (a) and of the numerical experiments (b).
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Figure 2: Source time functions (a) and corresponding spectra (b) for a sleeper located
at x = 1 km along the railway, consisting of pure Dirac combs for 1 and 4 wheel axles
per wagon (in greeny-yellow and blue, respectively) and of a 4-axle Dirac comb convolved
with a loading function derived from the E-BEB model, assuming a ground stiffness
α = 800 MN/m2 (in red, see also Fig. 3). The orange curves correspond to the final
source time function obtained after time differentiation of the red curve, in order to simu-
late ground velocities instead of displacements. We therefore expect the orange spectrum
in (b) to be representative of the energy content of the final seismogram obtained by
summing the contributions of all sources. In panel (b), black dots and dashes repre-
sent the modulation due to axle distance and bogie distance within wagons, respectively.
Associated fundamental frequencies are indicated as vertical dashed lines.
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Figure 3: Loading functions representing the distribution of a single wheel load on the
track, as a function of distance between the wheel and a given sleeper (a) and corre-
sponding spectra (b), after conversion of the space axis into time using a train speed of
120 km/h.
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Figure 5: Seismogram (top), spectrogram (bottom) and spectrum (right) resulting from
a train travelling over slightly irregular sleepers at a speed increasing from 50 km/h to
120 km/h between 0 and ' 120 s, then decreasing to 95 km/h (' 230 s), increasing again
to 120 km/h (' 320 s) and finally decreasing to 50 km/h. The spectrogram is computed
over time windows of 5 s with a 90% overlap. The spectrum is computed on tapered data
(blue seismograms) in order to avoid the start and the end of the signal where only some
of the train wheels are involved (in orange in the upper panel).
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