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Abstract

A new Riemannian geometry for the zero-mean Compound Gaussian dis-

tribution with deterministic textures is proposed. In particular, the Fisher

information metric (up to a factor) is obtained, along with corresponding

geodesics and distance function. This new geometry is applied on a change

detection problem on Multivariate Image Times Series: a recursive approach

based on Riemannian optimization is developed. As shown on simulated

data, it allows to reach optimal performance while being computationally

more efficient.

Keywords: Riemaniann geometry and optimization, covariance matrix

estimation, compound Gaussian distribution, change detection.

1. Introduction

Covariance matrix is an important topic in signal and image processing.

When data are Gaussian distributed, the Maximum Likelihood Estimator

(MLE) is the well known Sample Covariance Matrix (SCM). However, this
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estimator features poor performance when data follow a more heavy-tailed

distribution. In such a case, it is interesting to model the data with a

Complex Elliptically Symmetric (CES) distribution [1] and to employ M-

estimators [2, 3, 4] for covariance estimation. In this paper, we limit our-

selves to the Compound Gaussian (CG) distribution [5, 6], which is a CES

sub-family. Its stochastic representation consists in a Gaussian vector mul-

tiplied by a positive scalar, called texture. For instance, this family fits well

RADAR empirical data [7, 8].

It is possible to develop change detection algorithms for SAR Multivari-

ate Image Times Series (MITS). Several approaches exist and those based

on a test of equality of covariance matrices generally perform well. More-

over, they may have the interesting Constant False Alarm Rate (CFAR)

property, in particular for Gaussian data [9, 10, 11]. For the CG distribu-

tion, the Generalized Likelihood Ratio Test (GLRT) is derived in [12]. This

detector exhibits very good performance when data are not drawn from a

Gaussian distribution. However, when the number of images T of the MITS

is large, the computational time becomes prohibitive for practical imple-

mentation. In this paper, a recursive implementation of this detector is

proposed. Because of the form of the change detector, this implementation

cannot be derived easily, for example by employing an arithmetic mean.

To solve the problem, a framework based on a recursive approach as

proposed in [13] is developed and adapted to the CG distribution. This

approach is based on Riemannian geometry which is more and more used in

the covariance estimation domain [14, 15, 16, 17]. However to derive such

as recursive algorithm, the Riemannian geometry of the CG distribution

has to be considered, which, to the best of our knowledge, has not been

done previously. Hence, the main contribution of this paper consists in
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deriving a well-suited Riemannian geometry for the distribution of interest,

i.e. metric, geodesics, distance. It relies on the Fisher information metric

(up to a factor) of the CG distribution; see e.g. [18, 19] for Gaussian and

CES cases. In addition, the Riemannian gradient to recursively estimate

the CG parameters of a MITS and the corresponding Intrinsic Cramér Rao

Bound (ICRB) [18] are provided. Finally, the proposed method is validated

on simulated data.

2. Data Model

Let us consider n i.i.d. samples {x(t)
i }i∈J1,nK where each data x

(t)
i ∈

Cp. For example, these data may come from a spatial neighborhood of

polarimetric channels (in this case p = 3) and/or spectro-angular diversity

(see [20] for more details) in a SAR image. The MITS is composed of T

sets of {x(t)
i }i∈J1,nK. In this MITS, even though these data follow the same

statistical distribution, their parameters might change with t. From this

MITS, we want to detect these changes by comparing the parameters of the

distribution, denoted θ(t). The change detection problem can be written as: H0 : θ(1) = θ(2) = ... = θ(T ) = θ(0)

H1 : ∃(t, t′) ∈ J1, T K2, θ(t) 6= θ(t
′)

(1)

As shown in [12], to reach good performance, it is important that the pa-

rameters capture both the power and the correlations of the data. To ensure

this, we propose to use the CG distribution [5, 6] (also referred to as a mix-

ture of scaled Gaussian). This model corresponds to a Gaussian one, where

each realization x
(t)
i ∈ Cp is scaled by a local power factor τ

(t)
i referred to as
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texture sample (assumed unknown deterministic in this work):

x
(t)
i ∼ CN (0, τ

(t)
i Σ(t)) (2)

Therefore for this statistical modelling, we have θ(t) = (τ (t),Σ(t)) where

τ (t) = (τ
(t)
1 , . . . , τ

(t)
n )T . For the parameters to be identifiable, a constraint

on the covariance Σ(t) is needed. Most often, a trace constraint tr(Σ(t)) = p

is applied. However, from a geometrical point of view, it is not the best

choice. In the following, we choose the unitary determinant normalization,

advocated in [21] because it allows to decorrelate the estimation of textures

and covariance matrix. In this paper, we further show that it yields tremen-

dous simplifications in the scaled Fisher information metric. Thus, Σ(t)

belongs to

SH++
p =

{
Σ ∈ H++

p : |Σ| = 1
}
, (3)

where H++
p is the manifold of p× p positive definite matrices.

In [12], the GLRT for the CG model is derived and the following detector

is obtained:

Λ̂
(T )
CG =

∣∣∣Σ̂(T )
0

∣∣∣Tn
T∏
t=1

∣∣∣Σ̂(t)
Tyl

∣∣∣n
i=n∏
i=1

(
T∑
t=1

τ̂
(t)
i,0

)Tp
T∏
t=1

(
τ̂
(t)
i

)p H1

≷
H0

λ, (4)

where Σ̂
(t)
Tyl and τ̂

(t)
i are provided by the classical Tyler’s estimator [22, 23]:

Σ̂
(t)
Tyl =

p

n

n∑
i=1

x
(t)
i x

(t)
i

H

x
(t)
i

H
(Σ̂

(t)
Tyl)

−1x
(t)
i

and τ̂
(t)
i =

x
(t)
i

H
(Σ̂

(t)
Tyl)

−1x
(t)
i

p
; (5)

Σ̂
(T )
0 and τ̂

(T )
i,0 are the MLE of the covariance matrix and the textures under
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the null hypothesis H0:

Σ̂
(T )
0 =

p

n

n∑
i=1

T∑
t=1

x
(t)
i x

(t)
i

H

T∑
t=1

x
(t)
i

H
(Σ̂

(T )
0 )−1x

(t)
i

and τ̂
(T )
i,0 =

T∑
t=1

x
(t)
i

H
(Σ̂

(T )
0 )−1x

(t)
i

Tp
.

(6)

This detector features interesting CFAR properties and exhibits better per-

formances when data follow a CG distribution. Unfortunately, it suffers a

large complexity, in particular as T grows. Moreover, when a new dataset

{x(T+1)
i } occurs, it is impossible to compute the new detector Λ̂

(T+1)
CG directly

from Λ̂
(T )
CG because:

Σ̂
(T+1)
0 6=

T Σ̂
(T )
0 + Σ̂

(T+1)
Tyl

T + 1
(7)

To avoid the computation of Σ̂
(T+1)
0 with all previous data, an original

recursive approach based on Riemannian optimization is proposed.

3. Riemannian geometry of the compound Gaussian distribution

To simplify notations, the superscript (t) is omitted in this section. In the

following, τ = [τ1 . . . τn]T , θ = (Σ, τ ), ξ = (ξΣ, ξτ ) and η = (ηΣ, ητ ). The

parameter θ of the CG distribution lies in the manifold Mp,n = SH++
p ×

Rn++. Since this is the product of two manifolds,Mp,n is also a manifold (see

e.g. [24] for details). Its tangent space TθMp,n at θ is TΣSH++
p × TτRn++,

where TΣSH++
p :

TΣSH++
p = {ξΣ ∈ Hp : tr(Σ−1ξΣ) = 0} (8)

5



(Hp denotes the space of p×p Hermitian matrices); and TτRn++ is identified

to Rn.

To turn Mp,n into a Riemannian manifold, it must be equiped with a

Riemannian metric. The most natural choice in our case is to consider the

Fisher information metric (up to a factor) on Mp,n associated with the CG

distribution. It is given in the following proposition.

Proposition 3.1 (Scaled Fisher information metric). The scaled Fisher

metric of the CG distribution on Mp,n is defined, for θ ∈ Mp,n and ξ, η ∈

TθMp,n, by

〈ξ, η〉Mp,n

θ =
1

p
〈ξΣ, ηΣ〉

H++
p

Σ +
1

n
〈ξτ , ητ 〉

Rn++
τ ,

with 〈ξΣ, ηΣ〉
H++
p

Σ = tr(Σ−1ξΣΣ−1ηΣ) and 〈ξτ , ητ 〉
Rn++
τ = (ξτ � τ�−1)T ητ �

τ�−1, where � and ·�−1 denote elementwise product and inversion, respec-

tively.

Proof. The log-likelihood LCG on Mp,n for θ is

LCG(θ) =
∑
i

LG(τiΣ) =
∑
i

LG ◦ ϕi(θ), (9)

where LG is the log-likelihood for the Gaussian distribution, see e.g. [18];

and ϕi(θ) = τiΣ. By definition and [18, Theorem 1],

〈ξ, η〉Mp,n

θ = E [DLCG(θ)[ξ] DLCG(θ)[η]] = −E
[
D2 LCG(θ)[ξ, η]

]
= −

∑
i E
[
D2 LG ◦ ϕi(θ)[ξ, η]

]
=

∑
i E [DLG ◦ ϕi(θ)[ξ] DLG ◦ ϕi(θ)[η]]

=
∑

i〈Dϕi(θ)[ξ],Dϕi(θ)[η]〉H
++
p

ϕi(θ)
,

where Dϕi(θ)[ξ] = ξτ iΣ + τiξΣ is the directional derivative of ϕi, with ξτ i
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the ith element of ξτ . Basic manipulations yield, up to a factor,

〈ξ, η〉Mp,n

θ =
1

p
〈ξΣ, ηΣ〉

H++
p

Σ +
1

n
〈ξτ , ητ 〉

Rn++
τ

+
1

np
tr(Σ−1ξΣ)(ητ � τ−1)T1n +

1

np
tr(Σ−1ηΣ)(ξτ � τ−1)T1n.

Since ξΣ, ηΣ ∈ TΣSH++
p , we have tr(Σ−1ξΣ) = tr(Σ−1ηΣ) = 0, which

concludes the proof.

In the following proposition, the geodesics and Riemannian distance on

Mp,n associated with the scaled Fisher information metric 〈·, ·〉Mp,n
· of the

CG distribution are provided. These geometrical objects are sufficient to

perform Riemannian optimization and to measure and bound estimation

errors.

Proposition 3.2 (Geodesics and Riemannian distance). The geodesic on

Mp,n is γMp,n(t) = (γSH
++
p (t), γR

n
++(t)). If γMp,n(0) = θ and γ̇Mp,n(0) = ξ,

γSH
++
p (t) = Σ expm(tΣ−1ξΣ) and γR

n
++(t) = τ � exp(tτ�−1 � ξτ ).

If γMp,n(0) = θ0 and γMp,n(1) = θ1,

γSH
++
p (t) = Σ

1/2
0 (Σ

−1/2
0 Σ1Σ

−1/2
0 )tΣ

1/2
0 and γR

n
++(t) = τ�1−t0 � τ�t1 .

It follows that the Riemannian distance onMp,n corresponding to the scaled

Fisher metric of proposition 3.1 is

δ2Mp,n
(θ0, θ1) =

1

p
δ2H++

p
(Σ0,Σ1) +

1

n
δ2Rn++

(τ 0, τ 1),

where δ2H++
p

(Σ0,Σ1) = ‖ logm(Σ
−1/2
0 Σ1Σ

−1/2
0 )‖22 and δ2Rn++

(τ 0, τ 1) = ‖ log(τ−10 �
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τ 1)‖22.

Proof. The geodesics γSH
++
p (t) and γR

n
++(t) are the geodesics on SH++

p and

Rn++ equiped with 〈·, ·〉H
++
p
· and 〈·, ·〉R

n
++
· , respectively. Therefore, by defini-

tion of 〈·, ·〉Mp,n
· and from the properties of product manifolds, γMp,n is the

geodesic on Mp,n. Similarly, δ2H++
p

and δ2Rn++
are the Riemannian distances

associated with 〈·, ·〉H
++
p
· and 〈·, ·〉R

n
++
· . Thus, by definition of 〈·, ·〉Mp,n

· , δ2Mp,n

is the associated Riemannian distance on Mp,n.

4. Application to recursive change detection

Given a new data-set of n samples at t+ 1 {x(t+1)
i }i∈J1,nK, to obtain the

CG change detector Λ̂
(t+1)
CG defined in (4), one needs to compute: θ̂

(t+1)
Tyl =

(Σ̂
(t+1)
Tyl , τ̂

(t+1)
Tyl ) and θ̂

(t+1)
0 = (Σ̂

(t+1)
0 , τ̂

(t+1)
0 ) defined in (5) and (6). The

complexity of the computation of θ̂
(t+1)
0 with usual techniques is quite high.

To solve this issue, a recursive implementation, obtained by exploiting the

Riemannian derivation studied in [13], is proposed. To estimate θ̂
(t+1)
0 , we

only use the information provided by θ̂
(t)
0 and the log-likelihood of the new

data {x(t+1)
i }i, which is

L
(t+1)
CG (θ) =

∑
i

−p log(τi)−
(x

(t+1)
i )HΣ−1x

(t+1)
i

τi
. (10)

The recursive algorithm returning the sequence of estimates {θ(t)0 }t corre-

sponding to the sequence of data {x(t)
i }i,t is given in Algorithm 1. This algo-

rithm relies on: (i) the Riemannian exponential map exp
Mp,n

θ : TθMp,n →

Mp,n, such that exp
Mp,n

θ (ξ) = γMp,n(1), where γMp,n is defined in Proposi-

tion 3.2; (ii) the Riemannian gradient of L
(t)
CG, provided in Proposition 4.1.
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Algorithm 1: Recursive estimation of CG parameters in Mp,n

Input: {x(t)
i }i,t, initialization θ(0) ∈Mp,n, initial stepsize α0 > 0

Output: {θ(t)}t in Mp,n

for t = 0 to T do

θ(t+1) = exp
Mp,n

θ(t)

(
α0
t+1 gradMp,n

L
(t+1)
CG (θ(t))

)

Proposition 4.1 (Gradient of the parameters of CG distribution). The

Riemannian gradient gradMp,n
L
(t)
CG(θ) at θ ∈Mp,n is

gradMp,n
L
(t)
CG(θ) =

(∑
i

px
(t)
i (x

(t)
i )H − (x

(t)
i )HΣ−1x

(t)
i Σ

τi
, n(a− pτ )

)

where a ∈ Rn, whose ith element is ai = (x
(t)
i )HΣ−1x

(t)
i .

Proof. By definition [24], for all ξ ∈ TθMp,n, 〈gradMp,n
L
(t)
CG(θ), ξ〉Mp,n

θ =

DL
(t)
CG(θ)[ξ]. We have

DL
(t)
CG(θ)[ξ] =

∑
i
(x

(t)
i )HΣ−1x

(t)
i −pτi

τ2i
ξτ i +

(x
(t)
i )HΣ−1ξΣΣ−1x

(t)
i

τi

= 1
n〈n(a− pτ ), ξτ 〉

Rn++
τ + 1

p〈p
∑

i
x
(t)
i (x

(t)
i )H

τi
, ξΣ〉

H++
p

Σ .

It remains to project p
∑

i
x
(t)
i (x

(t)
i )H

τi
on the tangent space TΣSH++

p . This is

achieved by using P
SH++

p

Σ (ξΣ) = herm(ξΣ) − 1
p tr(Σ−1ξΣ)Σ (see e.g. [19]).

One can check that it yields the proposed gradient.

The Riemannian distance in Proposition 3.2 can be used to measure

the error contained in an unbiased estimator θ̂(T ) of the parameter θ(T )

corresponding to a MITS with T data. Exploiting the same framework as

in [18, 19], the corresponding ICRB is provided in the following proposition.

Proposition 4.2 (ICRB). Given an unbiased estimator θ̂(T ) of θ(T ) cor-
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responding to a MITS with T data, the ICRB corresponding to the error

measured with the Riemannian distance in Proposition 3.2 is

E[δ2Mp,n
(θ(T ), θ̂(T ))] ≤ p2 − 1 + n

Tpn

Proof. By definition of 〈·, ·, 〉Mp,n
· in Proposition 3.1, the Fisher information

matrix is F = TpnIp2−1+n. Thus, tr(F−1) = p2−1+n
Tpn , which is enough to

conclude.

5. Numerical simulations

Given T data, the performance of the CG change detector (4) under the

null hypothesis greatly depends on the quality of the estimator θ
(T )
0 . In this

numerical experiment, we compare the performance of the three following

estimators:

• The MLE θ̂mle, which features the best performance but is computa-

tionally expensive.

• The arithmetic mean θ̂art, such that θ̂
(t+1)
art =

tθ̂
(t)
art+θ̂

(t+1)
Tyl

t+1 , where θ̂
(t+1)
Tyl

is Tyler’s estimator (5) of {x(t+1)
i }i.

• The recursive estimation θ̂rec proposed in Algorithm 1 with α0 = 1/pn.

Simulated data {x(t)
i }i,t of size p = 10, n ∈ {20, 50}, T ∈ J1, 1000K

are drawn from a K-distribution. Textures τ follow a Γ distribution with

parameters α = β = 1. The covariance matrix is generated as Σ = UΛUH ,

where U is a random unitary matrix drawn from a normal distribution and

Λ is a random diagonal positive definite matrix with unitary determinant

drawn from a chi-squared distribution.
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In Figure 1, we observe that, as expected, the MLE features the best

performance and quickly gets close to the ICRB as T grows. The arithmetic

mean has good performance for small values of T but reaches a minimal floor,

thus displaying poor performance for large T . Finally, our proposed method

works quite well: it reaches optimal performance as T grows. Further notice

that a smaller amount of samples are needed to get close to the bound as

n increases. Moreover, it has the smallest complexity as only one iteration

is needed for each new incoming data. This property is shown in Figure 2

where the computation w.r.t. T for the three methods is plotted.

6. Conclusion

We have adapted a change detector derived for CG data in order to exe-

cute it recursively and greatly reduce the complexity of the calculation. This

approach is based on Riemannian optimization which required the construc-

tion of geometry for CG distribution. Simulations have shown the interest

of this new algorithm to reduce the complexity while maintaining good per-

formance. In the future, this approach has to be tested on real SAR data.
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