Z. P. Li, B. H. Liu, K. Arai, K. Asaba, and S. Suda, Evaluation of alkaline borohydride solutions as the fuel for fuel cell, J. Power Sources, vol.126, pp.28-33, 2004.

K. T. Park, U. H. Jung, S. U. Jeong, and S. H. Kim, Influence of anode diffusion layer properties on performance of direct borohydride fuel cell, J. Power Sources, vol.162, pp.192-197, 2006.

G. H. Miley, Direct NaBH4/H2O2 fuel cells, J. Power Sources, vol.165, pp.509-516, 2007.

U. B. Demirci, Direct liquid-feed fuel cells: Thermodynamic and environmental concerns, J. Power Sources, vol.169, pp.239-246, 2007.

B. Molina-concha and M. Chatenet, Direct oxidation of sodium borohydride on Pt, Ag and alloyed Pt-Ag electrodes in basic media. Part II. Carbon-supported nanoparticles, Electrochim. Acta, vol.54, pp.6130-6139, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00417324

R. C. Urian, Air Independent Fuel Cells Utilizing Borohydride and Hydrogen Peroxide, Mater. Res. Soc. Symp. Proc, vol.1213, 2010.

B. H. Liu and Z. P. Li, Current status and progress of direct borohydride fuel cell technology development, J. Power Sources, vol.187, pp.291-297, 2009.

J. Ma, N. A. Choudhury, and Y. Sahai, A comprehensive review of direct borohydride fuel cells, Renewable and Sustainable Energy Reviews, vol.14, pp.183-199, 2010.

N. A. Choudhury, R. K. Raman, S. Sampath, and A. K. Shukla, An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant, J. Power Sources, vol.143, pp.1-8, 2005.

D. Cao, Y. Gao, G. Wang, R. Miao, and Y. Liu, A direct NaBH4-H2O2 fuel cell using Ni foam supported Au nanoparticles as electrodes, Int. J. Hydrogen Energy, vol.35, pp.807-813, 2010.

W. Haijun, W. Cheng, L. Zhixiang, and M. Zongqiang, Influence of operation conditions on direct NaBH4/H2O2 fuel cell performance, Int. J. Hydrogen Energy, vol.35, pp.2648-2651, 2010.

T. H. Oh, Design specifications of direct borohydridehydrogen peroxide fuel cell system for space missions, Aerosp. Sci. Technol, vol.58, pp.511-517, 2016.

J. Andrieux, Spontaneous hydrolysis of sodium borohydride in harsh conditions, Int. J. Hydrogen Energy, vol.36, pp.224-233, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01695752

U. B. Demirci, Sodium Borohydride Hydrolysis as Hydrogen Generator: Issues, State of the Art and Applicability Upstream from a Fuel Cell, Fuel Cells, vol.10, pp.335-350, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00552352

K. Yamada, Investigation of PEM type direct hydrazine fuel cell, J. Power Sources, vol.115, pp.236-242, 2003.

N. Duteanu, G. Vlachogiannopoulos, M. R. Shivhare, E. H. Yu, and K. Scott, A parametric study of a platinum ruthenium anode in a direct borohydride fuel cell, J. Appl. Electrochem, vol.37, pp.1085-1091, 2007.

F. A. Coowar, G. Vitins, G. O. Mepsted, S. C. Waring, and J. A. Horsfall, Electrochemical oxidation of borohydride at nano-gold-based electrodes: Application in direct borohydride fuel cells, J. Power Sources, vol.175, pp.317-324, 2008.

C. Qu, H. Zhang, F. Zhang, and B. Liu, A high-performance anion exchange membrane based on bi-guanidinium bridged polysilsesquioxane for alkaline fuel cell application, J. Mater. Chem, vol.22, pp.8203-8207, 2012.

Z. Wang, J. Parrondo, and V. Ramani, Anion Exchange Membranes Based on Polystyrene-Block -Poly(ethyleneran -butylene)-Block -Polystyrene Triblock Copolymers: Cation Stability and Fuel Cell Performance, J. Electrochem. Soc, vol.164, pp.1216-1225, 2017.

R. Simons, Preparation of a high performance bipolar membrane, J. Memb. Sci, vol.78, pp.13-23, 1993.

L. Bazinet, F. Lamarche, and D. Ippersiel, Bipolar-membrane electrodialysis: Applications of electrodialysis in the food industry, Trends Food Sci. Technol, vol.9, pp.107-113, 1998.

T. Xu, Development of bipolar membrane-based processes, Desalination, vol.140, pp.247-258, 2001.

J. Dai, A sandwiched bipolar membrane for all vanadium redox flow battery with high coulombic efficiency, Polymer (Guildf), vol.140, pp.233-239, 2018.

C. P. De-león, A direct borohydride-Acid peroxide fuel cell, J. Power Sources, vol.164, pp.441-448, 2007.

R. W. Reeve, A Sodium Borohydride-Hydrogen Peroxide Fuel Cell Employing a Bipolar Membrane Electrolyte, Fuel Cell Semin, vol.42, pp.117-129, 2011.

C. G. Arges, V. Prabhakaran, L. Wang, and V. Ramani, Bipolar polymer electrolyte interfaces for hydrogen-oxygen and direct borohydride fuel cells, Int. J. Hydrogen Energy, vol.39, pp.14312-14321, 2014.

Z. Wang, J. Parrondo, C. He, S. Sankarasubramanian, and V. Ramani, Efficient pH-gradient-enabled microscale bipolar interfaces in direct borohydride fuel cells, Nat. Energy, vol.4, pp.281-289, 2019.

P. C. Vesborg and T. F. Jaramillo, Addressing the terawatt challenge: Scalability in the supply of chemical elements for renewable energy, RSC Advances, vol.2, pp.7933-7947, 2012.

A. G. Oshchepkov, Nickel Metal Nanoparticles as Anode Electrocatalysts for Highly Efficient Direct Borohydride Fuel Cells, ACS Catal, vol.9, pp.8520-8528, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02385910

X. Ma, Facile fabrication of gold coated nickel nanoarrays and its excellent catalytic performance towards sodium borohydride electro-oxidation, Appl. Surf. Sci, vol.414, pp.353-360, 2017.

, This journal is © The Royal Society of Chemistry 20xx J. Name, vol.00, pp.1-3, 2013.

S. Li, C. Shu, Y. Chen, and L. Wang, A new application of nickel-boron amorphous alloy nanoparticles: anodecatalyzed direct borohydride fuel cell, Ionics (Kiel), vol.24, pp.201-209, 2018.

D. Zhang, Three-dimensional functionalized graphene networks modified Ni foam based gold electrode for sodium borohydride electrooxidation, Int. J. Hydrogen Energy, vol.41, pp.11593-11598, 2016.

H. Dong, Electrooxidation mechanisms and discharge characteristics of borohydride on different catalytic metal surfaces, J. Phys. Chem. B, vol.109, pp.10896-10901, 2005.

X. Geng, H. Zhang, W. Ye, Y. Ma, and H. Zhong, Ni-Pt/C as anode electrocatalyst for a direct borohydride fuel cell, J. Power Sources, vol.185, pp.627-632, 2008.

D. Zhang, Nickel particles supported on multi-walled carbon nanotubes modified sponge for sodium borohydride electrooxidation, Electrochem. commun, vol.35, pp.128-130, 2013.

A. G. Oshchepkov, Exploring the Influence of the Nickel Oxide Species on the Kinetics of Hydrogen Electrode Reactions in Alkaline Media, Top. Catal, vol.59, pp.1319-1331, 2016.

A. G. Oshchepkov, A. Bonnefont, V. N. Parmon, and E. R. Savinova, On the effect of temperature and surface oxidation on the kinetics of hydrogen electrode reactions on nickel in alkaline media, Electrochim. Acta, vol.269, pp.111-118, 2018.

A. G. Oshchepkov, A. Bonnefont, and E. R. Savinova, On the Influence of the Extent of Oxidation on the Kinetics of the Hydrogen Electrode Reactions on Polycrystalline Nickel, Electrocatalysis, vol.11, pp.133-142, 2020.

P. Y. Olu, F. Deschamps, G. Caldarella, M. Chatenet, and N. Job, Investigation of platinum and palladium as potential anodic catalysts for direct borohydride and ammonia borane fuel cells, J. Power Sources, vol.297, pp.492-503, 2015.

G. Braesch, Nickel 3D Structures Enhanced by Electrodeposition of Nickel Nanoparticles as High Performance Anodes for Direct Borohydride Fuel Cells, vol.7, pp.1789-1799, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02547431

K. J. Mayrhofer, A. S. Crampton, G. K. Wiberg, and M. Arenz, Analysis of the Impact of Individual Glass Constituents on Electrocatalysis on Pt Electrodes in Alkaline Solution, J. Electrochem. Soc, vol.155, p.78, 2008.

M. Grde?, M. Alsabet, and G. Jerkiewicz, Surface Science and Electrochemical Analysis of Nickel Foams, ACS Appl. Mater. Interfaces, vol.4, pp.3012-3021, 2012.

M. Grde? and G. Jerkiewicz, Influence of Surface Treatment on the Kinetics of the Hydrogen Evolution Reaction on Bulk and Porous Nickel Materials, Electrocatalysis, vol.10, pp.173-183, 2019.

Z. Wang, S. Sankarasubramanian, and V. Ramani, Reactant-Transport Engineering Approach to High-Power Direct Borohydride Fuel Cells, Cell Reports Phys. Sci, vol.1, p.100084, 2020.

A. Zadick, L. Dubau, N. Sergent, G. Berthomé, and M. Chatenet, Huge Instability of Pt/C Catalysts in Alkaline Medium, ACS Catal, vol.5, pp.4819-4824, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01218294

C. Lafforgue, A. Zadick, L. Dubau, F. Maillard, and M. Chatenet, Selected Review of the Degradation of Pt and Pd-based Carbon-supported Electrocatalysts for Alkaline Fuel Cells: Towards Mechanisms of Degradation, Fuel Cells, vol.18, pp.229-238, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01887245

C. Lafforgue, M. Chatenet, L. Dubau, and D. R. Dekel, Accelerated Stress Test of Pt/C Nanoparticles in an Interface with an Anion-Exchange Membrane -An Identical-Location Transmission Electron Microscopy Study, ACS Catal, vol.8, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01887248

S. A. Machado and L. A. Avaca, The hydrogen evolution reaction on nickel surfaces stabilized by H-absorption, Electrochim. Acta, vol.39, pp.1385-1391, 1994.

A. G. Oshchepkov, On the effect of Cu on the activity of carbon supported Ni nanoparticles for hydrogen electrode reactions in alkaline medium, Top. Catal, vol.58, pp.1181-1192, 2015.

E. S. Davydova, F. D. Speck, M. T. Paul, D. R. Dekel, and S. Cherevko, Stability Limits of Ni-Based Hydrogen Oxidation Electrocatalysts for Anion Exchange Membrane Fuel Cells, ACS Catal, vol.9, pp.6837-6845, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02162557

G. Rostamikia and M. J. Janik, Direct borohydride oxidation: mechanism determination and design of alloy catalysts guided by density functional theory, Energy Environ. Sci, vol.3, p.1262, 2010.

G. Rostamikia and M. J. Janik, First principles mechanistic study of borohydride oxidation over the Pt(1 1 1) surface, Electrochim. Acta, vol.55, pp.1175-1183, 2010.

P. Olu, Influence of the concentration of borohydride towards hydrogen production and escape for borohydride oxidation reaction on Pt and Au electrodesexperimental and modelling insights, J. Power Sources, vol.375, pp.300-309, 2018.

D. A. Finkelstein, Self-Poisoning during BH 4 -Oxidation at Pt and Au, and in Situ Poison Removal Procedures for BH 4 -Fuel Cells, J. Phys. Chem. C, vol.117, pp.1571-1581, 2013.

G. Braesch, A. Bonnefont, V. Martin, E. R. Savinova, and M. Chatenet, Borohydride oxidation reaction mechanisms and poisoning effects on Au, Pt and Pd bulk electrodes: From model (low) to direct borohydride fuel cell operating (high) concentrations, Electrochim. Acta, vol.273, pp.483-494, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01887240

Z. Wang, Influence of Water Transport across Microscale Bipolar Interfaces on the Performance of Direct Borohydride Fuel Cells, ACS Appl. Energy Mater, vol.3, pp.4449-4456, 2020.

R. M. Hjelm, Impact of the Anode Catalyst Layer Design on the Performance of H 2 O 2 -Direct Borohydride Fuel Cells, J. Electrochem. Soc, vol.166, pp.1218-1228, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02426814

M. Chatenet, Tailoring membranes, Nat. Energy, vol.4, pp.261-262, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02426819