S. Holdcroft and J. Fan, Sterically-Encumbered Ionenes as Hydroxide Ion-Conducting Polymer Membranes, Curr. Opin. Electrochem, vol.18, pp.99-105, 2019.

N. Ramaswamy and S. Mukerjee, Alkaline Anion-Exchange Membrane Fuel Cells: Challenges in Electrocatalysis and Interfacial Charge Transfer, Chem. Rev, vol.119, pp.11945-11979, 2019.

C. A. Campos-roldán and N. Alonso-vante, The Hydrogen Oxidation Reaction in Alkaline Medium: An Overview, Electrochem. Energy Rev, vol.2, pp.312-331, 2019.

C. Hu, L. Zhang, and J. Gong, Recent Progress Made in the Mechanism Comprehension and Design of Electrocatalysts for Alkaline Water Splitting, Energy Environ. Sci, vol.12, pp.2620-2645, 2019.

P. C. Vesborg and T. F. Jaramillo, Addressing the Terawatt Challenge: Scalability in the Supply of Chemical Elements for Renewable Energy, RSC Adv, vol.2, pp.7933-7947, 2012.

S. De, J. Zhang, R. Luque, and N. Yan, Ni-Based Bimetallic Heterogeneous Catalysts for Energy and Environmental Applications, Energy Environ. Sci, vol.9, pp.3314-3347, 2016.

L. Ouyang, J. Huang, H. Wang, J. Liu, and M. Zhu, Progress of Hydrogen Storage Alloys for Ni-MH Rechargeable Power Batteries in Electric Vehicles : A Review, Mater. Chem. Phys, pp.164-178, 0200.

R. R. Salunkhe, J. Lin, V. Malgras, S. Xue, and J. Ho,

, Coaxial Carbon Nanotube/Ni(OH)2 Composites for Asymmetric Supercapacitor Application, Nano Energy, vol.11, pp.211-218, 2015.

M. Zhang, Z. Huang, Z. Shen, Y. Gong, B. Chi et al., High-Performance Aqueous Rechargeable Li-Ni Battery Based on Ni(OH)2/NiOOH Redox Couple with High Voltage, Adv. Energy Mater, vol.7, p.1700155, 2017.

W. Li, B. Song, and A. Manthiram, High-Voltage Positive Electrode Materials for Lithium-Ion 54

, Batteries. Chem. Soc. Rev, vol.46, pp.3006-3059, 2017.

C. Yuan, H. Wu, and . Bin,

Y. Xie and X. W. Lou, Mixed Transition-Metal Oxides: Design, Synthesis, and Energy-Related Applications. Angew. Chemie Int, vol.53, pp.1488-1504, 2014.

J. You, L. Meng, T. Song, T. Guo, Y. M. Yang et al., Improved Air Stability of Perovskite Solar Cells via Solution-Processed Metal Oxide Transport Layers, Nat. Nanotechnol, vol.11, pp.75-81, 2015.

J. Kim, H. Lee, H. Cha, M. Yoon, M. Park et al., Prospect and Reality of Ni-Rich Cathode for Commercialization, Adv. Energy Mater, vol.8, pp.1-25, 2018.

I. Roger, M. A. Shipman, and M. D. Symes, Earth-Abundant Catalysts for Electrochemical and Photoelectrochemical Water Splitting, Nat. Rev. Chem, p.3, 2017.

C. C. Mccrory, S. Jung, J. C. Peters, and T. F. Jaramillo, Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction, J. Am. Chem. Soc, vol.135, pp.16977-16987, 2013.

F. Moureaux, P. Stevens, G. Toussaint, and M. Chatenet, Timely-Activated 316L Stainless Steel: A Low Cost, Durable and Active Electrode for Oxygen Evolution Reaction in Concentrated Alkaline Environments, Appl. Catal. B Environ, vol.258, p.117963, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02426817

T. Wang, H. Xie, M. Chen, A. D'aloia, J. Cho et al., Precious Metal-Free Approach to Hydrogen Electrocatalysis for Energy Conversion: From Mechanism Understanding to Catalyst Design, Nano Energy, vol.42, pp.69-89, 2017.

M. Gong, D. Y. Wang, C. C. Chen, B. J. Hwang, H. Dai et al., Review on Nickel-Based Electrocatalysts for Alkaline Hydrogen Evolution Reaction, Nano Res, vol.9, pp.28-46, 2016.

M. Zeng and Y. Li, Recent Advances in Heterogeneous Electrocatalysts for the Hydrogen Evolution Reaction, J. Mater. Chem. A, vol.3, pp.14942-14962, 2015.

D. Miliauskas, R. Tarozaite, and L. Tamasauskaite-tamasiunaite, , p.55

, Oxidation at Ultrafine Gold Layer Supported on Nickel, vol.14, pp.20-22, 2008.

D. Cao, Y. Gao, G. Wang, R. Miao, and Y. Liu, A Direct NaBH4-H2O2 Fuel Cell Using Ni Foam Supported Au Nanoparticles as Electrodes, Int. J. Hydrogen Energy, vol.35, pp.807-813, 2010.

C. Celik, F. G. Boyaci-san, and H. I. Sarac, Investigation of Ni Foam Effect for Direct Borohydride Fuel Cell, Fuel Cells, vol.12, pp.1027-1031, 2012.

S. L. Medway, C. A. Lucas, A. Kowal, R. J. Nichols, and D. Johnson, Situ Studies of the Oxidation of Nickel Electrodes in Alkaline Solution, J. Electroanal. Chem, vol.587, pp.172-181, 2006.

E. S. Lambers, C. N. Dykstal, J. M. Seo, J. E. Rowe, and P. H. Holloway, Room-Temerature Oxidation of Ni(110) at Low and Atmospheric Oxygen Pressures, Oxid. Met, vol.45, pp.301-321, 1996.

P. H. Holloway, Chemisorption and Oxide Formation on Metals: Oxygen-Nickel Reaction, J. Vac. Sci. Technol, vol.18, pp.653-659, 1981.

A. Lasia, Mechanism and Kinetics of the Hydrogen Evolution Reaction, Int. J. Hydrogen Energy, vol.44, pp.19484-19518, 2019.

J. Wang, F. Xu, H. Jin, Y. Chen, and Y. Wang, Non-Noble Metal-Based Carbon Composites in Hydrogen Evolution Reaction: Fundamentals to Applications, Adv. Mater, vol.29, p.1605838, 2017.

J. Zhu, L. Hu, P. Zhao, L. Y. Lee, and K. Wong, Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles, Chem. Rev, vol.120, pp.851-918, 2020.

N. V. Emelianova, Researches with the Dropping Mercury Cathode: Part VII, Nickel and Cobalt. Recl. des Trav. Chim. des Pays-Bas, vol.44, pp.528-548, 1925.

P. Lukovtsev, S. Levina, and A. Frumkin, Hydrogen Overpotential on Nickel. Acta Physicochim. U.S.S.R, vol.11, pp.916-930, 1939.

A. Frumkin and . Overvoltage, Discuss. Faraday Soc, vol.1, pp.57-67, 1947.

B. E. Conway and P. L. Bourgault, The Electrochemical Behavior of the Nickel -Nickel Oxide 56

, Electrode: Part I. Kinetics of Self-Discharge, Can. J. Chem, vol.37, pp.292-307, 1959.

P. L. Bourgault and B. E. Conway, The Electrochemical Behavior of the Nickel Oxide Electrode: Part II. Quasi-Equilibrium Behavior, Can. J. Chem, vol.38, pp.1557-1575, 1960.

B. E. Conway and P. L. Bourgault, Electrochemistry of the Nickel Oxide Electrode: Part III. Anodic Polarization and Self-Discharge Behavior, Can. J. Chem, vol.40, pp.1690-1707, 1962.

B. E. Conway and E. Gileadi, Electrochemistry of the Nickel Oxide Electrode: Part IV

, Electrochemical Kinetic Studies of Reversible Potentials as a Function of Degree of Oxidation, Can. J. Chem, vol.40, pp.1933-1942, 1962.

B. E. Conway and M. A. Sattar, Electrochemistry of the Nickel Oxide Electrode, J. Electroanal. Chem. Interfacial Electrochem, vol.19, pp.351-364, 1968.

B. E. Conway, M. A. Sattar, and D. Gilroy, Electrochemistry of the Nickel-Oxide Electrode-V. Self-Passivation Effects in Oxygen-Evolution Kinetics, Electrochim. Acta, vol.14, pp.677-694, 1969.

M. A. Sattar and B. E. Conway, Electrochemistry of the Nickel-Oxide Electrode-VI. Surface Oxidation of Nickel Anodes in Alkaline Solution, Electrochim. Acta, vol.14, pp.695-710, 1969.

B. E. Conway, M. A. Sattar, and D. Gilroy, Electrochemistry of the Nickel-Oxide Electrode-VII

, Potentiostatic Step Method for Study of Adsorbed Intermediates, Electrochim. Acta, vol.14, pp.711-724, 1969.

J. L. Weininger and M. W. Breiter, Effect of Crystal Structure on the Anodic Oxidation of Nickel, J. Electrochem. Soc, vol.110, pp.484-490, 1963.

J. L. Weininger and M. W. Breiter, Hydrogen Evolution and Surface Oxidation of Nickel Electrodes in Alkaline Solution, J. Electrochem. Soc, vol.111, pp.707-712, 1964.

J. O. Bockris and E. C. Potter, The Mechanism of Hydrogen Evolution at Nickel Cathodes in Aqueous Solutions, J. Chem. Phys, vol.20, pp.614-628, 1952.

D. S. Hall, C. Bock, and B. R. Macdougall, The Electrochemistry of Metallic Nickel: Oxides, Hydroxides, Hydrides and Alkaline Hydrogen Evolution, J. Electrochem. Soc, vol.160, pp.235-243, 2013.

D. S. Hall, D. J. Lockwood, C. Bock, and B. R. Macdougall, Nickel Hydroxides and Related Materials: A Review of Their Structures, Synthesis and Properties, Proc. R. Soc. A Math. Phys. Eng. Sci, p.471, 2014.

M. Alsabet, M. Grden, and G. Jerkiewicz, Electrochemical Growth of Surface Oxides on Nickel. Part 1: Formation of ?-Ni(OH)2 in Relation to the Polarization Potential, Polarization Time, and Temperature, Electrocatalysis, vol.2, pp.317-330, 2011.

M. Alsabet, M. Grden, and G. Jerkiewicz, Electrochemical Growth of Surface Oxides on Nickel. Part 2: Formation of ?-Ni(OH)2 and NiO in Relation to the Polarization Potential, Polarization Time, and Temperature, Electrocatalysis, vol.5, pp.136-147, 2014.

M. Alsabet, M. Grde?, and G. Jerkiewicz, Electrochemical Growth of Surface Oxides on Nickel. Part 3: Formation of ?-NiOOH in Relation to the Polarization Potential, Polarization Time, and Temperature, Electrocatalysis, vol.6, pp.60-71, 2015.

A. G. Oshchepkov, A. Bonnefont, V. A. Saveleva, V. Papaefthimiou, S. Zafeiratos et al., Exploring the Influence of the Nickel Oxide Species on the Kinetics of Hydrogen Electrode Reactions in Alkaline Media, Top. Catal, vol.59, pp.1319-1331, 2016.

A. G. Oshchepkov, A. Bonnefont, V. N. Parmon, and E. R. Savinova, On the Effect of Temperature and Surface Oxidation on the Kinetics of Hydrogen Electrode Reactions on Nickel in Alkaline Media, Electrochim. Acta, vol.269, pp.111-118, 2018.

A. G. Oshchepkov, A. Bonnefont, and E. R. Savinova, On the Influence of the Extent of Oxidation on the Kinetics of the Hydrogen Electrode Reactions on Polycrystalline Nickel, Electrocatalysis, vol.2020, pp.133-142

D. Salmazo, M. F. Juarez, A. G. Oshchepkov, O. V. Cherstiouk, A. Bonnefont et al., On the Feasibility of Bifunctional Hydrogen Oxidation on Ni and NiCu Surfaces, Electrochim. Acta, vol.305, pp.452-458, 2019.

A. N. Kuznetsov, A. G. Oshchepkov, O. V. Cherstiouk, P. A. Simonov, R. R. Nazmutdinov et al., Influence of the NaOH Concentration on the Hydrogen Electrode Reaction Kinetics of Ni and NiCu Electrodes. ChemElectroChem 2020, vol.7, pp.1438-1447

M. Grde?, K. Klimek, and A. Czerwi?ski, A Quartz Crystal Microbalance Study on a Metallic Nickel Electrode, J. Solid State Electrochem, vol.8, pp.390-397, 2004.

B. Beden, D. Floner, J. M. Léger, and C. Lamy, A Voltammetric Study of the Formation on Hydroxides and Oxyhydroxides on Nickel Single Crystal Electrodes in Contact with an Alkaline Solution, Surf. Sci, vol.162, pp.822-829, 1985.

R. S?impraga and B. E. Conway, Realization of Monolayer Levels of Surface Oxidation of Nickel by Anodization at Low Temperatures, J. Electroanal. Chem. Interfacial Electrochem, vol.280, pp.341-357, 1990.

J. Diard, B. Legorrec, and S. Maximovitch, Etude de l'activation Du Degagement d'hydrogene Sur Electrode d'oxyde de Nickel Par Spectroscopie d'impedance, Electrochim. Acta, vol.35, pp.1099-1108, 1990.

C. A. Melendres and M. Pankuch, On the Composition of the Passive Film on Nickel: A Surface-Enhanced Raman Spectroelectrochemical Study, J. Electroanal. Chem, vol.333, pp.103-113, 1992.

M. Nakamura, N. Ikemiya, A. Iwasaki, Y. Suzuki, and M. Ito, Surface Structures at the Initial Stages in Passive Film Formation on Ni(111) Electrodes in Acidic Electrolytes, J. Electroanal. Chem, vol.566, pp.385-391, 2004.

A. Seyeux, V. Maurice, L. H. Klein, and P. Marcus, Situ Scanning Tunnelling Microscopic Study of the Initial Stages of Growth and of the Structure of the Passive Film on Ni(111) in 1 M NaOH(Aq), vol.9, pp.337-346, 2005.

B. E. Conway, B. Barnett, H. Angerstein-kozlowska, and B. V. Tilak, A Surface-Electrochemical Basis for the Direct Logarithmic Growth Law for Initial Stages of Extension of Anodic Oxide Films Formed at Noble Metals, J. Chem. Phys, vol.93, pp.8361-8373, 1990.

C. D'alkaine and M. Santanna, The Passivating Films on Nickel in Alkaline Solutions I. General Aspects of the Ni (II) Region, J. Electroanal. Chem, vol.457, pp.5-12, 1998.

M. Keddam, Transpassive Dissolution of Ni in Acidic Sulfate Media: A Kinetic Model, J. Electrochem. Soc, vol.132, pp.2561-2566, 1985.

P. Zoltowski, The Capacity of Monocrystalline Nickel Electrode in Potassium Hydroxide Solution at Low Hydrogen Overpotentials, Electrochim. Acta, vol.38, pp.2129-2133, 1993.

D. Floner, C. Lamy, and J. M. Leger, Electrocatalytic Oxidation of Hydrogen on Polycrystal and Single-Crystal Nickel Electrodes, Surf. Sci, vol.234, pp.87-97, 1990.

D. Esau, F. M. Schuett, K. L. Varvaris, J. Björk, T. Jacob et al., Controlled-Atmosphere Flame Fusion Growth of Nickel Poly-Oriented Spherical Single Crystals-Unraveling Decades of Impossibility, Electrocatalysis, vol.2020, pp.1-13

A. Mohsenzadeh, T. Richards, and K. Bolton, DFT Study of the Water Gas Shift Reaction on Ni(111), Ni(100) and Ni(110) Surfaces, Surf. Sci, vol.644, pp.53-63, 2016.

G. Kresse and J. Hafner, First-Principles Study of the Adsorption of Atomic H on Ni (111), (100) and (110), Surf. Sci, vol.459, pp.287-302, 2000.

W. Visscher and E. Barendrecht, Anodic Oxide Films of Nickel in Alkaline Electrolyte, Surf. Sci, vol.135, pp.436-452, 1983.

M. Grde? and K. Klimek, EQCM Studies on Oxidation of Metallic Nickel Electrode in Basic Solutions, J. Electroanal. Chem, vol.581, pp.122-131, 2005.

B. Beden and A. Bewick, The Anodic Layer on Nickel in Alkaline Solution: An Investigation Using in Situ IR Spectroscopy, Electrochim. Acta, vol.33, pp.1695-1698, 1988.

H. Hoppe and H. Strehblow, XPS and UPS Examinations of the Formation of Passive Layers on Ni in 1 M Sodium Hydroxide and 0.5 M Sulphuric Acid, vol.14, pp.121-131, 1989.

B. Beverskog and I. Puigdomenech, Revised Pourbaix Diagrams for Nickel at 25-300 °C, Corros. Sci, vol.39, pp.969-980, 1997.

C. Hu and T. Wen, Effects of the Nickel Oxide on the Hydrogen Evolution and Para-Nitroaniline Reduction at Ni-Deposited Graphite Electrodes in NaOH, Electrochim. Acta, vol.43, pp.1747-1756, 1998.

A. G. Pshenichnikov, Electrocatalytic Properties of Nickel and Nickel-Based Alloys, Mater. Chem. Phys, vol.22, pp.121-148, 1989.

S. A. Machado and L. A. Avaca, The Hydrogen Evolution Reaction on Nickel Surfaces Stabilized by H-Absorption, Electrochim. Acta, vol.39, pp.1385-1391, 1994.

L. D. Burke and T. A. Twomey, Voltammetric Behaviour of Nickel in Base with Particular Reference to Thick Oxide Growth, J. Electroanal. Chem. Interfacial Electrochem, vol.162, pp.101-119, 1984.

W. Visscher and E. Barendrecht, The Anodic Oxidation of Nickel in Alkaline Solution, Electrochim. Acta, vol.25, pp.651-655, 1980.

W. Visscher and E. Barendrecht, Absorption of Hydrogen in Reduced Nickel Oxide, J. Appl. Electrochem, vol.10, pp.269-274, 1980.

N. A. Shumilova and V. S. Bagotzky, Oxygen Ionization on Nickel in Alkaline Solutions, Electrochim. Acta, vol.13, pp.285-293, 1968.

K. Shervedani, R. Lasia, and A. , Evaluation of the Surface Roughness of Microporous Ni-Zn-P Electrodes by in Situ Methods, J. Appl. Electrochem, vol.29, pp.979-986, 1999.

G. Jerkiewicz, Hydrogen Sorption at/in Electrodes, Prog. Surf. Sci, vol.57, pp.137-186, 1998.

N. M. Markovic and P. N. Ross, Surface Science Studies of Model Fuel Cell Electrocatalysts. Surf. Sci. Rep, vol.45, pp.117-229, 2002.

P. Quaino, F. Juarez, E. Santos, and W. Schmickler, Plots in Hydrogen Electrocatalysis -Uses and Abuses, Beilstein J. Nanotechnol, vol.5, pp.846-854, 2014.

Y. Choquette, L. Brossard, A. Lasia, and H. Ménard, Investigation of Hydrogen Evolution on Raney-Nickel Composite-Coated Electrodes, Electrochim. Acta, vol.35, pp.1251-1256, 1990.

G. Kreysa, B. Hakansson, and P. Ekdunge, Kinetic and Thermodynamic Analysis of Hydrogen Evolution at Nickel Electrodes, Electrochim. Acta, vol.33, pp.1351-1357, 1988.

J. Kati?, M. Metiko?-hukovi?, R. Peter, and M. Petravi?, The Electronic Structure of the ?-Ni(OH)2 Films: Influence on the Production of the High-Performance Ni-Catalyst Surface, J. Power Sources, vol.282, pp.421-428, 2015.

F. Juarez, D. Salmazo, E. R. Savinova, P. Quaino, G. Belletti et al., The Initial Stage of OH Adsorption on Ni(111), J. Electroanal. Chem, vol.832, pp.137-141, 2019.

Y. Bai, D. Kirvassilis, L. Xu, and M. Mavrikakis, Atomic and Molecular Adsorption on Ni, issue.111

, Surf. Sci, vol.679, pp.240-253, 2019.

C. Taylor, R. G. Kelly, and M. Neurock, Theoretical Analysis of the Nature of Hydrogen at the Electrochemical Interface Between Water and a Ni(111) Single-Crystal Electrode, J. Electrochem. Soc, vol.154, pp.55-64, 2007.

J. Greeley and M. Mavrikakis, A First-Principles Study of Surface and Subsurface H on and in Ni(111): Diffusional Properties and Coverage-Dependent Behavior, Surf. Sci, vol.540, pp.215-229, 2003.

Y. Dong, J. Dang, W. Wang, S. Yin, and Y. Wang, First-Principles Determination of Active Sites of Ni Metal-Based Electrocatalysts for Hydrogen Evolution Reaction, ACS Appl. Mater. Interfaces, vol.10, pp.39624-39630, 2018.

S. Liu, T. Ishimoto, and M. Koyama, First-Principles Study of, Oxygen Coverage Effect on Hydrogen Oxidation on Ni(1 1 1) Surface. Appl. Surf. Sci, vol.333, pp.86-91, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01875451

M. J. Janik, I. T. Mccrum, and M. T. Koper, On the Presence of Surface Bound Hydroxyl Species on Polycrystalline Pt Electrodes in the "Hydrogen Potential Region" (0-0.4 V-RHE), J. Catal, vol.367, pp.332-337, 2018.

Z. Szklarska-smialowska and M. Smialowski, Electrochemical Study of the Nickel-Hydrogen System, J. Electrochem. Soc, vol.110, pp.444-448, 1963.

D. M. Soares, O. Teschke, and I. Torriani, Hydride Effect on the Kinetics of the Hydrogen Evolution Reaction on Nickel Cathodes in Alkaline Media, J. Electrochem. Soc, vol.139, pp.98-105, 1992.

M. Bernardini, N. Comisso, G. Mengoli, and L. Sinico, Formation of Nickel Hydrides by Hydrogen Evolution in Alkaline Media: Effect of Temperature, J. Electroanal. Chem, vol.457, pp.205-219, 1998.

C. Cheng, P. S. Grant, and L. Lührs, Electrochemical Mechanics of Metal Thin Films: Charge-Induced Reversible Surface Stress for Actuation, Adv. Electron. Mater, vol.6, pp.1-7, 2020.

G. Comsa, R. David, and B. Schumacher, The Angular Dependence of Flux, Mean Energy and Speed Ratio for D2 Molecules Desorbing from a Ni(111) Surface, Surf. Sci, vol.85, pp.45-68, 1979.

K. L. Haug, T. Bürgi, T. R. Trautman, and S. T. Ceyer, Distinctive Reactivities of Surface-Bound H and Bulk H for the Catalytic Hydrogenation of Acetylene, J. Am. Chem. Soc, vol.120, pp.8885-63, 1998.

S. T. Ceyer, The Unique Chemistry of Hydrogen beneath the Surface: Catalytic Hydrogenation of Hydrocarbons, Acc. Chem. Res, vol.34, pp.737-744, 2001.

J. Desilvestro, Characterization of Redox States of Nickel Hydroxide Film Electrodes by In Situ Surface Raman Spectroscopy, J. Electrochem. Soc, p.885, 1988.

V. S. Bagotzky, N. A. Shumilova, G. P. Samoilov, and E. I. Khrushcheva, Electrochemical Oxygen Reduction on Nickel Electrodes in Alkaline Solutions-II, Electrochim. Acta, vol.17, pp.1625-1635, 1972.

M. Kim and K. Kim, A Study on the Phase Transformation of Electrochemically Precipitated Nickel Hydroxides Using an Electrochemical Quartz Crystal Microbalance, J. Electrochem. Soc, p.507, 1998.

R. S. Guzmán, J. R. Vilche, and A. J. Arvía, Non-Equilibrium Effects in the Nickel Hydroxide Electrode, J. Appl. Electrochem, vol.9, pp.183-189, 1979.

R. L. Doyle, I. J. Godwin, M. P. Brandon, and M. E. Lyons, Redox and Electrochemical Water Splitting Catalytic Properties of Hydrated Metal Oxide Modified Electrodes, Phys. Chem. Chem. Phys, vol.15, pp.13737-13783, 2013.

B. J. Trzesniewski, O. Diaz-morales, D. A. Vermaas, A. Longo, W. Bras et al., Situ Observation of Active Oxygen Species in Fe-Containing Ni-Based Oxygen Evolution Catalysts: The Effect of pH on Electrochemical Activity, J. Am. Chem. Soc, vol.137, pp.15112-15121, 2015.

C. Johnston and P. R. Graves, Situ Raman Spectroscopy Study of the Nickel Oxyhydroxide Electrode, vol.44, pp.105-115, 1990.

L. J. Oblonsky, Surface Enhanced Raman Spectra from the Films Formed on Nickel in the Passive and Transpassive Regions, J. Electrochem. Soc, vol.142, pp.3677-3682, 1995.

B. S. Yeo and A. T. Bell, Situ Raman Study of Nickel Oxide and Gold-Supported Nickel Oxide Catalysts for the Electrochemical Evolution of Oxygen, J. Phys. Chem. C, vol.116, pp.8394-8400, 2012.

F. El-gabaly, K. F. Mccarty, H. Bluhm, and A. H. Mcdaniel, Oxidation Stages of Ni Electrodes in Solid Oxide Fuel Cell Environments, Phys. Chem. Chem. Phys, vol.15, pp.8334-8341, 2013.

H. Ali-löytty, M. W. Louie, M. R. Singh, L. Li, H. G. Sanchez-casalongue et al., Ambient-Pressure XPS Study of a Ni-Fe Electrocatalyst for the Oxygen Evolution Reaction, J. Phys. Chem. C, vol.120, pp.2247-2253, 2016.

J. Van-drunen, A. F. Barbosa, and G. Tremiliosi-filho, The Formation of Surface Oxides on Nickel in Oxalate-Containing Alkaline Media, Electrocatalysis, vol.6, pp.481-491, 2015.

Z. Zhuang, S. A. Giles, J. Zheng, G. R. Jenness, S. Caratzoulas et al., Nickel Supported on Nitrogen-Doped Carbon Nanotubes as Hydrogen Oxidation Reaction Catalyst in Alkaline Electrolyte, Nat. Commun, 2016.

M. Grde?, M. Alsabet, and G. Jerkiewicz, Surface Science and Electrochemical Analysis of Nickel Foams, ACS Appl. Mater. Interfaces, vol.4, pp.3012-3021, 2012.

F. Yang, X. Bao, P. Li, X. Wang, G. Cheng et al., Boosting Hydrogen Oxidation Activity of Ni in Alkaline Media through Oxygen-Vacancy-Rich CeO2/Ni Heterostructures

. Angew, Chemie -Int, vol.58, pp.14179-14183, 2019.

L. Chen and A. Lasia, Study of the Kinetics of Hydrogen Evolution Reaction on Nickel-Zinc Alloy Electrodes, J. Electrochem. Soc, vol.138, pp.3321-3328, 1991.

R. K. Shervedani and A. Lasia, Studies of the Hydrogen Evolution Reaction on Ni-P Electrodes, J. Electrochem. Soc, vol.144, pp.511-519, 1997.

A. Lasia and A. Rami, Kinetics of Hydrogen Evolution on Nickel Electrodes, J. Electroanal. Chem, vol.294, pp.123-141, 1990.

M. E. Lyons and M. P. Brandon, The Oxygen Evolution Reaction on Passive Oxide Covered Transition Metal Electrodes in Aqueous Alkaline Solution. Part 1-Nickel, Int. J. Electrochem. Sci, vol.3, pp.1386-1424, 2008.

J. C. Ho and D. L. Piron, Active Surface Area in Oxide Electrodes by Overpotential Deposited Oxygen Species for the Oxygen Evolution Reaction, J. Appl. Electrochem, vol.26, pp.515-521, 1996.

A. Y. Faid, A. O. Barnett, F. Seland, and S. Sunde, Optimized Nickel-Cobalt and Nickel-Iron Oxide Catalysts for the Hydrogen Evolution Reaction in Alkaline Water Electrolysis, J. Electrochem. Soc, vol.166, pp.519-533, 2019.

S. Jung, C. C. Mccrory, I. M. Ferrer, J. C. Peters, and T. F. Jaramillo, Benchmarking Nanoparticulate Metal Oxide Electrocatalysts for the Alkaline Water Oxidation Reaction, J. Mater. Chem. A, vol.4, pp.3068-3076, 2016.

D. S. Hall, C. Bock, and B. R. Macdougall, An Oxalate Method for Measuring the Surface Area of Nickel Electrodes, J. Electrochem. Soc, vol.161, pp.787-795, 2014.

P. Oliva, J. Leonardi, J. F. Laurent, C. Delmas, J. J. Braconnier et al., Review of the Structure and the Electrochemistry of Nickel Hydroxides and Oxy-Hydroxides

, J. Power Sources, vol.8, pp.229-255, 1982.

S. Watzele, P. Hauenstein, Y. Liang, S. Xue, J. Fichtner et al., Determination of Electroactive Surface Area of Ni-, Co-, Fe-, and Ir-Based Oxide Electrocatalysts, ACS Catal, vol.9, pp.9222-9230, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02334291

S. Trasatti and O. A. Petrii, Real Surface Area Measurements in Electrochemistry, J. Electroanal. Chem, vol.327, pp.353-376, 1992.

A. G. Oshchepkov, P. A. Simonov, O. V. Cherstiouk, R. R. Nazmutdinov, D. V. Glukhov et al., , vol.66

E. R. Savinova, On the Effect of Cu on the Activity of Carbon Supported Ni Nanoparticles for Hydrogen Electrode Reactions in Alkaline Medium, Top. Catal, vol.58, pp.1181-1192, 2015.

P. A. Simonov, O. V. Cherstiouk, A. N. Kuznetsov, V. I. Zaikovskii, T. Y. Kardash et al., Highly Active Carbon-Supported Ni Catalyst Prepared by Nitrate Decomposition with a Sacrificial Agent for the Hydrogen Oxidation Reaction in Alkaline Medium, J. Electroanal. Chem, p.113551, 2019.

L. Gao, Y. Wang, H. Li, Q. Li, N. Ta et al., A Nickel Nanocatalyst within a h-BN Shell for Enhanced Hydrogen Oxidation Reactions, Chem. Sci, vol.8, pp.5728-5734, 2017.

A. R. Kucernak and C. Zalitis, General Models for the Electrochemical Hydrogen Oxidation and Hydrogen Evolution Reactions: Theoretical Derivation and Experimental Results under Near Mass-Transport Free Conditions, J. Phys. Chem. C, vol.120, pp.10721-10745, 2016.

W. Sheng, M. Myint, J. G. Chen, and Y. Yan, Correlating the Hydrogen Evolution Reaction Activity in Alkaline Electrolytes with the Hydrogen Binding Energy on Monometallic Surfaces, Energy Environ. Sci, vol.6, pp.1509-1512, 2013.

J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff, and J. K. Nørskov, Computational High-Throughput Screening of Electrocatalytic Materials for Hydrogen Evolution, Nat. Mater, vol.5, pp.909-913, 2006.

E. Santos, P. Hindelang, P. Quaino, E. N. Schulz, G. Soldano et al., Hydrogen Electrocatalysis on Single Crystals and on Nanostructured Electrodes. ChemPhysChem, vol.12, pp.2274-2279, 2011.

S. Lu and Z. Zhuang, Investigating the Influences of the Adsorbed Species on Catalytic Activity for Hydrogen Oxidation Reaction in Alkaline Electrolyte, J. Am. Chem. Soc, vol.139, pp.5156-5163, 2017.

J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen et al., Trends in the Exchange Current for Hydrogen Evolution, J. Electrochem. Soc, vol.152, pp.23-26, 2005.

E. Skúlason, V. Tripkovic, M. E. Björketun, S. Gudmundsdóttir, G. Karlberg et al., Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations, J. Phys. Chem. C, vol.114, pp.18182-18197, 2010.

A. G. Oshchepkov, A. Bonnefont, S. N. Pronkin, O. V. Cherstiouk, C. Ulhaq-bouillet et al., Nanostructured Nickel Nanoparticles Supported on Vulcan Carbon as a Highly Active Catalyst for the Hydrogen Oxidation Reaction in Alkaline Media, J. Power Sources, vol.402, pp.447-452, 2018.

F. Yang, X. Bao, Y. Zhao, X. Wang, G. Cheng et al., Enhanced HOR Catalytic Activity of PGM-Free Catalysts in Alkaline Media: The Electronic Effect Induced by Different Heteroatom Doped Carbon Supports, J. Mater. Chem. A, vol.7, pp.10936-10941, 2019.

T. Wang, M. Wang, H. Yang, M. Xu, C. Zuo et al., Weakening Hydrogen Adsorption on Nickel via Interstitial Nitrogen Doping Promotes Bifunctional Hydrogen Electrocatalysis in Alkaline Solution, Energy Environ. Sci, vol.12, pp.3522-3529, 2019.

W. Ni, A. Krammer, C. S. Hsu, H. M. Chen, A. Schüler et al., Ni3N as an Active Hydrogen Oxidation Reaction Catalyst in Alkaline Medium. Angew. Chemie -Int, vol.58, pp.7445-7449, 2019.

Y. Yang, X. Sun, G. Han, X. Liu, X. Zhang et al., Enhanced Electrocatalytic Hydrogen Oxidation on Ni/NiO/C Derived from a Nickel-Based Metal-Organic Framework. Angew. Chemie -Int, vol.58, pp.10644-10649, 2019.

F. Song, W. Li, J. Yang, G. Han, P. Liao et al., Interfacing Nickel Nitride and Nickel Boosts Both Electrocatalytic Hydrogen Evolution and Oxidation Reactions, Nat. Commun, vol.9, p.4531, 2018.

T. Shinagawa and K. Takanabe, Towards Versatile and Sustainable Hydrogen Production through Electrocatalytic Water Splitting: Electrolyte Engineering, vol.10, pp.1318-1336, 2017.

Y. Zheng, Y. Jiao, A. Vasileff, and S. Z. Qiao, The Hydrogen Evolution Reaction in Alkaline Solution: From Theory, Single Crystal Models, to Practical Electrocatalysts, Angew. Chemie -Int

E. , , vol.57, pp.7568-7579, 2018.

J. Durst, A. Siebel, C. Simon, F. Hasché, J. Herranz et al., New Insights into the Electrochemical Hydrogen Oxidation and Evolution Reaction Mechanism, Energy Environ. Sci, vol.7, pp.2255-2260, 2014.

N. Danilovic, R. Subbaraman, D. Strmcnik, K. C. Chang, A. P. Paulikas et al., Enhancing the Alkaline Hydrogen Evolution Reaction Activity through the Bifunctionality of Ni(OH)2/Metal Catalysts. Angew. Chemie -Int, vol.51, pp.12495-12498, 2012.

A. C. Makrides, Hydrogen Overpotential on Nickel in Alkaline Solution, J. Electrochem. Soc, vol.109, pp.977-984, 1962.

M. A. Devanathan and M. Selvaratnam, Mechanism of the Hydrogen-Evolution Reaction on Nickel in Alkaline Solutions by the Determination of the Degree of Coverage, Trans. Faraday Soc, vol.56, p.1820, 1960.

S. H. Ahn, S. J. Hwang, S. J. Yoo, I. Choi, H. Kim et al., Electrodeposited Ni Dendrites with High Activity and Durability for Hydrogen Evolution Reaction in Alkaline Water Electrolysis, J. Mater. Chem, vol.22, pp.15153-15159, 2012.

J. Huot, Hydrogen Evolution and Interface Phenomena on a Nickel Cathode in 30 w/o KOH, J. Electrochem. Soc, vol.136, 1933.

M. A. Mcarthur, L. Jorge, S. Coulombe, and S. Omanovic, Synthesis and Characterization of 3D Ni Nanoparticle/Carbon Nanotube Cathodes for Hydrogen Evolution in Alkaline Electrolyte, J. Power Sources, vol.266, pp.365-373, 2014.

M. Gong, D. Y. Wang, C. C. Chen, B. J. Hwang, H. Dai et al., Review on Nickel-Based Electrocatalysts for Alkaline Hydrogen Evolution Reaction, Nano Res, vol.9, pp.28-46, 2016.

Y. Pan, G. Hu, J. Lu, L. Xiao, and L. Zhuang, Ni(OH)2-Ni/C for Hydrogen Oxidation Reaction in Alkaline Media, J. Energy Chem, vol.29, pp.111-115, 2019.

E. Davydova, J. Zaffran, K. Dhaka, M. Toroker, and D. Dekel, Hydrogen Oxidation on Ni-Based Electrocatalysts: The Effect of Metal Doping. Catalysts, vol.8, p.454, 2018.

M. Shviro, S. Polani, R. E. Dunin-borkowski, and D. Zitoun, Bifunctional Electrocatalysis on Pd-Ni Core-Shell Nanoparticles for Hydrogen Oxidation Reaction in Alkaline Medium, Adv. Mater, vol.5, p.1701666, 2018.

M. Alesker, M. Page, M. Shviro, Y. Paska, G. Gershinsky et al., Palladium/Nickel Bifunctional Electrocatalyst for Hydrogen Oxidation Reaction in Alkaline Membrane Fuel Cell, J. Power Sources, vol.304, pp.332-339, 2016.

G. Shi, H. Yano, D. A. Tryk, A. Iiyama, H. Uchida et al., CO-Tolerant, and Robust Hydrogen Anode Catalysts: Pt-M (M = Fe, Co, Ni) Alloys with Stabilized Pt-Skin Layers, vol.7, pp.267-274, 2017.

O. V. Cherstiouk, P. A. Simonov, A. G. Oshchepkov, V. I. Zaikovskii, T. Y. Kardash et al., Electrocatalysis of the Hydrogen Oxidation Reaction on Carbon-Supported Bimetallic NiCu Particles Prepared by an Improved Wet Chemical Synthesis, J. Electroanal. Chem, vol.783, pp.146-151, 2016.

A. Roy, M. R. Talarposhti, S. J. Normile, I. V. Zenyuk, V. De-andrade et al., Nickel-Copper Supported on a Carbon Black Hydrogen Oxidation Catalyst Integrated into an Anion-Exchange Membrane Fuel Cell, Sustain. Energy Fuels, vol.2, pp.2268-2275, 2018.

G. Wang, W. Li, B. Huang, L. Xiao, J. Lu et al., Exploring the Composition-Activity Relation of Ni-Cu Binary Alloy Electrocatalysts for Hydrogen Oxidation Reaction in Alkaline Media, ACS Appl. Energy Mater, vol.2, pp.3160-3165, 2019.

M. J. Kelley and V. Ponec, Surface Composition of Alloys, Prog. Surf. Sci, vol.11, pp.139-244, 1981.

S. A. Kabir, K. Lemire, K. Artyushkova, A. Roy, M. Odgaard et al., Platinum Group Metal-Free NiMo Hydrogen Oxidation Catalysts: High Performance and Durability in Alkaline Exchange Membrane Fuel Cells, J. Mater. Chem. A, vol.5, pp.24433-24443, 2017.

M. Schalenbach, F. D. Speck, M. Ledendecker, O. Kasian, D. Goehl et al., Nickel-Molybdenum Alloy Catalysts for the Hydrogen Evolution Reaction: Activity and Stability Revised, Electrochim. Acta, vol.259, pp.1154-1161, 2018.

W. Sheng, A. P. Bivens, M. Myint, Z. Zhuang, R. V. Forest et al., Non-Precious Metal Electrocatalysts with High Activity for Hydrogen Oxidation Reaction in Alkaline Electrolytes, Energy Environ. Sci, vol.7, pp.1719-1724, 2014.

S. Deng, X. Liu, T. Huang, T. Zhao, Y. Lu et al.,

, Modulated Electrocatalytic Properties of Ni: Investigate from Hydrogen Oxidation Reaction to Hydrogen Evolution Reaction, Electrochim. Acta, vol.324, p.134892, 2019.

M. H. Tang, C. Hahn, A. J. Klobuchar, J. W. Ng, J. Wellendorff et al., Nickel-Silver Alloy Electrocatalysts for Hydrogen Evolution and Oxidation in an Alkaline 71

. Electrolyte, Phys. Chem. Chem. Phys, p.16, 2014.

F. Yang, X. Bao, Y. Zhao, X. Wang, G. Cheng et al., Enhanced HOR Catalytic Activity of PGM-Free Catalysts in Alkaline Media: The Electronic Effect Induced by Different Heteroatom Doped Carbon Supports, J. Mater. Chem. A, vol.7, pp.10936-10941, 2019.

J. P. Elder and A. Hickling, Anodic Behaviour of the Borohydride Ion, Trans. Faraday Soc, vol.58, pp.1852-1864, 1962.

R. N. Duncan and T. L. Arney, Sodium Borohydride Reduced Electroless Nickel -Its Operation and Uses, AES Second Electroless Plating Symposium

. Orlando, , p.4874, 1983.

B. H. Liu, Z. P. Li, and S. Suda, Anodic Oxidation of Alkali Borohydrides Catalyzed by Nickel, J. Electrochem. Soc, vol.150, pp.398-402, 2003.

B. H. Liu, Z. P. Li, and S. Suda, Electrocatalysts for the Anodic Oxidation of Borohydrides, Electrochim. Acta, vol.49, pp.3097-3105, 2004.

K. Wang and L. Z. Lu, A Current-Decomposition Study of the Borohydride Oxidation Reaction at Ni Electrodes, J. Phys. Chem. C, vol.111, pp.7456-7462, 2007.

P. Y. Olu, A. Bonnefont, G. Braesch, V. Martin, E. R. Savinova et al., Influence of the Concentration of Borohydride towards Hydrogen Production and Escape for Borohydride Oxidation Reaction on Pt and Au Electrodes -Experimental and Modelling Insights, J. Power Sources, vol.375, pp.300-309, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01887253

B. H. Liu and S. Suda, Hydrogen Storage Alloys as the Anode Materials of the Direct Borohydride Fuel Cell, J. Alloys Compd, vol.454, pp.280-285, 2008.

W. J. Paschoalino and E. A. Ticianelli, An Investigation of the Borohydride Oxidation Reaction on La-Ni-Based Hydrogen Storage Alloys, Int. J. Hydrogen Energy, vol.38, pp.7344-7352, 2013.

S. Li, C. Shu, Y. Chen, and L. Wang, A New Application of Nickel-Boron Amorphous Alloy Nanoparticles: Anode-Catalyzed Direct Borohydride Fuel Cell, Ionics (Kiel), vol.24, pp.201-209, 2018.

S. Saha, S. Ganguly, D. Banerjee, and K. Kargupta, Novel Bimetallic Graphene-Cobalt-Nickel (G-Co-Ni) Nano-Ensemble Electrocatalyst for Enhanced Borohydride Oxidation, Int. J. Hydrogen Energy, vol.40, pp.1760-1773, 2015.

M. Guo, Y. Cheng, Y. Yu, and J. Hu, Ni-Co Nanoparticles Immobilized on a 3D Ni Foam Template as a Highly Efficient Catalyst for Borohydride Electrooxidation in Alkaline Medium, Appl. Surf. Sci, vol.416, pp.439-445, 2017.

D. M. Santos, S. Eugénio, D. S. Cardoso, B. ?ljuki?, and M. F. Montemor, Three-Dimensional Nanostructured Ni-Cu Foams for Borohydride Oxidation, Russ. J. Phys. Chem. A, vol.89, pp.2449-2454, 2015.

D. M. Santos, B. ?ljuki?, L. Amaral, D. Macciò, A. Saccone et al., Nickel and Nickel-Cerium Alloy Anodes for Direct Borohydride Fuel Cells, J. Electrochem. Soc, vol.161, pp.594-599, 2014.

D. M. Santos, B. ?ljuki?, L. Amaral, J. Miliki?, C. A. Sequeira et al., Nickel-Rare Earth Electrodes for Sodium Borohydride Electrooxidation, Electrochim. Acta, vol.190, pp.1050-1056, 2016.

V. A. Grinberg, N. A. Mayorova, A. A. Korlyukov, and A. A. Pasynskii, Direct Borohydride Oxidation Electrocatalysts Based on Ni-Ru/C and Ni-Ru-F/C Alloys, Russ. J. Electrochem, vol.46, pp.1289-1296, 2010.

A. Y. Tsivadze, M. R. Tarasevich, V. N. Titova, A. A. Yavich, and N. V. Petrova, New Electrocatalysts for Direct Borohydride Fuel Cells, Dokl. Phys. Chem, vol.414, pp.107-109, 2007.

B. H. Liu, Z. P. Li, and S. Suda, Development of High-Performance Planar Borohydride Fuel Cell Modules for Portable Applications, J. Power Sources, vol.175, pp.226-231, 2008.

J. Ma, Y. Sahai, and R. G. Buchheit, Direct Borohydride Fuel Cell Using Ni-Based Composite Anodes, J. Power Sources, vol.195, pp.4709-4713, 2010.

B. ?ljuki?, M. Martins, E. Kayhan, A. Bal?i?nait?, T. ?ener et al., SnO2-C Supported PdNi Nanoparticles for Oxygen Reduction and Borohydride Oxidation, J. Electroanal. Chem, vol.797, pp.23-30, 2017.

X. Ma, K. Ye, G. Wang, M. Duan, K. Cheng et al., Facile Fabrication of Gold Coated Nickel Nanoarrays and Its Excellent Catalytic Performance towards Sodium Borohydride Electro-Oxidation, Appl. Surf. Sci, vol.414, pp.353-360, 2017.

D. Duan, J. Liang, H. Liu, X. You, H. Wei et al., The Effective Carbon Supported Core-Shell Structure of Ni@Au Catalysts for Electro-Oxidation of Borohydride, Int. J. Hydrogen Energy, vol.40, pp.488-500, 2015.

L. Tama?auskait?-tama?i?nait?, A. Bal?i?nait?, D. ?imk?nait?, and A. Selskis, Self-Ordered Titania Nanotubes and Flat Surfaces as a Support for the Deposition of Nanostructured Au-Ni Catalyst: Enhanced Electrocatalytic Oxidation of Borohydride, J. Power Sources, vol.202, pp.85-91, 2012.

M. Hasan, S. B. Newcomb, and K. M. Razeeb, Novel Core/Shell Ni@NiO/Pt as High Efficient Electrocatalyst for Alkaline Direct Ethanol Fuel Cells, ECS Trans, vol.45, pp.111-126, 2013.

M. Martins, B. ?ljuki?, C. A. Sequeira, G. S. Soylu, A. B. Yurtcan et al., Supported on Binary Metal Oxides: Potential Bifunctional Electrocatalysts for Low-Temperature Fuel Cells?, Appl. Surf. Sci, vol.428, pp.31-40, 2018.

B. ?ljuki?, J. Miliki?, D. M. Santos, and C. A. Sequeira, Carbon-Supported Pt0.75M0.25 (M = Ni or Co) Electrocatalysts for Borohydride Oxidation, Electrochim. Acta, vol.107, pp.577-583, 2013.

E. Gyenge, M. Atwan, and D. Northwood, Electrocatalysis of Borohydride Oxidation on Colloidal Pt and Pt-Alloys (Pt-Ir, Pt-Ni, and Pt-Au) and Application for Direct Borohydride Fuel Cell Anodes

, J. Electrochem. Soc, vol.153, pp.150-158, 2006.

L. Tama?auskaite-tama?iunaite, R. ?ekaviciute, D. ?imkunaite, A. Selskis, and . Nano-pt, Ni)/TiO2-NTs Catalysts for Borohydride Oxidation, International Conference on Power and Energy Systems, pp.467-472, 2011.

L. Tamasauskaite-tamasiunaite, A. Bal?iunaite, A. Zabielaite, J. Vai?iuniene, A. Selskis et al., Electrocatalytic Activity of Nanostructured Pt-Ni Catalysts Deposited on the Titania Nanotube Arrays towards Borohydride Oxidation, J. Electroanal. Chem, vol.707, pp.31-37, 2013.

M. Martins, J. Miliki?, B. ?ljuki?, G. S. Soylu, A. B. Yurtcan et al., V2O5, WO3) Supported PtNi Nanoparticles: Designing Stable and Efficient Electrocatalysts for Oxygen Reduction and Borohydride Oxidation, vol.273, pp.286-293, 2019.

J. Ma, N. A. Choudhury, and Y. Sahai, A Comprehensive Review of Direct Borohydride Fuel Cells, Renew. Sustain. Energy Rev, vol.14, pp.183-199, 2010.

P. Y. Olu, N. Job, and M. Chatenet, Evaluation of Anode (Electro)Catalytic Materials for the Direct Borohydride Fuel Cell: Methods and Benchmarks, J. Power Sources, vol.327, pp.235-257, 2016.

A. Aytaç, M. Gürbüz, and A. E. Sanli, Electrooxidation of Hydrogen Peroxide and Sodium Borohydride on Ni Deposited Carbon Fiber Electrode for Alkaline Fuel Cells, Int. J. Hydrogen Energy, vol.36, pp.10013-10021, 2011.

A. G. Oshchepkov, G. Braesch, S. Ould-amara, G. Rostamikia, G. Maranzana et al., Nickel Metal Nanoparticles as
URL : https://hal.archives-ouvertes.fr/hal-02385910

, Anode Electrocatalysts for Highly Efficient Direct Borohydride Fuel Cells, ACS Catal, vol.9, pp.8520-8528, 2019.

G. Braesch, A. G. Oshchepkov, A. Bonnefont, F. Asonkeng, T. Maurer et al., Nickel 3D Structures Enhanced by Electrodeposition of Nickel Nanoparticles as High Performance Anodes for Direct Borohydride Fuel Cells, vol.7, pp.1789-1799, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02547431

M. Paunovic, Electrochemical Aspects of Electroless Nickel Deposition, Plat. Surf. Finish, vol.70, pp.62-66, 1983.

L. D. Burke and B. H. Lee, An Investigation of Some Electrocatalytic Processes Occurring at Low Potentials at a Nickel Electrode in Base, J. Electrochem. Soc, vol.138, pp.2496-2504, 1991.

Y. Okinaka, Electrochemical Study of Electroless Gold-Deposition Reaction, J. Electrochem. Soc, vol.120, pp.739-744, 1973.

A. Zadick, L. Dubau, K. Artyushkova, A. Serov, P. Atanassov et al., Nickel-Based Electrocatalysts for Ammonia Borane Oxidation: Enabling Materials for Carbon-Free-Fuel Direct Liquid Alkaline Fuel Cell Technology, Nano Energy, vol.37, pp.248-259, 2017.

G. Wang, H. Wang, T. Chen, Y. Tan, . Fe et al., Cu) Nanowires as Anodes for Ammonia-Borane Electrooxidation and the Derived Ni1-xMxSe2-y-OOH Ultrathin Nanosheets as Efficient Electrocatalysts for Oxygen Evolution, J. Mater. Chem. A, vol.7, pp.16372-16386, 2019.

W. Wiesener, Untersuchung Zur Anodischen Hydrazin-Oxidation an Porösen Kohleelektroden Unter Verwendung von Nickel-Und Nickelboridkatalysatoren, Electrochim. Acta, vol.15, pp.1065-1077, 1970.

S. G. Meibuhr, Surface-Catalyzed Anodes for Hydrazine Fuel Cells: I. Preparation of the Substrate, J. Electrochem. Soc, vol.121, pp.1264-1270, 1974.

S. G. Meibuhr and R. F. Paluch, Surface-Catalyzed Anodes for Hydrazine Fuel Cells II. Lifetime Studies of Heat-Treated Nickel Boride Catalyzed Anodes, J. Electrochem. Soc, vol.122, pp.164-76, 1975.

A. S. Adekunle and K. I. Ozoemena, Insights into the Electro-Oxidation of Hydrazine at Single-Walled Carbon-Nanotube-Modified Edge-Plane Pyrolytic Graphite Electrodes Electro-Decorated with Metal and Metal Oxide Films, J. Solid State Electrochem, vol.12, pp.1325-1336, 2008.

H. Y. Qin, Z. X. Liu, W. X. Yin, J. K. Zhu, and Z. P. Li, Effects of Hydrazine Addition on Gas Evolution and Performance of the Direct Borohydride Fuel Cell, J. Power Sources, vol.185, pp.895-898, 2008.

L. Q. Ye, Z. P. Li, H. Y. Qin, J. K. Zhu, and B. H. Liu, Hydrazine Electrooxidation on a Composite Catalyst Consisting of Nickel and Palladium, J. Power Sources, vol.196, pp.956-961, 2011.

U. Martinez, K. Asazawa, B. Halevi, A. Falase, B. Kiefer et al., Aerosol-Derived Ni1-xZnx Electrocatalysts for Direct Hydrazine Fuel Cells, Phys. Chem. Chem. Phys, vol.14, pp.5512-5517, 2012.

T. Sakamoto, K. Asazawa, K. Yamada, and H. Tanaka, Study of Pt-Free Anode Catalysts for Anion Exchange Membrane Fuel Cells, Catal. Today, vol.164, pp.181-185, 2011.

T. Sakamoto, K. Asazawa, U. Martinez, B. Halevi, T. Suzuki et al., Electrooxidation of Hydrazine Hydrate Using Ni-La Catalyst for Anion Exchange Membrane Fuel Cells, J. Power Sources, vol.234, pp.252-259, 2013.

T. Asset, A. Roy, T. Sakamoto, M. Padilla, I. Matanovic et al., Highly Active and Selective Nickel Molybdenum Catalysts for Direct Hydrazine Fuel Cell, Electrochim. Acta, vol.215, pp.420-426, 2016.

T. Y. Jeon, M. Watanabe, and K. Miyatake, Carbon Segregation-Induced Highly Metallic Ni Nanoparticles for Electrocatalytic Oxidation of Hydrazine in Alkaline Media, ACS Appl. Mater. Interfaces, vol.6, pp.18445-18449, 2014.

D. A. Finkelstein, R. Imbeault, S. Garbarino, L. Roué, and D. Guay, Trends in Catalysis and Catalyst Cost Effectiveness for N2H4 Fuel Cells and Sensors: A Rotating Disk Electrode (RDE) Study, J. Phys. Chem. C, vol.120, pp.4717-4738, 2016.

T. Sakamoto, K. Asazawa, J. Sanabria-chinchilla, U. Martinez, B. Halevi et al., Combinatorial Discovery of Ni-Based Binary and Ternary Catalysts for

, Hydrazine Electrooxidation for Use in Anion Exchange Membrane Fuel Cells, J. Power Sources, vol.247, pp.605-611, 2014.

T. Sakamoto, T. Masuda, K. Yoshimoto, H. Kishi, S. Yamaguchi et al.,

, Hydrazine Electrooxidation Catalysts for Anion Exchange Membrane Fuel Cells, J. Electrochem. Soc, vol.164, pp.229-234, 2017.

A. Prathap, M. U. Anuraj, V. Satpati, B. Srivastava, and R. , Facile Preparation of Ni(OH)2-MnO2 Hybrid Material and Its Application in the Electrocatalytic Oxidation of Hydrazine, J. Hazard. Mater, vol.262, pp.766-774, 2013.

G. Feng, Y. Kuang, Y. Li, and X. Sun, Three-Dimensional Porous Superaerophobic Nickel Nanoflower Electrodes for High-Performance Hydrazine Oxidation, Nano Res, vol.8, pp.3365-3371, 2015.

Y. Kuang, G. Feng, P. Li, Y. Bi, Y. Li et al., Single-Crystalline Ultrathin Nickel Nanosheets Array from in Situ Topotactic Reduction for Active and Stable Electrocatalysis. Angew. Chemie -Int, vol.55, pp.693-697, 2016.

X. Li, W. H. Hu, Y. R. Liu, B. Dong, G. Q. Han et al., Facile Synthesis of Novel NiSe-NixSy Nanocubes Supported on Nickel Foam with Enhanced Activity for Hydrazine Electroxidation, Mater. Lett, vol.175, pp.118-121, 2016.

B. Dong, X. Li, X. Shang, Y. M. Chai, and C. G. Liu, In-Situ Grown Interwoven NiSe on Ni Foam as a Catalyst for Hydrazine Oxidation, Int. J. Mater. Res, vol.107, pp.586-589, 2016.

D. C. De-oliveira, W. O. Silva, M. Chatenet, and F. H. Lima, NiOx-Pt/C Nanocomposites: Highly Active Electrocatalysts for the Electrochemical Oxidation of Hydrazine, Appl. Catal. B Environ, vol.201, pp.22-28, 2017.

L. S. Wu, X. P. Wen, H. Wen, H. Dai, and . Bin,

P. Wang, Palladium Decorated Porous Nickel Having Enhanced Electrocatalytic Performance for Hydrazine Oxidation, J. Power Sources, vol.412, pp.71-77, 2019.

J. Zhang, X. Cao, M. Guo, H. Wang, M. Saunders et al., Unique Ni Crystalline Core/Ni Phosphide Amorphous Shell Heterostructured Electrocatalyst for Hydrazine Oxidation Reaction of Fuel Cells, ACS Appl. Mater. Interfaces, vol.11, pp.19048-19055, 2019.

X. L. Wang, Y. X. Zheng, M. L. Jia, L. S. Yuan, C. Peng et al., Formation of Nanoporous NiCuP Amorphous Alloy Electrode by Potentiostatic Etching and Its Application for Hydrazine Oxidation, Int. J. Hydrogen Energy, vol.41, pp.8449-8458, 2016.

X. Liu, Y. Li, N. Chen, D. Deng, X. Xing et al., Ni3S2@Ni Foam 3D Electrode Prepared via Chemical Corrosion by Sodium Sulfide and Using in Hydrazine Electro-Oxidation

, Electrochim. Acta, vol.213, pp.730-739, 2016.

A. Serov, M. Padilla, A. J. Roy, P. Atanassov, T. Sakamoto et al., Anode Catalysts for Direct Hydrazine Fuel Cells: From Laboratory Test to an Electric Vehicle. Angew. Chemie Int, vol.53, pp.10336-10339, 2014.

P. N. Ross and H. Sokol, Corrosion of Carbon Black Anodes in Alkaline Electrolyte: I. Acetylene Black and the Effect of Cobalt Catalyzation, Proc. -Electrochem. Soc, pp.313-343, 1984.

N. Staud, H. Sokol, and P. N. Ross, The Corrosion of Carbon Black Anodes in Alkaline Electrolyte 79

. Iv, Current Efficiencies for Oxygen Evolution from Metal Oxide-Impregnated Graphitized Furnace Blacks, J. Electrochem. Soc, vol.136, pp.3570-3576, 1989.

E. S. Davydova, F. D. Speck, M. T. Paul, D. R. Dekel, and S. Cherevko, Stability Limits of Ni-Based Hydrogen Oxidation Electrocatalysts for Anion Exchange Membrane Fuel Cells, ACS Catal, vol.9, pp.6837-6845, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02162557

A. Zadick, L. Dubau, N. Sergent, G. Berthomé, and M. Chatenet, Huge Instability of Pt/C Catalysts in Alkaline Medium, ACS Catal, vol.5, pp.4819-4824, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01218294

A. Zadick, L. Dubau, U. B. Demirci, and M. Chatenet, Effects of Pd Nanoparticle Size and Solution Reducer Strength on Pd/C Electrocatalyst Stability in Alkaline Electrolyte, J. Electrochem. Soc, vol.163, pp.781-787, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01687187

C. Lafforgue, A. Zadick, L. Dubau, F. Maillard, and M. Chatenet, Selected Review of the Degradation of Pt and Pd-Based Carbon-Supported Electrocatalysts for Alkaline Fuel Cells: Towards Mechanisms of Degradation, Fuel Cells, vol.18, pp.229-238, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01887245

C. Lafforgue, F. Maillard, V. Martin, L. Dubau, and M. Chatenet, Degradation of Carbon-Supported Platinum-Group-Metal Electrocatalysts in Alkaline Media Studied by in Situ Fourier Transform Infrared Spectroscopy and Identical-Location Transmission Electron Microscopy, ACS Catal, vol.9, pp.5613-5622, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02334297

C. Lafforgue, M. Chatenet, L. Dubau, and D. R. Dekel, Accelerated Stress Test of Pt/C Nanoparticles in an Interface with an Anion-Exchange Membrane -An Identical-Location Transmission Electron Microscopy Study, ACS Catal, vol.8, pp.1278-1286, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01887248

D. Soared, M. Kleinke, I. Torriani, and O. Teschke, Deactivation Mechanism of Nickel Cathodes in Alkaline Media, Int. J. Hydrogen Energy, vol.19, pp.573-578, 1994.

D. Chade, L. Berlouis, D. Infield, P. T. Nielsen, and T. Mathiesen, Deactivation Mechanisms of Atmospheric Plasma Spraying Raney Nickel Electrodes, J. Electrochem. Soc, vol.163, pp.308-317, 2016.

M. Schulze and E. Gülzow, Degradation of Nickel Anodes in Alkaline Fuel Cells, J. Power Sources, vol.127, pp.252-263, 2004.

E. Endoh, H. Otouma, T. Morimoto, and Y. Oda, New Raney Nickel Composite-Coated Electrode for Hydrogen Evolution, Int. J. Hydrogen Energy, vol.12, pp.473-479, 1987.

Y. Kiros, M. Majari, and T. A. Nissinen, Effect and Characterization of Dopants to Raney Nickel for Hydrogen Oxidation, J. Alloys Compd, vol.360, pp.279-285, 2003.

N. V. Korovin, M. V. Kumenko, and N. I. Kozlova, Changes in the Properties of Raney Nickel Surface Catalysts during Continuous, Long-Term Cathodic Polarization, Sov. Electrochem. (Engl. Transl, vol.23, pp.376-379, 1987.

D. W. Kirk and S. J. Thorpe, Nickel Cathode Passivation in Alkaline Water Electrolysis, ECS Trans, vol.2, pp.71-76, 2007.

J. Divisek, J. Mergel, and H. Schmitz, Advanced Water Electrolysis and Catalyst Stability under Discontinuous Operation, Int. J. Hydrogen Energy, vol.15, pp.105-114, 1990.

E. Endoh, H. Otouma, and T. Morimoto, Advanced Low Hydrogen Overvoltage Cathode for Chlor-Alkali Electrolysis Cells, Int. J. Hydrogen Energy, vol.13, pp.207-213, 1988.

S. Marini, P. Salvi, P. Nelli, R. Pesenti, M. Villa et al., Stable and Inexpensive Electrodes for the Hydrogen Evolution Reaction, Int. J. Hydrogen Energy, vol.38, pp.11484-11495, 2013.

N. Yoshida, M. Yoshitake, E. Endoh, and T. Morimoto, Development of Highly Durable Low Hydrogen Overvoltage Cathode in Chlor-Alkali Cells, Int. J. Hydrogen Energy, vol.14, pp.137-140, 1989.

N. Yoshida and T. Morimoto, A New Low Hydrogen Overvoltage Cathode for Chlor-Alkali Electrolysis Cell, Electrochim. Acta, vol.39, pp.1733-1737, 1994.

A. E. Mauer, D. W. Kirk, and S. J. Thorpe, The Role of Iron in the Prevention of Nickel Electrode Deactivation in Alkaline Electrolysis, Electrochim. Acta, vol.52, pp.3505-3509, 2007.

R. M. Abouatallah, D. W. Kirk, and J. W. Graydon, Long-Term Electrolytic Hydrogen Permeation in Nickel and the Effect of v Anadium Species Addition, vol.47, pp.2483-2494, 2002.