A. Kumar and P. C. , Chiral Magneto-Electrochemistry, Magnetochemistry. 4, 2018.

,

J. Romero, H. Prima-garcia, M. Varela, S. G. Miralles, V. Oestreicher et al., Giant Enhancement in the Supercapacitance of NiFe -Graphene Nanocomposites Induced by a Magnetic Field, Adv. Mater, vol.31, pp.1-8, 2019.

,

W. Kici?ski, J. P. S?k, E. Matysiak-brynda, K. Miecznikowski, M. Donten et al., Environmental Enhancement of PGM-free oxygen reduction electrocatalyst performance for conventional and enzymatic fuel cells : The influence of an external magnetic field, Appl. Catal. B, vol.258, p.117955, 2019.

,

Z. Zeng, W. Zhang, Z. Ji, Z. Yin, and J. Wei, Magnetically-enhanced electron transfer from immobilized galvinoxyl radicals, Electrochem. Commun, vol.99, pp.36-40, 2019.

,

I. Mogi, R. Morimoto, and R. Aogaki, Surface chirality effects induced by magnetic fields, Curr. Opin. Electrochem, vol.7, pp.1-6, 2018.

P. Zou, J. Li, Y. Zhang, C. Liang, C. Yang et al., Nano Energy Magnetic-field-induced rapid synthesis of defect-enriched Ni-Co nanowire membrane as highly efficient hydrogen evolution electrocatalyst, Nano Energy, vol.51, pp.349-357, 2018.

,

Y. Li, L. Zhang, J. Peng, W. Zhang, and K. Peng, Magnetic field enhancing electrocatalysis of Co3O4/NF for oxygen evolution reaction, J. Power Sources, vol.433, p.226704, 2019.

S. Mohan, G. Saravanan, and A. Bund, Role of magnetic forces in pulse electrochemical deposition of Ni nanoAl2O3 composites, Electrochim. Acta, vol.64, pp.94-99, 2012.

,

H. Liu, Q. Hu, L. Pan, R. Wu, Y. Liu et al., Electrode-normal magnetic field facilitating neighbouring electrochemical bubble release from hydrophobic islets, Electrochim. Acta, vol.306, pp.350-359, 2019.

H. Liu, D. Zhong, J. Han, and L. Pan, Hydrogen bubble evolution from magnetized nickel wire electrode, Int. J. Hydrog. Energy, vol.44, pp.31724-31730, 2019.

,

M. S. Cho, Y. Y. Yun, J. D. Nam, Y. Son, and Y. Lee, Effect of magnetic field on electrochemical polymerization of EDOT, Synth. Met, vol.158, pp.1043-1046, 2008.

,

R. Karpowicz, J. Lewkowski, and M. Morawska, The aza-Pudovik reaction accelerated in external constant magnetic field, Chem. Pap. Short Commun, vol.70, pp.1529-1532, 2016.

,

Y. Li, H. Li, Y. Li, S. Peng, and Y. Hang, Fe-B alloy coupled with Fe clusters as an efficient cocatalyst for photocatalytic hydrogen evolution, Chem. Eng. J, vol.344, pp.506-513, 2018.

,

W. M. Haynes, Magnetic Susceptibility of the Elements and Inorganic Compounds, Handb. Chem. Phys, pp.130-135, 1998.

K. Tschulik, C. Cierpka, A. Gebert, L. Schultz, and J. K. Christian, Situ Analysis of Three-Dimensional Electrolyte Convection Magnetic Gradient Fields, vol.83, pp.3275-3281, 2011.

L. M. Monzon, K. Rode, M. Venkatesan, and J. M. Coey, Electrosynthesis of Iron, Cobalt, and Zinc Microcrystals and Magnetic Enhancement of the Oxygen Reduction Reaction, Chem. Mater, vol.24, pp.3878-3885, 2012.

K. Ray, S. P. Ananthavel, D. H. Waldeck, and R. Naaman, Asymmetric Scattering of Polarized Electrons by Organized Organic Films of Chiral Molecules, Science (80-. ), vol.283, pp.814-817, 1999.

C. Fontanesi, Spin-dependent electrochemistry : A novel paradigm, Curr. Opin. Electrochem, vol.7, pp.36-41, 2019.

P. C. Mondal, W. Mtangi, C. Fontanesi, and . Chiro-spintronics, Spin-Dependent Electrochemistry and Water Splitting Using Chiral Molecular Films, vol.2, p.1700313, 2018.

*. , This paper reviews spin-dependant electrochemistry, in particular for water-splitting

Z. Zeng, J. Wei, Y. Liu, W. Zhang, T. Mabe et al., Magnetoreception of Photoactivated Cryptochrome 1 in Electrochemistry and Electron Transfer, vol.3, pp.4752-4759, 2018.

,

M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen-van-dau, and F. Petroff, Giant Magnetoresistance of (001)Fe/(001) Cr Magnetic Superlattices, Phys. Rev. Lett, vol.61, pp.2472-2475, 1988.

W. Mtangi, F. Tassinari, K. Vankayala, A. V. Jentzsch, B. Adelizzi et al., Control of Electrons' Spin Eliminates Hydrogen Peroxide Formation During Water Splitting, J. Am. Chem. Soc, vol.139, pp.2794-2798, 2017.

,

M. **-in-this-paper, precise how spin-polarization enables to orient reactions pathways

W. Mtangi, V. Kiran, C. Fontanesi, and R. Naaman, Role of the Electron Spin Polarization in Water Splitting, J. Phys. Chem Lett, vol.6, pp.4916-4922, 2015.

,

D. Qi, A. Kenaan, D. Cui, and J. Song, Novel insights into the selection to electron's spin of chiral structure, Nano Energy, vol.52, pp.142-152, 2018.

,

E. Torun, C. M. Fang, G. A. De-wijs, and R. A. De-groot, Role of Magnetism in Catalysis: RuO2(110) Surface, J. Phys. Chem. C, vol.2, pp.6353-6357, 2013.

,

F. A. Garcés-pineda, M. Blasco-ahicart, D. Nieto-castro, N. López, and J. R. , Galán-mascarós, Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media, Nat. Energy, vol.4, pp.519-525, 2019.

, This paper explore spin-polarization effects during oxygen evolution. The supporting information is of particular interest

J. S. Moodera and G. Mathon, Spin polarized tunneling in ferromagnetic junctions, J. Magn

. Magn and . Mater, , vol.200, pp.515-521, 1999.

Z. Zeng, T. Zhang, Y. Liu, W. Zhang, Z. Yin et al., Magnetic Field-Enhanced 4-Electron Pathway for Well-Aligned Co3O4/Electrospun Carbon Nanofibers in the Oxygen Reduction Reaction, ChemSusChem, vol.11, pp.580-588, 2018.

,

R. P. Forslund, W. G. Hardin, X. Rong, A. M. Abakumov, C. T. Alexander et al., Exceptional Electrocatalytic Oxygen Evolution Via Tunable Ruddlesden-Popper Oxides, Nat. Commun, vol.9, p.3150, 2018.

H. Pan, M. Wang, Y. Shen, and B. Hu, Large Magneto-Current Effect in the Electrochemical Detection of Oxalate in Aqueous Solution, J. Phys. Chem. C, vol.122, pp.19880-19885, 2018.

,

S. Bhattacharjee and S. Lee, Controlling Oxygen-Based Electrochemical Reactions through Spin Orientation, J. Phys. Chem. C, vol.122, pp.894-901, 2018.

,

C. Biz, M. Fianchini, J. Gracia, M. Fianchini, and J. Gracia, Catalysis Meets Spintronics

, Spin Potentials Associated with Open-Shell Orbital Configurations Enhance the Activity of Pt3Co Nanostructures for Oxygen Reduction: A Density Functional Theory Study, ACS Appl. Nano Mater, vol.3, pp.506-515, 2020.

J. Gracia, M. Sl, and G. Polavieja, Itinerant Spins and Bond Lengths in Oxide Electrocatalysts for Oxygen Evolution and Reduction Reactions, J. Phys. Chem. C, vol.123, pp.9967-9972, 2019.

J. Gracia, C. Biz, and M. Fianchini, The trend of chemisorption of hydrogen and oxygen atoms on pure transition metals : Magnetism justifies unexpected behaviour of Mn and Cr, Mater. Today Commun, vol.23, p.100894, 2020.

,

J. Gracia, R. Sharpe, and J. Munarriz, Principles determining the activity of magnetic oxides for electron transfer reactions, J. Catal, vol.361, pp.331-338, 2018.

,

A. Manabe, M. Kashiwase, T. Hashimoto, T. Hayashida, A. Kato et al.,

I. Shimomura and . Nagashima, Basic study of alkaline water electrolysis, Electrochim. Acta, vol.100, pp.249-256, 2013.

G. Bullard, F. Tassinari, C. Ko, A. K. Mondal, R. Wang et al., Low-Resistance Molecular Wires Propagate Spin-Polarized Currents, J. Am

, Chem. Soc, vol.141, pp.14707-14711, 2019.

S. Mishra, S. Pirbadian, A. K. Mondal, and M. Y. , El-naggar, Spin-Dependent Electron Transport through Bacterial Cell Surface Multiheme Electron Conduits, J. Am. Chem

, Soc, vol.141, pp.19198-19202, 2019.

A. Kumar, E. Capua, C. Fontanesi, R. Carmieli, and R. Naaman, Injection of Spin-Polarized Electrons into a AlGaN/GaN Device from an Electrochemical Cell: Evidence for an Extremely Long Spin Lifetime, ACS Nano, vol.12, pp.3892-3897, 2018.

,

F. Tassinari, K. Banerjee-ghosh, F. Parenti, V. Kiran, A. Mucci et al., Enhanced Hydrogen Production with Chiral Conductive Polymer-Based Electrodes, J. Phys. Chem

C. , , pp.15777-15783, 2017.

C. Niether, S. Faure, A. Bordet, J. Deseure, M. Chatenet et al., Improved water electrolysis using magnetic heating of FeC-Ni core-shell nanoparticles, Nat. Energy, vol.3, pp.476-483, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01887241

*. , This paper explores hyperthermia and its interest to accelerate the kinetics of watersplitting reaction

G. F. Goya, L. Asín, and M. R. Ibarra, Cell death induced by AC magnetic fields and magnetic nanoparticles : Current state and perspectives, Int. J. Hyperth, vol.29, pp.810-818, 2013.

,

J. Carrey, B. Mehdaoui, and M. Respaud, Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization, J. Appl. Phys, vol.109, p.83921, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01952248

,

A. F. Melo, V. A. Carvalho, K. C. Pagnoncelli, and F. N. Crespilho, Single microparticle applied in magnetic-switchable electrochemistry, Electrochem. Commun, vol.30, pp.79-82, 2013.

G. Bin, Z. Peng, J. I. Yongping, and C. Shukang, Effects of alternating magnetic field on the corrosion rate and corrosion products of copper, Rare Met, vol.27, pp.324-328, 2008.

, , pp.60138-60140

A. Tucs, V. Bojarevics, and K. Pericleous, Magnetohydrodynamic stability of large scale liquid metal batteries, J. Fluid Mech, vol.852, pp.453-483, 2018.

,

J. Shu, S. Tang, Z. Feng, W. Li, X. Li et al., Unconventional locomotion of liquid metal droplets driven by magnetic fields, Soft Matter, vol.14, pp.7113-7118, 2018.

,

J. Shu, S. Tang, S. Zhao, Z. Feng, and H. Chen, Rotation of Liquid Metal Droplets Solely Driven by the Action of Magnetic Fields, Appl. Sci, vol.9, p.1421, 2019.

,

C. Warner, C. M. Mcdermid, A. Ahmadi, and L. Markley, Impact of electrode design and voltage waveform on low-potential magnetohydrodynamic fluid actuation, Microfluid. Nanofluidics, vol.23, pp.1-8, 2019.

J. M. Coey, F. M. Rhen, P. Dunne, and S. Mcmurry, The magnetic concentration gradient force -Is it real ?, J. Solid State Electrochem, vol.11, pp.711-717, 2007.

,