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Abstract  

The three-dimensional (3D) organization of chromatin plays a crucial role in the regulation of 
gene expression. Chromatin conformation is strongly affected by the composition, structural 
features and dynamic properties of the nucleosome, which in turn determine the nature and 
geometry of interactions that can occur between neighboring nucleosomes. Understanding 
how chromatin is spatially organized above the nucleosome level is thus essential for 
understanding how gene regulation is achieved. Towards this end, great effort has been made 
to understand how an array of nucleosomes folds into a regular chromatin fiber. This review 
summarizes new insights into the 3D structure of the chromatin fiber that were made possible 
by recent advances in cryo-electron microscopy. 

 

Introduction 

The standard textbook view of eukaryotic chromatin depicts a hierarchical organization in 
which nucleosomes arranged along the DNA as 11-nm "beads on a string" fold into more 



compact 30-nm fibers, which in turn fold into higher-order structures of increasing complexity 
[1]. However, the pertinence of this textbook view to chromatin organization in vivo is a 
matter of debate. Numerous studies failed to detect 30-nm fibers in many eukaryotic nuclei, 
where chromatin appears to form irregularly folded chains [2-6] with zigzag features [7, 8]. 
Nevertheless, in some terminally differentiated cells the presence of well-defined 30-nm 
fibers is well-established [9-12], suggesting a role for such structures in transcriptionally 
inactive chromatin. In any event, studies of the organization and compaction/decompaction 
mechanism of the 30 nm fiber remain a powerful means for discovering structural properties 
of chromatin that can shed valuable light on the molecular mechanisms regulating gene 
expression and other DNA-templated processes. This review will focus on cryo-electron 
microscopy (cryo-EM) studies that relate to regular chromatin fibers with a periodic structure 
(Table 1). For studies of the irregular, more dynamic chromatin structures observed in many 
cells, readers are referred to a recent review [13].  

 

Early EM studies of chromatin 

Since its discovery the chromatin fiber has been the focus of intense study by diverse 
techniques. Studies were performed either on isolated chromatin or in situ using isolated 
nuclei or whole cells. Pioneering electron microscopy (EM) studies of the chromatin fiber by 
Klug and colleagues [14, 15] revealed that chromatin fibers isolated from nuclei under 
physiological ionic conditions (and containing the linker histone, discussed below) had a 
diameter of about 30 nm and a density of approximately 6-8 nucleosomes per 11 nm along 
the fiber axis. These and subsequent studies led to the emergence of two distinct structural 
models: a one-start helix (solenoid) with a consecutive arrangement of nucleosomes [14] and 
a two-start zigzag helicoidal structure [16-19]. Later, the coexistence of one-and two-start 
structures within the same fiber [20] and a polymorphic fiber model incorporating 
nucleosome repeat length (NRL) variability [21] were also proposed.  

Higher order chromatin organization was shown to be critically dependent on the presence of 
the linker histone (named H1 or H5) [1, 22], which associates at the nucleosomal DNA 
entry/exit site to induce the formation of an apposed linker DNA stem motif [23-25]. However, 
despite this important early progress, because of the conformational variability of the 
chromatin fiber and the many environmental factors that affect its degree of compaction, the 
limitations of standard EM techniques were soon recognized. In particular, adsorption to the 
flat EM grid surface altered the 3D conformation of the fiber, and the need for dehydration 
made the control of ionic environment impossible. It therefore became obvious that analysis 
of the vitrified hydrated state by cryo-EM would be the method of choice for investigating the 
structure of the fiber.  

 



Cryo-EM of isolated chromatin fibers  
Initial attempts to analyse chromatin by cryo-EM date to 1986 when images of vitrified SV40 
minichromosomes isolated from infected mammalian cells were first recorded [26]. Detailed 
cryo-EM studies of the chromatin fiber were later performed by Woodcock’s group [24, 27, 
28], including the first use of cryo-EM tomography (cryo-ET) [29]. The organization and 
conformation of the chromatin fiber are determined by various factors. The most important 
of these are: the isoform and relative amount of the linker histone bound [30], the ionic 
conditions, the composition of the core histones (presence of specific histone variants), the 
type and degree of posttranslational modifications [31], and the length of the DNA linker [32] 
and of core histone tails [33, 34]. Thus, native chromatin fibers isolated from nuclei are poorly 
suited for high resolution studies by single particle analysis (SPA) but are suitable for analysis 
by cryo-ET. For SPA, most recent studies use reconstituted chromatin arrays with a rigorously 
defined composition. It should be noted that the reliable and well controlled reconstitution of 
chromatin arrays only became possible following  the discovery of the strongly positioning 601 
DNA sequence [35] and the introduction of improved linker histone association procedures 
[25, 36]. 
 
 
Role of the linker histone  
A major factor affecting the fold of the chromatin fiber is the linker histone: whereas depletion 
of the linker histone yields fibers with an erratic appearance, fibers associated with this 
histone appear highly regular in structure [15]. Linker histone isoforms include 11 mammalian 
H1 subtypes and the avian erythrocyte variant H5. These are characterized by a central 
globular domain flanked by intrinsically disordered N- and C-terminal domains [1].  The C-
terminal domain is highly positively charged  and largely responsible for the condensation 
state of the chromatin fiber [25, 34]. The linker histone content in different cell types ranges 
between 0.5 and 1 per nucleosome and this number correlates linearly with the nucleosome 
repeat length (NRL) [37]. Studies of reconstituted nucleosome arrays revealed that the degree 
of compaction and 3D conformation of the chromatin fiber varies with different linker histone 
stoichiometries and NRLs [38]. Post-translational modifications of the linker histone have also 
been shown to alter the degree of chromatin compaction [39, 40]. 
 
Efforts to determine the binding configuration of linker histones within the nucleosome have 
led to divergent conclusions concerning both their location and orientation [41-44]. In 2017, 
Bednar et al. [45] reported the structure of a 197 bp nucleosome associated with full-length 
H1 (isoforms H1.0 and H1.5) at 6.3 Å resolution determined by cryo-EM and SPA (Figure 1A). 
The structure revealed the H1 globular domain positioned on the nucleosomal dyad axis and 
in contact with both DNA arms ("on-dyad" binding mode), in agreement with the crystal 
structure of a 167 bp nucleosome bound to the H5 globular domain [46]. 3D classification also 
revealed an alternate, more open conformation in which the globular domain contacted only 
one DNA arm. This study showed how the binding of H1 drew the two linker DNA arms 



together and reduced their dynamic flexibility, thereby limiting the conformational landscape 
available to the chromatin fiber and its possible modes of compaction. Moreover, cryo-EM 
was crucial in revealing that the H1.0 C-terminal domain associates with only a single DNA 
linker arm, imparting a strong degree of asymmetry to the nucleosome that is likely to have 
implications for higher-order chromatin structure.  

 
The histone H3 variant CENP-A  
CENP-A, a variant of histone H3, marks centromeres epigenetically and is essential for mitotic 
fidelity. CENP-A nucleosomes recruit centromeric proteins during kinetochore assembly, but 
their influence on the higher-order structure of centromeric chromatin is poorly understood. 
Cryo-EM analysis of CENP-A nucleosomes revealed that, compared to H3, CENP-A induces 
more open linker arm conformations and larger DNA end orientation fluctuations [47], 
consistent with previous reports that the DNA ends of CENP-A nucleosomes have higher 
dynamic flexibility [48]. This enhanced flexibility was shown to be essential for proper 
kinetochore formation and a source of local irregularity in chromatin fiber folding [47] . To 
shed light on the impact of CENP-A on higher-order chromatin structure, Takizawa et al. used 
cryo-EM to study tri-nucleosomes composed of a central CENP-A nucleosome flanked on 
either side by an H3 nucleosome [49]. These H3-(CENP-A)-H3 tri-nucleosomes adopted a 
configuration remarkably less twisted than that observed for H3-H3-H3 tri-nucleosomes. 
Hypothetical chromatin fiber models based on these structures suggested that an untwisted 
CENP-A conformation embedded in an H3 nucleosomal fiber would yield a highly exposed 
CENP-A nucleosome [49]. This, in combination with the experimental data showing that 
histone H1 is not able to bind to the CENP-A nucleosome [47], suggest that CENP-A 
incorporation may induce the local opening of an otherwise compact folded chromatin fibre, 
providing insights into how CENP-A enables the recruitment of centromeric proteins during 
kinetochore assembly.  Nucleosomes containing other histone variants with features 
resembling those of CENP-A  might similarly affect chromatin fiber folding [50].  
 
Oligonucleosome arrays 
In vitro reconstituted oligonucleosome arrays are useful for investigating the structure of the 
30 nm chromatin fiber as they form well-defined molecular objects suitable for single particle 
analysis (SPA). However, as the size of the array increases so do the complexity of 
oligonucleosome preparation and the occurrence of irregularities within the fiber. Robinson 
and colleagues [51] reconstituted long nucleosome arrays (n=22 to 72) with a varying NRL 
(from 177 to 237 in steps of 10 bp) in the presence of linker histone H5 and analyzed their 
structures by negative-stain EM and cryo-EM. Two classes of highly compact fiber structure 
(11 or 15 nucleosomes per 11 nm versus the more usual 6-8) were observed. This had an 
essentially constant diameter of either ~33 or ~44 nm, depending on whether arrays had NRLs 
of  177-207 or 217-237 bp, respectively. These observations argued against a two-start helical 



fiber structure and led the authors to propose a one-start interdigitated solenoid model 
(Figure 2A).  

 
By contrast, SPA performed by Song et al. on reconstituted nucleosome arrays comprising 
12´177, 12´187 or 24´187 bp repeats and bound to a linker histone (human isoform H1.4) 
revealed a chromatin fiber structure with a two-start twisted helical organization at 11 Å 
resolution (Figure 2B) [52]. These fibers exhibited a left-handed topology with a canonical 
packing density (6.1-6.4 nucleosomes/11 nm) and a diameter of approximately 27 or 30 nm 
for NRLs of 177 and 187 bp, respectively. Strikingly, the basic repeating motif of these fibers 
is a tetranucleosomal unit that closely resembles the crystal structure of a tetranucleosome 
reconstituted in vitro in the absence of a linker histone [53]. In addition, these fibers exhibited 
an off-dyad binding mode for the H1.4 linker histone (Figure 1B). The use in this study  [52] of 
a low ionic strength buffer and of chemical (glutaraldehyde) fixation (reported to perturb 
nucleosome array conformation [54]) raises the possibility that a different fiber conformation 
may prevail under physiological conditions.   
Garcia-Saez et al. combined X-ray crystallography and cryo-EM to investigate H1-bound 6- and 
12-nucleosome arrays reconstituted in ionic conditions that favor incomplete chromatin 
condensation [55]. The 9.7 Å resolution crystal structure of a 6´187 bp array bound to Xenopus 
laevis linker histone H1.0b revealed a flat two-start helix with a ladder-like conformation. 
While the diameter (~32 nm) of this helix was typical, the nucleosome packing density (3.9 
nucleosomes/11 nm) was roughly only half that of a canonical 30-nm fibre. DNA footprinting 
analysis suggested that the H1.0b linker histone adopted an on-dyad binding mode, similar to 
that observed in the isolated nucleosome [45, 46]. Interestingly, an increase in Mg2+ 
concentration shifted arrays to adopt a twisted conformation resembling that observed by 
Song et al. [52], suggesting that the ladder-like conformation represents an untwisted form of 
the canonical 30-nm fibre (Figure 3A and B). 
 
Isolated native chromatin fibers 
The 3D structure of native chromatin fibers has primarily been addressed by cryo-ET, as the 
high conformational variability of these fibers is a major obstacle for SPA. Scheffer and 
colleagues [56] determined the structure of native chromatin fibers isolated from chicken 
erythrocytes and starfish sperm in different ionic conditions and states of compaction (Figure 
3C and D). Despite an important difference in linker DNA length, both types of folded fibers 
showed regions in which nucleosomes stacked with their dyad axes aligned, forming a 
“double-track” conformation resembling that reported by Garcia-Saez et al. [55]. Cryo-ET has 
also been used to study local decompaction of the chromatin fibre, an important transition 
allowing greater accessibility of the DNA. Cryo-ET of chromatin extracted from human MCF7 
cells [57] revealed transitions between the 30-nm fiber and lower order bead-on-a-string 
nucleosomal arrays that involved a hierarchical branching structure. Analysis of these 



structures revealed that some of the fibers formed helical ribbons resembling in vitro 
reconstituted chromatin, while others were irregularly twisted together.   
 
Cryo-EM of the chromatin fiber in situ 
Until recently, cryo-EM studies of chromatin in situ were limited to the preparation of frozen 
hydrated sections followed by single frame imaging or cryo-ET. Single frame imaging revealed 
the existence of 30-nm chromatin fibers in swollen chicken erythrocyte nuclei [11], whereas 
imaging of HeLa cells revealed irregularly folded chromatin fibers lacking any obvious 30-nm 
organization [2]. Cryo-ET confirmed the existence of the 30-nm chromatin fiber in chicken 
erythrocytes [12], revealing a left-handed two-start helix with approximately 6.5 nucleosomes 
per 11 nm and no interdigitation. However, an irregular chromatin organization was observed 
by cryo-ET even at the level of short oligonucleosomes in HeLa cells [58] and S. pombe [59], 
suggesting that the 30-nm fiber is a specific chromatin arrangement restricted to particular 
cellular contexts. 
 
Conclusions  
The intriguing diversity of chromatin fiber structures cited in this review highlights the great 
structural plasticity of chromatin. Diverse organisms and cell types exhibit great differences in 
chromatin at all scales of organization, ranging from the volume and localization of 
heterochromatin and euchromatin fractions to the type, extent and distribution of histone 
post-translational modifications, histone variants and linker histones incorporated. Thus, in 
general native chromatin structures originating from different sources are not directly 
comparable. For this reason, chromatin reconstituted from homogeneous components under 
well-defined conditions remains an attractive system for studying the conformation and 
dynamics of chromatin and how these vary in different biochemical environments.  While 
reconstituted nucleosomal arrays may not fully recapitulate the properties of native 
chromatin fibers, they currently represent the only route to 3D structural information on the 
fiber at subnanometer resolution. Additional studies of oligonucleosome arrays of varying 
composition (e.g. histone variants or mutants, linker length etc.) and in different (primarily 
intermediate) states of compaction are needed to elucidate the detailed folding and unfolding 
pathways of the chromatin fiber. Nevertheless, great progress can be expected in the near 
future regarding chromatin fiber structures studied in situ. Rapid advances in cryo-ET and 
sample preparation technology already allow the detection of individual nuclesomes in 
ultrathin cryo-sections [60], while the use of ultrathin lamellae of frozen hydrated samples 
prepared by focused ion beam milling combined with scanning EM (FIB-SEM) coupled with 
cryo-ET [58] brings the technique to a whole new level. In the future this approach should 
ultimately allow researchers to correlate the in vivo and in vitro organization of chromatin.  
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Table 1. Oligonucleosomal structures observed using cryo-EM 

Reference 
Fiber 

organization 
observed 

Observation Method 
used 

Chromatin 
type 

Number of 
nucleosomes 

x NRL 

Histone/ 
nucleosome 

source 

Ionic 
conditions 

[51] Compact 
interdigitated 
solenoid 

In vitro EM,  
Cryo-
EM 

Reconstituted 22 x 177, 47-
72 x 177 

Native, chicken 
erythrocytes 

1 mM 
MgCl2 

[55] Flat two-start 
helix 

In vitro Cryo-
EM,  
X-Ray 

Reconstituted 6 x 187, 12 x 
197 

Recombinant, 
Xenopus laevis 
core histones, X. 
laevis H1.0b  

0.35-0.6 mM 
MgCl2 

[52] Two start 
helix (zigzag) 

In vitro Cryo-
EM 

Reconstituted 12 x 177, 24 
x 177 
12 x 187 

Recombinant, X. 
laevis core 
histones, human 
H1.4  

10 mM 
HEPES, 
0.1 mM 
EDTA in 
final 
dialysis 
buffer 

[56] Irregular 
fiber,  zigzag 
 

In vitro Cryo-ET Native 
Isolated  
 

Arbitrary 
 

Chicken 
erythrocytes  

40 mM NaCl,  
1 mM MgCl2 
 

Irregular 
fiber,  zigzag 
"double 
track" 

In situ, in 
vitro 

 Native 
Isolated 

Arbitrary Starfish sperm 60 mM NaCl,  
26 mM KCl 

[12] Short range 
irregular 
 zigzag 

In situ Cryo-ET Native  
 

Arbitrary 
 

Chicken 
erythrocytes  

In cell 
 

[59] No fiber, 
irregular 
arrangement 

In situ Cryo-ET Native N/A S. pombe In cell 

[58] No fiber, 
irregular 
arrangement 

In situ Cryo-ET Native N/A HeLa cell In cell 

 

 

 

 



 

 

Figure 1. Linker histone binding modes. A. Cryo-EM map of a 197-bp nucleosome showing an on-
dyad binding mode for the linker histone [41].  B.  Cryo-EM map of a reconstituted 12-nucleosome 
array showing an off-dyad binding mode for the linker histone [48]. 

 

 

 

 



 

 

Figure 2. Nucleosome array structures. A. One-start interdigitated solenoid model of chromatin fiber 
based on EM analysis of long nucleosomal arrays. Figure reproduced from [51].  B. Cryo-EM maps of 
12-nucleosome arrays showing a two-start helical zigzag organization. Figure reproduced from [52]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 3. Ladder-like conformation of the chromatin fiber in moderate ionic concentrations. 

A. Cryo-EM images of reconstituted 12-nucleosome arrays in 0.35 mM Mg2+ . B. Model of the 12-
nucleosome array based on the crystal structure of a hexanucleosome.  C. Cryo-ET structure of isolated 
chicken erythrocyte chromatin in 40 mM Na+. D. Cryo-EM of the same sample in 1 mM Mg2+. Note the 
similarity of the nucleosomal arrangement across the four panels. A,B and C,D reproduced from [50] 
and [51], respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


