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Introduction

Diabetes mellitus is one of the most severe global health problems of the 21 st century. According to the International Diabetes Federation (IDF) 425 million people, ~9% of the adult population suffer from this disease, many of them may even remain undiagnosed. The number of diabetic patients is predicted to reach close to 700 million by 2045 with the most significant increase in low and medium income territories of Asia, Africa and South-America. In 2017 USD ~727 billion was spent for diabetes treatments representing more than 12% of the global health expenditures. Most of the diabetic patients (>90%) belong to the so-called type 2 diabetes mellitus (T2DM) when the organism does not produce insulin in sufficient quantities and/or the peripheral cells are more or less resistant to the insulin action to promote uptake of blood glucose. Due to the constantly high levels of glycaemia, short and especially long term complications are developed being frequent causes of death, thereby diabetes is one of the main contributors to global mortality. At present no causal therapy is known, treatment regimens aim at maintaining blood sugar levels around the normoglycemic value of ~6.1 mM by applying various medications.

1, 2

Hepatic glucose output is elevated in T2DM patients. This glucose production consists of glycogenolytic and gluconeogenetic components and the latter is known to be cycled through the glycogen pool.

3, 4 Therefore, liver glycogen phosphorylase, the rate limiting enzyme of glycogen degradation has become a validated target to find potential new therapeutical possibilities against T2DM.

4, 5

A broad variety of synthetic compounds and natural products have been tested as inhibitors of glycogen phosphorylase (GP) [START_REF] Hayes | [END_REF][7][8][9][10][11][12] mainly with the most easily available rabbit muscle GPb (RMGPb). 13 Many of these compounds' complexes with the GP enzyme were also studied by X-ray crystallography.

From the so discovered seven GP binding sites the most investigated one is the catalytic (or active) site which can accommodate D-glucose (the physiological inhibitor of the enzyme) and a large array of glucose derivatives. 14, 15 The most Please do not adjust margins Please do not adjust margins efficient glucose derived inhibitors belong to three main compound categories: glucopyranosylidene-spiroheterocycles, [14][15][16][17] N-acyl-N'-β-D-glucopyranosyl ureas, 14, 15 and C-β-D-glucopyranosyl heterocycles. 18-26 In each category several inhibitors have submicromolar and even low nanomolar inhibitor constants. Some of these glucose analog GP inhibitors (GPIs) were subjected to various physiological investigations to show significant blood sugar diminishing effects in streptozotocin-induced diabetic rats, 27 restoration of whole body insulin sensitivity, 28 triggering of mitochondrial oxidation and mTORC2 (mammalian target of rapamycin complex 2) signaling, 29 and improvement of pancreatic β-cell function. 30 Among the anomeric spirocycles the most efficient inhibitors are the glucopyranosylidene-spiro-isoxazolines 31, 32 (K i = 0.63 μM against RMGPb for a 2-naphthyl derivative) and the glucopyranosylidene-spiro-oxathiazoles 33 (K i = 0.16 μM against RMGPb for a 2-naphthyl derivative) while their xylopyranosylidene counterparts remained inactive. 34 The glucose derived isoxazolines were shown to have significant inhibitory effects in rat and human hepatocytes, and also diminished hepatic glucose production in Zucker fa/fa rats by single dose oral administration. 35 In this paper a new synthesis of the glucopyranosylidene-spiro-oxathiazoles, their in vitro enzymatic evaluation, as well as cellular and in vivo evaluations of the best inhibitor as an antihyperglycaemic agent are described.

Synthesis

Our previously explored strategy 36 was developed for the synthesis of glycosylidene-spiro-oxathiazoles. The key step was the oxidative spirocyclization of O-peracetylated glycosyl hydroximothioates 37 (e.g.

2)

to glycosylidene-spirooxathiazoles 3 and 4 (Scheme 1), a transformation achieved readily upon treatment with NBS in refluxing halogenated solvents (CCl 4 , CHCl 3 ). When the hydroximothioate moiety displayed an aryl substituent, our earlier study showed that the cyclization proceeded well whatever the configuration of the pyranose ring (D-gluco, D-galacto) or that of the anomeric centre (/). Moreover, the cyclization was stereoselective, yielding preferentially 1S-spiro-oxathiazoles in the D-gluco, Dgalacto series. Later on, this methodology was applied for preparing D-gluco 33, 38 or D-xylo 34 analogues. In this last series, the cyclization was shown to occur with the opposite stereoselectivity, thus favouring formation of the 1Rconfigured spiro-oxathiazoles. The compounds studied in more details displayed the aromatic pharmacophores a-i (Scheme 1). a procedure involving the in situ formation of an oximoyl chloride from the oxime using inexpensive bleach, which is then reacted directly under basic conditions with thioglycopyranose has been reported. However, comparison of these procedures showed that the conventional method to hydroximothioates resulted in higher yields. 34 Therefore, the two-step conventional method has been used to prepare new analogs in the present work (Ar = p-CO 2 H-C 6 H 4 , 2-quinolinyl, 9phenanthryl) with either hydrogen bond donors or acceptors or expanded aromatic moieties for better interactions of the aglycons in the -pocket of the enzyme's catalytic site. Glucosyl hydroximothioates precursors 2j-l were obtained in variable yields (Table 1), their spirocyclization proceeded as generally observed, yielding preferentially the 1S-configured spirobicycles 3j-l. The anomeric configurations for compounds 3j-l were deduced from NMR spectroscopy which revealed significantly different chemical shifts for the H3 and H5 pyranosylidene protons, and the C1 spiro carbon. 33, 34, 36, 38 As noted earlier for 1S-configured analogs, these signals were respectively close to 5.65, 4.45, and 122.5 ppm. The protected 1S-spirobicylces were deacetylated in high yield under Zemplén conditions. Enzyme kinetic studies (IC 50 and/or K i measurements) were then performed to evaluate whether the prepared spirobicycles were GP inhibitors. Then, the most potent candidates were further evaluated through in vitro and in vivo biological assays to demonstrate their pharmacological interest. Therefore, substantial quantities of material were needed, typically gram-to multi-gram-scale. This called for the design and development of an unprecedented route to Dglucose based spiro-oxathiazoles, with the hope that a stereoselectivity higher than that of the NBS-mediated cyclization could be achieved.
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A new route to spiro-oxathiazoles by 1,3-dipolar cycloaddition of nitrile oxides to gluconothionolactone

The design of a new access to spiro-oxathiazoles was inspired by our reported synthesis of glycosylidene-spiro-isoxazolines based on 1,3-dipolar cycloaddition of nitrile oxides to exomethylene glycals (pyranoid exo-glucals). 31, 32, 35 Concerted reactions are advantageous as regard to atom economy, experimental conditions and yield, so they are of particular interest in carbohydrate chemistry. We and others could demonstrate that such cycloadditions occurred with a high stereocontrol, the dipole attacking the exo-methylene carbohydrate from the -face of the D-glucopyranosylidene ring, 40 while for steric and electronic reasons, regioselectivity was equally high, favouring attack of the anomeric carbon by the oxygen atom of nitrile oxides in all cases studied. The more complex cycloaddition of nitrones (E and/or Z configurations, endo and/or exo transition states) to pyranoid exo-glycals led to mixtures of cis/trans and / products, but the -face approach usually predominated, or was even exclusive in some cases.

41, 42

Based on this 1,3-dipolar cycloaddition analogy, the known Dglucono--thionolactone 12 [43][44][45] appeared as the required precursor towards spiro-oxathiazoles. Moreover, benzylated Dglucono--thionolactone 12 appeared to be a readily accessible substrate, based on the one-pot two-step synthetic route by the group of Fairbanks. 46, 47 1-Thiosugars reacting with tert-butyl-sulfinyl chloride in the presence of triethylamine were converted into glycosyl S-tert-butyl thiosulfinates (within 10 min at room temperature), which upon thermolysis (10-20 min in refluxing toluene) yielded various glycono-thionolactones, and in particular D-glucono-thionolactone 12 in a notable 85% yield. 47 Glycono-thionolactones have been shown to react with dienes, diazoalkanes, and carbenoids, 48 and the thermolysis of the obtained dihydro-1,2,3-, and -1,3,4-thiadiazoles has been investigated. 49 We developed this new route for synthesizing compound 5h on the multi-gram scale considering its remarkable inhibitory properties. The direct synthesis of dithiocarbonate 8 from the commercially available hemiacetal 6 using tosyl chloride and potassium O-ethyl dithiocarbonate under phase-transfer conditions 50 gave in our hands poor results. However, the twostep protocol in one-pot reported by Vasella 51 (treatment of hemiacetal 6 with CCl 4 and HMPT, then with potassium O-ethyl dithiocarbonate at -40°C, for which basic conditions dictate the choice of base-stable protective groups) afforded the desired dithiocarbonate 8 via the intermediate chloride 7 (Scheme 2). Subsequent methanolysis delivered the 2,3,4,6-tetra-O-benzyl-1-thio-D-glucopyranose 9 in a 85% overall yield. Thiol 9 was reacted with tert-butyl-sulfinyl chloride 47 to afford the configured thiosulfinate 10 in 90% yield as a ~1:1 S(S),S(R) diastereoisomeric mixture. While mass spectrometry displayed a main peak as expected (m/z = 661 [M+H] + ), the formed diastereoisomers 10 were visible as two close spots on TLC plates. They were purified by column chromatography but could not be fully separated in pure form. The 1 H NMR spectra of this mixture displayed two singlets for the diastereotopic tert-butyl groups resonating at 1.40 and 1.58 ppm, respectively. Please do not adjust margins Please do not adjust margins Following Fairbanks' procedure, thermal elimination was carried out in refluxing toluene with either the crude thiosulfinate 10 (two-step one-pot process) or the purified diastereoisomeric mixture, but disappointingly, the yields recorded for the thionolactone 12 were around 45%, significantly lower than the 85% yield reported. 47 As a byproduct, the glucono--lactone 11 was identified and actually isolated in an equal amount when the reaction time was increased thus allowing for the complete conversion of both thiosulfinate diastereoisomers 10. Formation of an undesired analogous -lactone was observed by Fairbanks (~20% yield) during the thermal elimination at 120°C of a rhamno-configured thiosulfinate.

46

Presence of di-tertbutylthiosulfinate as a byproduct (vide infra, text and Fig. 3, Fig. 4) has been noted as another limitation of the method. 47 These disappointing and intriguing observations led to repeated trials for enhancing the yield of thiolactone 12, but without success. TLC monitoring of the reaction revealed that the more mobile thiosulfinate diastereoisomer 10 was converted faster than the other one, and while its spot decreased visually on TLC plates, that of the thionolactone 12 increased. Seemingly, after complete conversion of the more reactive thiosulfinate, there was no increase in the amount of D-glucono--thionolactone 12 from the qualitative analysis of TLC, and disappointingly, the isolated yields never exceeded 45%. Analysis of MS data collected for the fractions recovered from column chromatography confirmed the formation of Dgluconolactone 11 (m/z [M+Na] + = 561), and showed the presence of an unidentified product (m/z = 607 M+H + ) (vide infra, text and Fig. 1). After inquiring about these discrepancies, Prof. A.J. Fairbanks kindly provided us with the investigator's original report. It appeared that the 85% yield reported 47 for the thionolactone 12 was overestimated as, from the report, it corresponded to a crude product « contaminated with tert-butyl species, possibly di-tert-butyl thiosulfinate. Yields projected to approximately 54-56% ». Presence of byproducts, allegedly mixed disulfides or disproportionation products, was also supposed, but not proven. A note clearly stated that the yield estimated by 1 H NMR for the thionolactone 12 were 54 and 56% (close to the 43-53% yields observed in the D-galacto series), 47 so that these data corroborated ours, suggesting the occurrence of at least one unwanted reaction detrimental to the yield of the desired glycono-thionolactone. D-Glycono-thionolactones are subject to epimerization 47 at C-2 or 2,3-elimination 43 under basic conditions. Therefore, Dglucono--thionolactone 12 was often used without further purification for the 1,3-dipolar cycloaddition. With the crude thionolactone 12, this step proceeded smoothly in the presence of 2-naphthyl hydroximoyl chloride to afford the spiro-oxathiazole 13 in high yield (~95%) and stereoselectivity (9:1 S/R mixture). The diastereoisomeric mixture could be resolved by silica gel column chromatography to afford the desired spiro-oxathiazole 13 with a S-configuration at the spiro-anomeric center (85% isolated yield) and the minor Repimer (<10% yield).

Not surprisingly, the final debenzylation step proved to be problematic, and standard hydrogenolysis in the presence of palladium did not proceed at all, while Et 3 SiH/I 2 52 In conclusion, the designed 1,3-dipolar cycloaddition approach between 2-naphthyl nitrile oxide and perbenzylated D-gluconothionolactone 12 was most efficient for synthesizing the corresponding D-glucose-based 1S-3-(2-naphthyl)-spiro-1,4,2oxathiazole 13. Both regio-, and stereo-selectivities were excellent. In contrast to literature reports, the limiting step of this approach was the synthesis of tetra-O-benzyl D-glucono-thionolactone 12 by thermolysis of glucopyranosyl tert-butyl sulfinate precursors 10. The discrepancies between our results and those of Fairbanks as reported and detailed in an internal document prompted the investigation of the thermolysis mechanism by DFT calculations to better understand the possible path to the desired thionolactone.

Proposed mechanisms for the thermal elimination of thiosulfinates 10 to thionolactone 12

Various possible modes of reaction were envisaged (Scheme 3) since tert-butyl thiosulfinates may undergo thermal elimination by hydrogen atom abstraction through fivemembered cyclic transition states (TS). Glycono-thionolactones being reportedly obtained sometimes in excellent yields, 46, 47 elimination involving the anomeric proton (path a) was privileged (anomeric effect), thus delivering the desired thionolactone 12 and tert-butyl sulfenic acid. However, elimination might also involve one of the nine equivalent hydrogen atoms of the tert-butyl moiety (path b), which would afford isobutene and the 3-D-glucopyranosyl-thiosulfoxylic acid 14 56 (other name: 3-D-glycopyranosyl-1-oxa-trisulfane).

Considering early 56 and recent 57, 58 reports on the thermolysis of di-tert-butylthiosulfinate (also termed di-tert-butyldisulfane-S-oxide, tBuS(O)StBu), 57 these speculations were reasonable, but the total weight of lactones 11 and 12 (ca 90%, 1:1 ratio) measured after full conversion of both thiosufinates indicated that path b was only a marginal process.

Please do not adjust margins Please do not adjust margins The puzzling formation of D-gluconolactone 11 might be due to hydrolysis by water present in trace amount 59 or to adventitious reactions, as discussed recently, 60 but since 11 was detected on TLC plates even at the initial stage of the reaction, and as use of a purified mixture of diastereomeric thiosulfinates 10 led to similar lactone distribution, this hypothesis was uncertain. As the glucopyranosyl tert-butyl thiosulfinates 10 must achieve a favourable 5-membered cyclic TS for the thermal elimination to proceed, and because of probable steric clashes between the tert-butyl group and the 2-O-benzyl group for the S(S)-diastereoisomer, most probably the S(R)-and S(S)-tert-butyl thiosulfinates underwent elimination at different rates, the (R)-diastereoisomer reacting faster to deliver thionolactone 12 through path a. Still, another hypothesis was needed to explain the presence of glyconolactone 11. The thermal rearrangement of configured glycopyranosyl xanthates to -glycosyl dithiocarbonates has been reported to proceed without inversion of configuration at moderate temperatures (50-65°C). 61 This reported example of the Freudenberg-Schönberg rearrangement 62, 63 was supposed to occur by an intramolecular 1,3-shift through a 4-membered cyclic TS. 61 ) in thionolactone 12. 66 Eventually, calculations were carried out to identify the reaction pathway leading to the gluconolactone byproduct (hydrolysis versus thermal rearrangement followed by elimination).

DFT Calculations

As a representative model, the tetra-O-methyl analog of 10 was chosen (See supporting information for further details) to have reasonable computational time. The numbering of molecules applied is the same for both O-benzyl-(synthetic work) and O-methyl-protected (computational approach) analogues, but using italicized types in the last case.

Our calculations addressed first the three reaction pathways mentioned above (Scheme 3), namely the two possible direct internal eliminations (Ei) (path a, path b), then path c, in which an internal O,S-rearrangement by 1,3-shift was supposed to occur prior to the Ei elimination. The stereochemistry at the sulfur atom did not influence the calculations and the results are presented here for a single diastereoisomer at the sulfur atom.

Starting from 10, the two divergent internal eliminations (Ei) discussed above were envisaged (Fig. 1). Deprotonation of the anomeric position (path a) was found to be easy (TS-a, ΔG # = 21.2 kcal.mol -1

), leading to the D-glucono--thionolactone 12 and formation of tert-butyl sulfenic acid. In the case of path b, which involves one of the nine hydrogen atoms of the tertbutyl groups, and leads to product 14 and isobutene, a higher activation barrier of ΔG # = 24.9 kcal.mol -1 (TS-b) was calculated. This is in agreement with the synthetic work, as the thermal -elimination delivered the thionolactone 12 in moderate yield while the benzyl-protected product 14 was not observed. As a possibility for the puzzling formation of 11 from 10, path c was envisioned (Fig. 2). For this two-step pathway, a 1,3 shift of the tert-butyl thiosulfinate group led first to 10' (Ts-c, ΔG # = 36.3 kcal.mol -1 ), which subsequently could react through an Ei elimination (TS-d, ΔG # = 10.9 kcal.mol At this point, since the formation of the experimentally observed D-gluconolactone 11 cannot be explained through path c, we wondered whether lactone 11 could be formed due to hydrolysis of D-glucono-thionolactone 12. In this event, since the reaction was conducted under anhydrous conditions, water had to be formed as the reaction proceeded. Interestingly, Block et al. 67 reported the dismutation of tertbutyl sulfenic acid, giving rise to tert-butyl-2-methyl-propane-2-sulfinothioate (or thiosulfinate) and water (0.5 eq. each, Fig. 3). The computed thermodynamics for the dismutation (ΔG = -4.4 kcal mol -1

) were in agreement with the experimental observations of Block. 67 Subsequently, water, assisted by the coordination of the thiosulfinate, can trigger the hydrolysis of compound 12 through TS-e (ΔG # = 30.6 kcal.mol -1

), providing gluconolactone 11 and hydrogen sulfide (0.5 eq. each). This proposed mechanism is in agreement with the experimental formation of lactones 11 and 12 in a 1:1 ratio. To further confirm that lactone 11 came from the hydrolysis of thionolactone 12 (Fig. 4), we computed the attack of di-tertbutyl thiosulfinate on substrate 12 (Fig. 4). TS-f (ΔG # = 41.5 kcal.mol -1

) could lead indeed to the formation of 11 and tertbutyl-2-methylpropane-2-sulfinodithioate (or dithiosulfinate) without the assistance of a water molecule. Since the ΔΔG # between TS-e and TS-f was 10.9 kcal.mol -1 in favor of the former, water hydrolysis pathway was confirmed to be the most energetically reasonable route. In summary, these calculations showed a good agreement with the synthetic results, as they indicated that the thermal elimination via 5-membered transition states preferentially involved the anomeric proton rather than one of the nine tertbutyl hydrogen atoms, thus yielding the target gluconothionolactone. Simultaneous formation of gluconolactone through a 1,3-shift of the thiosulfinate moiety, followed by Ei can be ruled out. Based on the reported dismutation of tert-butyl sulfenic acid which yielded di-tertbutyl thiosulfinate and water (0.5 eq. each), the calculations predicted that 12 can be hydrolysed into 11 (0.5 eq.). Thus, in order to optimize the yield of the target gluconothionolactone 12, water, formed while the thermal elimination proceeds, has to be trapped by efficient means, for example by adding activated molecular sieves to the reaction medium.

46, 47

Enzyme kinetics

Previous structure-activity relationship studies 15, 33, 38 revealed that phenyl oxathiazole 5a was a moderate inhibitor of GP (K i = 26 µM). Other para-substituted phenyl analogues (R = phenyl, NO 2 , CN) exhibited lower inhibitory properties with IC 50 values in the high micromolar range for 5b,c,g. The para-fluoro and para-methoxy analogues 5d and 5e had similar and slightly better inhibitory potential than 5a (K i = 28 and 8 µM, respectively). As observed for several other classes of glucosebased GP inhibitors, 14, 15, 32, 35, 68 the 2-naphthyl oxathiazole derivative 5h was the best inhibitor among the series of compounds studied, and one of the best among glucose-based GP inhibitors. Substitution by a para-carboxy group on the phenyl (5j) resulted in a good inhibitory potency (K i = 238 µM), while the 2-quinolinyl analogue 5k was more potent (K i = 26 µM), although much less potent than the 2-naphthyl analogue 5h. In spite of the size of the 9-phenanthryl residue, compound 5l displayed moderate inhibitory properties. 

Please do not adjust margins

Please do not adjust margins In vitro pharmacological evaluations Guided by the kinetic results and for an in depth evaluation of his inhibitory property, the glucose-based GP inhibitor 5h with the best K i value was assayed in vitro with rat and human hepatocytes in primary culture (see Table S1). The potent in vitro GP inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol (DAB, K i = 400 nM) 69 was selected as the reference compound for its established in vivo activity in a GP-dependent glycaemia study.

3, 69, 70 An evaluation of glucose release after glucagon stimulation in primary rat hepatocytes was performed. Further evaluation in human hepatocytes for the candidate 5h was accomplished by measuring both glucose release and intracellular glycogen for an assessment of species specificity.

IC 50 Values calculated for glucose release (product of GPmediated glycogen depolymerisation) or intracellular glycogen content (substrate of GP-mediated glycogen depolymerisation) are similar (2-5 M, Table 3) in human hepatocytes. In the studied cellular model, this result demonstrates that compound 5h affected glycogenolysis via GP inhibition. The concentration-response curves obtained for glucose release (Fig. 5) and observed intracellular glycogen content (Fig. 6) provided a basis for a comparison against DAB. Compound 5h performed slightly better than DAB in terms of concentrations to obtain 50% inhibition on glucose release in rat and human hepatocytes. Such concentrations are compatible with potential pharmacological applications. 

In vivo pharmacological evaluations

The glucagon challenge test in the Zucker fa/fa rat model was performed to measure the glucose-lowering effect in vivo with for compound 5h. This animal model, displaying hyperphagia and insulin resistance with hyperinsulinemia, was chosen due to its high hepatic glycogen content. We used glucagon (200 µg/kg, in a single subcutaneous "SC" administration) as hyperglycemic agent. A dose-dependent effect was clearly observed when compound 5h was introduced orally in a single administration (Figure 7). Liver glucose output kinetics (Fig. 7A) and their areas under the curves (AUC) for 45 min (Fig. 7B) pointed to a dosedependent decrease in liver glucose production ranging from 7.5 to 60 mg/kg (Fig. 7B). The rate of endogenous glucose production being elevated in type 2 diabetes renders this effect on liver output relevant for therapeutic applications.

71

Compound 5h was then selected for a subchronic oral administration with a dose corresponding to the first significantly effective in the acute in vivo glucagon challenge test (30 mg/kg). In a glucagon challenge test performed after 4 days of treatment, a nearly 33% reduction of hepatic glucose production (p<0.05) was observed (Fig. 8A-B). It is worth pointing out that the activity of glycogen phosphorylase was preserved, in spite of the subchronic treatment, since hepatic glucose production was not further reduced. As a summary, the in vitro and in vivo pharmacological effects of glucose-based spiro-oxathiazole 5h were analyzed and they validated its potent GP inhibition both in vitro, in cell assays and in a diabetic rat model (in vivo). In rat and human hepatocytes, compound 5h reduced glucagon-stimulated glucose output through glycogenolysis inhibition (Table 3, Fig.

Please do not adjust margins

Please do not adjust margins 5). No species specificity could be observed since the potency of compound 5h for inhibition of glucose output were comparable between rat and human cells (Table 3) as previously reported. 72, 73 Compound 5h was efficient in vivo in the Zucker fa/fa rat model of insulin resistance and a dosedependent decrease of hepatic glucose output to a maximal 43% was observed (Fig. 7). This glucose lowering effect allows for the design of therapeutic applications due to a high rate of endogenous glucose production in type 2 diabetes. 71 Indeed, hepatic glucose production tends to match the values usually obtained in Wistar normal rat.

The complete suppression of glucagon-induced glucose output in the presence of DAB appears in sharp contrast with the moderate level of inhibition of GP. 70 The incomplete inhibition of GP by compound 5h is advantageous for limiting potential side effects. In addition, the absence tissue-specificity between liver and muscle GP isoforms could impair exercise-mediated metabolism of muscle glycogen. Preserving a minimum level of activity will limit this risk, although the selection of a liverspecific inhibitor preferred for long-term therapy remains a valuable research challenge. 74 Even though hypoglycaemia could be a detrimental consequence of GP inhibition, hepatic glucose production was not further reduced after repeated administrations of compound 5h, indicating a residual activity of GP thus limiting the risk of hypoglycaemia (Fig. 7).

Conclusion

Type 2 diabetes is a major public health problem and design of glycogen phosphorylase inhibitors targeting the catalytic site of the enzyme appears as a promising strategy for a better control of hyperglycaemia. An especially potent group of GP inhibitors is represented by some glucopyranosylidene-spiroheterocycles, among them spiro-oxathiazoles. A new synthesis has now been elaborated for this valuable class of compounds by the 1,3-dipolar cycloaddition of an aryl nitrile oxide to a glucono-thionolactone affording in one step the spirooxathiazole moiety. The thionolactone was obtained from the thermal rearrangement of a thiosulfinate precursor according to Fairbanks' protocols, although with a revisited outcome and also based on DFT calculations. The 2-naphthyl substituted glucose-based spiro-oxathiazole 5h has recently been identified as one of the most potent GP inhibitors with a K i of 160 nM against RMGPb. Further evaluation in vitro using rat and human hepatocytes demonstrated that compound 5h was promising as a potential anti-hyperglycaemic druggable compound as it performed better than DAB used as a positive control. Investigation in Zucker fa/fa rat model in acute and subchronic assays further confirmed the potency of compound 5h since it lowered blood glucose levels by ~36% at 30 mg/kg and ~43% at 60 mg/kg. This indicates that compound 5h can be considered as a powerful anti-hyperglycemic agent in the context of type 2 diabetes. The present study is one of the few in vivo investigations for glucose-based GP inhibitors and provides data in animal models for such drug candidates. This study is also an example of molecular diversity-oriented strategies to identify the fittest inhibitor of GP and from the identification of this candidate, multigram-scale preparations for in vivo validation called for a robust and faster synthetic route to the target glucose-based spiro-oxathiazole.
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Scheme 2 .

 2 Scheme 2. New access to 1S-glucopyranosylidene-spiro-oxathiazole by nitrile oxidethionolactone 1,3-dipolar cycloaddition

Scheme 3 :

 3 Scheme 3: Possible reaction paths for the thermolysis of D-glucosyl tert-butyl thiosulfinates 10

Figure 1 .

 1 Figure 1. Calculations for Ei eliminations, involving either anomeric or tert-butyl protons (paths a,b). ΔG in kcal.mol -1

- 1 )

 1 leading to 11 and tertbutyl thiosulfenic acid. Due to the high activation energy of TSc, this pathway can thus be excluded. with O-benzyl protected analogs Please do not adjust margins Please do not adjust margins

Figure 2 . 1 , 3

 213 Figure 2. 1,3 Shift of the thiosulfinate group in 10, followed by Ei elimination (path c). ΔG in kcal.mol -1

Figure 3 .

 3 Figure 3. Dismutation of tert-butyl sulfenic acid, followed by hydrolysis of thionolactone 12. ΔG in kcal.mol -1

Figure 4 .

 4 Figure 4. Dismutation of tert-butyl sulfenic acid, and di-tert-butyl thiosulfinate attacking thionolactone 12. ΔG in kcal.mol -1

Figure 5 :

 5 Figure 5: Glucose release from rat and human hepatocytes after glucagon stimulation in vitro measured in the presence of compound 5h versus DAB as the reference compound. Top: Rat hepatocytes, bottom: human hepatocytes

Figure 6 :

 6 Figure 6: Intracellular glycogen content in human hepatocytes after glucagon stimulation in vitro measured in the presence of compounds 5h versus DAB as the reference compound

Figure 7 .

 7 Figure 7. Hepatic glucose production of the unprotected compound 5h obtained in Zucker fa/fa rats in acute in vivo glucagon challenge. (A) Kinetics of glucose output for 45 min after acute glucagon administration in mmol/L. (B) Area Under the Curves (AUC) corresponding to glucose release for 45 min after acute glucagon administration. *p<0.05 for 15 mg/kg, ***p<0.001 for 30 mg/kg and **p<0.01 for 60 mg/kg

Figure 8 .

 8 Figure 8. Plasma glucose concentration of the unprotected compound 5h obtained in Zucker fa/fa rats subjected to in vivo glucagon challenge after subchronic administrations. (A) Kinetics of glucose output for 45 min after acute glucagon administration in mmol/L. (B) Area Under the Curve (AUC) corresponding to glucose release for 45 min after acute glucagon administration. Plasma glucose concentrations were expressed as variations (delta), meaning that the basal value of glycaemia was substracted for each individual value and for each rat.

Table 1

 1 

	: Stereoselective cyclization of -D-glucosyl thiohydroximates 2 to glucose-based
	spiro-oxathiazoles 3-4 and their deacetylation to 5. 33, 36, 38
			isolated yields (%)	a
	Ar	2	3	4		5
	a	90 37	46 36	11		90 36
	b	60 37	33 a	16 a		71
	c	48	15 a	7 a		84
	d	65 37	30 36	16 36		79
	e	71 37	69 a	17 a		79
	f	85	unselective reaction	-
	g	40	61 a	18 a		97
	h	78	36 a	16 a		94
	i	78	0	30		-
	j	53	50	-		73
	k	35	36	-		88
	l	86	49	-		>95%
	a Yields were calculated based on the isolated yields and on the amount of
	product present in the 1RS-mixtures (ratio measured by 1 H NMR) unresolved by
	column chromatography.				

  resulted in partial deprotection only. Treatments with bromine or NBS and water under various free radical conditions (NBS, CCl 4 , h, with or without CaCO 3 ; NaBrO 3 /Na 2 S 2 O 4 ) resulted in complex mixtures, due to partial debenzylations,

		53, 54 and/or formation
	of oxidized products as evidenced by mass spectrometry: in
	addition to the expected fragments corresponding to the
	partial or total debenzylation, fragments corresponding to
	M+14 indicated the oxidation of benzyls to benzoates, while
	others (M+16 and M+32) suggested oxidation to sulfoxides and
	sulfones. Fortunately, debenzylation could be achieved by
	treatment with BCl 3 at -60°C	55 with careful TLC monitoring to
	quench the reaction immediately after disappearance of the
	starting material to avoid further unwanted reactions.
	Purification by column chromatography delivered the desired
	final O-unprotected spiro-oxathiazole 5h (815 mg, 65% yield).

Table 2 :

 2 Kinetic data measured for spiro-oxathiazoles 5a-e,g,h,j-l for the inhibition of RMGPb

	Compound	Structure	IC50 or Ki values
			(µM)
	5a		Ki = 26 ± 2.1 38
	5b		IC50 = 250 33
	5c		IC50 = 700 33
	5d		Ki = 28 ± 2.8 38
	5e		Ki = 8 ± 0.9 38

Table 3 :

 3 In vitro IC50 for compound 5h based on glucose release and intracellular glycogen content after glucagon stimulation in rat and human primary hepatocytes in primary cultures

	Compound	Glucose release	Intracellular glycogen
		IC50 (µM)	a	IC50 (M)	b
		Rats	Humans	
	5h	6.7	2.08 ± 1.51	4.88 ± 1.20
	DAB	8	2.17 ± 1.30	1.10 ± 1.11
	a IC50 values are average of three to five measurements (see supporting
	information).			
	b IC50 values are average triplicate measurements for three human hepatocyte
	cultures (see supporting information).	
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