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The critical dynamics of ‘model A” of Hohenberg and Halperin has been studied by the Monte Carlo
method. Simulations have been carried out in the three-dimensional (3d) simple cubic Ising model for lattices
of sizes L = 16 to L = 512. Using Wolff’s cluster algorithm, the critical temperature is precisely found as
βc = 0.221 654 68(5). By Fourier transform of the lattice configurations, the critical scattering intensities I (�q )
can be obtained. After circular averaging, the static simulations with L = 256 and L = 512 provide an estimate of
the critical exponent γ /ν = 2 − η = 1.9640(5). The | �q |-dependent distribution of I ( �q ) showed an exponential
distribution, corresponding to a Gaussian distribution of the scattering amplitudes for a large q domain. The
time-dependent intensities were then used for the study of the critical dynamics of 3d lattices at the critical point.
To simulate results of an x-ray photon correlation spectroscopy experiment, the time-dependent correlation
function of the intensities was studied for each | �q |-value. In the q region where I ( �q ) had an exponential
distribution, the time correlations can be fit to a stretched exponential, where the exponent μ = γ /νz � 0.975
provides an estimate of the dynamic exponent z. This corresponds to z = 2.0145, in agreement with the observed
variations of the characteristic fluctuation time of the intensity: τ (q) ∝ q−z, which gives z = 2.015. These results
agree with the ε expansion of field-theoretical methods (2.017). In this paper, the need to take account of
the anomalous time behavior (μ < 1) in the dynamics is exemplified. This dynamics reflects a nonlinear time
behavior of model A, and its large time extension is discussed in detail.

DOI: 10.1103/PhysRevE.101.022131

I. INTRODUCTION

A. Scaling

The well-established theory of critical systems belonging
to the class of three-dimensional (3d) Ising systems stresses
the importance of the fluctuations in the vicinity of the critical
point. These are studied in scattering experiments (neutrons,
x-rays, electrons), and the results for T > Tc can be connected
to a unique fluctuation length ξ : ξ ∝ |T − Tc|−ν . The “model
A” dynamics was summarized in Ref. [1]. In this model, the
local order parameter φ(�r ) is not conserved and fluctuates dy-
namically. The corresponding dynamic Ising model is based
on a local spin flip and the collective dynamics at a given scale

L � 1 is studied if unity is the lattice constant.

For a system in the vicinity of the critical temperature Tc,
i.e., for a given ξ , the dynamic scaling can be written from the
first-order correlations of the Fourier transform A(�q, t ) of the
magnetization m(�r, t ):

S(�q, t ) = 〈A(�q, t + t ′)A�(�q, t )〉t ′/N, (1)

where N = L3 is the number of simple cubic sites and m(�r ) =
±1. In the case of a second-order transition with a monodi-
mensional order parameter S(�q ) is isotropic on average and,
introducing explicitly ξ , the dynamic scaling hypothesis [2]
can be written as

S(0, ξ , t ) = bγ /νS(qb, ξb−1, tb−z ), (2)

*frederic.livet@grenoble-inp.fr

where γ and ν have the classical meaning in critical systems
(some estimates are collected in Ref. [3]). Here, their ratio
is also written: γ /ν = 2 − η � 1.96. The correlations can be
observed from the relaxation of S(q, t ), and a characteristic
time τ dependent on q and ξ can be introduced. From Eq. (2)
one can obtain the limiting behavior for various cases of
interest by the appropriate choice of b.

To get an estimate of the characteristic time τ , one chooses
b = ξ , which gives (q = 0)

S(q, ξ , 0) = ξγ /νS(0, 1, tξ−z ), (3)

which means τ ∝ ξ z and, for t = 0 (t 	 ξ z), the static scat-
tering intensity is written

S(q, ξ , 0) = ξγ /νS(qξ, 1, 0). (4)

Writing b = t−z and ξ = ∞ (i.e., q � ξ−1) yields

S(q,∞, t ) = q−γ /νS(1,∞, tqz ) = q−γ /ν�(x = tqz ), (5)

which means τ ∝ q−z.
In Eq. (5), the shape of �(x = tqz ) for t 	 ξ z is not

known, but it can be shown that its Fourier transform G(q, ω)
has a singular behavior (ω � ξ−z) [4,5]:

G(q, ω) ∝ 1/ω1+γ /νz. (6)

This exponent (called in this paper μ = γ /νz) was introduced
in the two-dimensional (2d) Ising system [6] from the study of
the time Fourier transform of S(q = 0, t ). This means that the
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FIG. 1. The distribution of the per atom lattice magnetization
�m(�r )/N for L = 512 obtained from 22 000 independent samples
at β = 0.221 654 69.

time behavior of this function � contains a tμ singular time
dependence.

To first order, this singularity can be written

S(q,∞, t ) � S(q,∞, 0) − (t/t0)μ. (7)

This time dependence is discussed here from a study of the
dynamics of the 3d Ising model, and Eq. (7) is interpreted
as the first term of a stretched exponential behavior of the
function �(q, t ).

The dynamic scaling exponent z has been estimated by
field-theoretical methods [2,7,8]; the best value seems to
be z = 2.017 [9], and the results of numerous Monte Carlo
simulations are in the range z = 2.03–2.09 [10–13].

B. An experiment

This behavior has been studied in the model system
AuAgZn2 [14,15]. For this dynamical study, the x-ray photon
correlation spectroscopy (XPCS) technique was used at the
European Synchrotron Radiation Facility (ESRF) ID10 beam-
line. The time dependence of the coherent x-ray scattering
intensity I (�q, t ) was measured. The time-correlation of this
intensity can be written as

G(�q, t ) = 〈I (�q, t ′)I (�q, t + t ′)〉t ′

〈I (�q, t ′)〉2
t ′

, (8)

and this normalized correlation, after angular averaging, is
written

G(q, t ) = 1 + Kg(2)(q, t ). (9)

In Eq. (9), K is the speckle contrast (the square of the
“visibility”) and we define g(2), the variable part of the
second-order normalized correlation function (see definitions
in Ref. [16]). In the case of the XPCS experiment [15], the
size of the coherently illuminated sample was of the order of
20 μm and the maximum fluctuation length ξ was less than
�0.1 μm. The large number of fluctuations in the irradiated
sample ensures that the central limit theorem holds and that
the distribution of the scattering amplitude had a Gaussian
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FIG. 2. The variations of the fourth moments g(4) vs L−0.8 and
β and the calculated results of the fit using Eq. (12) with βc =
0.221 654 68.

distribution. In this case, the Siegert relation [17,18] holds:

g(2)(q, t ) = |g(1)(q, t )|2 = |S(q, t )/S(q, 0)|2. (10)

This experiment on the AuAgZn2 system was devoted to
the observation of the critical slowing-down. The essential
result was in the experimental estimates of τ (q, T ); from these
estimates, the value z = 1.96(11) was obtained. This result
of a poor precision should be significantly improved with the
new ESRF EBS source in progress [19].

The aim of this paper is to discuss how to estimate z from
Monte Carlo simulations in a finite system of size L at Tc

and to try to improve the description of the dynamics of the
fluctuations in a critical system.

II. MONTE CARLO TECHNIQUE

The classical Monte Carlo (MC) algorithm is a micro-
canonical probability of a spin flip, expressed from the en-
ergy change 
E , and, in order to simulate the time with a
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FIG. 3. Simulation of the critical intensity S(q) for L = 512 and
result of the fit to Eq. (14) with a0 = 0.197, a1 = 0.106, and a2 =
1.9627.
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FIG. 4. q2I (q) for (a) L = 512 and (b) L = 256. The curves correspond to fits with Eq. (15).

“daemond” moving across the simple cubic lattice, the flip
probability is fixed to:

pflip = exp (−β
E )/[1 + exp (−β
E )], (11)

where β is the classical inverse temperature in the Ising
model. Sites are randomly explored and the time unit is the
Monte Carlo step (MCS), i.e., an exploration of L3 sites. For
long enough time, this method gives a good simulation of
the collective movement of the fluctuations in the sample.
Upon carrying out simulations around the critical temperature,
the MC method is faced with the critical slowing-down: the
computation time in a finite system of size L increases like
Lz, which has to be multiplied by the number of elementary
processes [Eq. (11)] L3 for one MCS. If large systems are to be
studied at the critical temperature, only a very small number of
independent states can be examined, and the critical equilib-
rium state is even difficult to guarantee. For this reason, some
simulations are carried out with large L, and the dynamics is
studied by quenching to the critical point βc from disorder
or by studying disordering from a fully ordered state, as in
Ref. [20].

In this paper, a combination of classical kinetics and of
Wolff’s [21] algorithm is used for system equilibration and,

for a static study, Wolff’s algorithm provides a set of inde-
pendent critical states in a reasonable computation time, as
discussed in Ref. [22].

A. Critical temperature

The classical method for the identification of the critical
point is the study of the size and temperature variation of
the fourth-order moment of the distribution of the global
magnetization [23]: g(4) = 〈m4〉/〈m2〉2 which in the vicinity
of βc is written

g(4)(L, β ) = g(4)
0 + a0L−ω + [∂g(4)(L, βc)/∂β](β − βc).

(12)

In the classical theory of the critical point, the distribution
of the moments of the lattice is not Gaussian, as shown in
Fig. 1, and Fig. 2 shows the plot of g(4) for various values of L
and β.

In Eq. (12), it is assumed that the main L dependence is the
L−ω correction to the scaling laws [24], with ω = 0.8. From
the results summarized in Fig. 2, the best fit yields an estimate
of βc = 0.221 654 68(5). This result is in agreement with our
previous estimate (βc = 0.221 654 4(10) [22]) and with the
two most recent estimates [25,26] of βc = 0.221 654 631(8)
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FIG. 5. The cumulants of the distribution of the intensities I (q) clearly show the Gaussian distributions for (a) L = 512 and (b) L = 256.
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and βc = 0.221 654 626(5). The values g(4)
0 = 1.6006(6) and

a0 = −193(7) are significantly different from our previous
result in Ref. [22].
After this estimate of the critical temperature, all simulations
reported here were carried out at β = 0.221 654 69.

B. Static critical scattering

From a simulated configuration m(�r, j), the per site crit-
ical scattering I (�q, j) is calculated by a Fourier transform
(N = L3):

I (�q, j) =
∣∣∣
∑

m(�r, j) exp(2π�r �q )
∣∣∣
2/

N = |A(�q, j)|2/N.

(13)

I (�q, j) corresponds to the instantaneous intensity in an XPCS
measurement, with a contrast K = 1, and it has a “speckle”
pattern, depending on the configuration j. In this paper, the q
values will be given in ‘‘hkl” units, so that the position of the
first Bragg peak is q = 1/a = 1 if the lattice parameter a is
unity.

With the intensity defined in Eq. (13), one has in a Brillouin
zone (BZ):

∫∫∫
ZB I (�q )d3q � 1.
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FIG. 7. Correlations g(2)(q, t ) plotted vs log(time) and q for L =
256 and 200 MCS.
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FIG. 8. Normalized correlation g(2) plotted vs log(time) for short
time (t < 10 MCS) and for a small set of q values of the simulations:
L = 512, the fits (obtained from all 120 q values) are in excellent
agreement with a simple exponential.

In Fig. 3 the intensities plotted are obtained by averaging
over the 3d reciprocal volume: each I (q) value corresponds
to an average of 1000 independent configurations with δq =
0.001 for L = 512 lattices. The set of measured intensity
provides a good estimate of the statistical errors, and a good
quality fit is obtained from q = 0.03 to q = 0.17 with the
equation

I (q) = a0 + a1/qa2 , (14)

where a2 = γ /ν = 1.9627(20). To focus on the small q val-
ues, Fig. 4 shows a plot of q2I (q) vs q. The rounding for
q < 0.02 (L = 512) and for q < 0.04 (L = 256) is connected
to the finite size of the lattice and is observed for q < 10/L.
To take account of this rounding, a more complex fit with
Eq. (15) was carried out:

I (q) = a0 + a1/(a3qa2 + 1). (15)

This equation is a small modification to the Lorentzian mean-
field result, and better estimates of the critical exponent were
obtained from this equation in the range 0.005q to −0.16q
(L = 512) and in the range 0.01q to 0.16q for L = 256. Re-
sults were γ /ν = 1.9643(2) (L = 512) and γ /ν = 1.9637(4)
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FIG. 9. g(2)(q, t ) plotted vs log(time) and q for L = 512 and
various sampling periodicities (1, 2, 4, 10, 20, 40 MCS).
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FIG. 10. Normalized correlation g(2)(q, t ) plotted vs log(time) for (a) q = 0.0396 and (b) q = 0.0786, L = 512, and stretched exponential
fits.

(L = 256). In the following, γ /ν is fixed to 1.9640, which
means η = 0.0360(5), which is close to the results of a
compilation in Ref. [3]. This is in agreement with the recent
estimate [26] of γ /ν = 1.963 90(45).

C. Gaussian distribution?

In Fig. 4, a deviation from the static critical behavior:
I (q) ∝ q−γ /ν is observed in a region where q < 10/L. The
finite lattice of our simulations modifies the scaling. Figures 1
and 2 show that, for q = 0, the distribution of A(q = 0, j) (i.e.,
the total magnetization of the lattice) is not Gaussian, as is
well known at a transition fixed point: g(4)

0 � 1.6.
The distribution of A(�q, j) is discussed from the study of

I (�q, j) for the various | �q | and configurations j. Figure 5 plots
the cumulants of the distributions of I for different |q| values
with δq = 0.001.
If A(q) is Gaussian distributed, the distribution of the intensity
I (q) is exponential and the cumulants of its distribution are 1
(variance to mean ratio), 2 (skewness), and 6 (kurtosis). From
Fig. 5, we observe that in the region where the I (q) scaling
is observed, the distribution of A(q) is Gaussian. For q >

0.2, a deviation from the Gaussian distribution is observed,
clearly connected to the lattice discretization. Figure 6 clearly
shows that the Gaussian distribution is observed for q > 10/L
with an excellent precision for the two values of L studied
here.

III. DYNAMICS

A. An example

In Fig. 7 are plotted the g(2)(q, t ) functions obtained in
the L = 256 system at β = 0.221 654 69 from a set of 200
MCS, with a sample every MCS. From this figure, the main
difficulties in the evaluations of g(2)(q, t ) can be discussed:

(1) For small q values, the estimates of the correlation
functions are very rough because the timescale of the fluc-
tuations is �200 MCS and because the number of �q in the | �q |
domain is small.

(2) For small q values, Siegert’s relation does not hold
(non-Gaussian behavior).

(3) For small q values, the observation of the detailed
shape of γ (q, t ) vs t is difficult.

For these reasons, the study focuses onto q regions where
the Gaussian behavior is observed. Independent time series of
a limited number of MCS will be obtained by inserting some
Wolff cluster updating between each time series.

B. Testing a model

To discuss the dynamics, the short-time behavior is first
examined. In this case, the spin dynamics corresponds to a
local change, and the collective aspects of the critical slowing-
down should not be observed: In Eq. (7), this corresponds to
μ = 1. In practice, the relaxation is in this case written with
an exponential relaxation form:

S(q, t ) = S(q, t = 0) − t/t0 � S(q, 0) exp[−t/τ (q)], (16)

where t0 corresponds to one spin flip (
m = 2) and to the
average flip probability in Eq. (11) (�0.333): t0 � 1.5 MCS.
In the case μ = 1, τ (q) ∝ S(q, 0) ∝ q−γ /ν . This short-time
behavior was checked by introducing a stretched exponential

g(2)(q, t ) = exp{−2[t/(τ0q−z )]μ}. (17)

In this equation, it is assumed that Eq. (10) is valid and
that τ (q) ∝ q−z [see Eq. (5)]. The stretched exponential is an
extension of the tγ /νz short-time behavior in Eq. (7).

In Fig. 8 are plotted a few results of a fit of simulations
of the short time (t < 10 MCS, L = 512) correlations for a
large q domain (120 q values from q = 0.078 to q = 0.19)
with this equation. The fit to Eq. (17) in this large-q domain
gives excellent agreement: z = 1.971(4) and τ0 = 0.169.

This means that μ = γ /νz = 0.996 � 1: in this range,
the dynamics is indiscernible from a classical exponential
relaxation. In this case, combining Eqs. (17) and (14), one
obtains t0 = τ0/a1 � 0.169/0.106 = 1.59, close to previous
estimate [Eq. (16)]. This checks that Eq. (16) is valid for short
time.

One must here recall that only the difference between γ /ν

and z can characterize the anomalous slowing-down (see the
discussion in Ref. [7]).

C. The “long-term” behavior

In Fig. 9, the results of various simulations are plotted
for L = 512. This figure only shows the region of γ (q, t ),
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FIG. 11. In panel (a), τ (q) ∝ q−2.016, in panel (b), z � 2.012.

where A(q) is Gaussian distributed. Different simulations with
different time steps (1, 2, 4, 10, 20, 40 MCS) are plotted
together.

The interpretation of the results makes use of the stretched
exponential

g(2)(q, t ) = exp{−2[t/τ (q)]μ}. (18)

Here, for each q value, an estimate of τ (q) and of z = γ /νμ

is obtained from the results at t > 10 MCS. A typical fit is
shown in Fig. 10 for q = 0.0396 and q = 0.0786.
The resulting set of τ (q) is plotted in Fig. 11(a) and the
various estimates of z from the stretch exponent μ: z = γ /νμ

in Fig. 11(b).

D. Unbiased estimates

The estimated errors of the results of Fig. 10 are subjected
to strong bias because of significant correlations between
nearby MCS in the same series. To obtain unbias results,
the values of g(2)(q, t ) have been calculated independently. In
this case, the correlations are calculated for each MCS time
interval 
t . An example of the results is given in Fig. 12 for a
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FIG. 12. g(2)(q, t ) for L = 512 and some q values. The curves
correspond to fits with Eq. (18), with an excellent agreement. The
short-time results of Eq. (18) have also been plotted (dotted lines).

set of q vectors. All the points for each q value and each time
are statistically independent. This provides statistical tests of
the stretched exponential hypothesis [Eq. (18)]. All fits in this
figure show that this equation is valid for the full set of the
values plotted in the figure. The exponent μ � 0.975 is clearly
smaller than unity, although the curves in Fig. 12 do not differ
too much from straight lines. In this figure are also plotted the
short-time fit results, which are almost exponential.

In Fig. 13 are plotted all the results of the fits to Eq. (18):
a plot of q2τ (q) provides an estimate of z = 2.0150(18)
[Fig. 13(a)] and z = 2.0145(6) [Fig. 13(b)] from the values
of μ. In this figure, the regions of q where the scaling of the
dynamics is observed seems to be limited to 0.03 < q < 0.08.

IV. DISCUSSION

The Gaussian shape of the distribution of A(q) for interme-
diate q values (10/L < q < 0.2) is a characteristic property
of the critical fluctuations in the fully critical regime. This
can be connected to the Fortuin-Kasteleyn percolation model
of the Ising transition [27]. In this case, the configuration of
the moments can be described by partitioning the lattice in
clusters, and it has been shown from a reformulation of the
partition function that, for each cluster configuration, the spin
sign of the clusters can be arbitrarily chosen. This is the base
of the Swendsen-Wang algorithm [28,29].

These clusters have been studied in detail for the 2d
Ising system in Ref. [30], and the cluster distribution at Tc

for finite lattice can be roughly described with an “infinite”
cluster which is percolating across the lattice, of total mo-
ment |m∞| ∝ L(5−η)/2 and a distribution of a large number of
smaller “finite” clusters. The distribution of Fig. 1 with two
maxima corresponds to the dominant contribution of m∞ to
A(q = 0) and, for intermediate-q values, A(q) corresponds to
adding the amplitude scattered by finite clusters. As the sign
of the moments can be arbitrarily changed, the central limit
theorem holds, leading to a Gaussian distribution.

These remarks explain that carrying out MC simulations
and analyzing the results of the dynamics from the study of
A(q = 0, t ) at Tc like in Ref. [13] makes the observation of
the critical slowing-down difficult: the scale invariance of the
fluctuations is broken by the finite size L. This can also be
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FIG. 13. In panel (a), τ (q) ∝ q−2.015, in panel (b), z � 2.0145 from estimates of μ = γ /νz.

seen in Refs. [10] and [12], where the results were interpreted
by two exponential behaviors.

This latter remark is connected to the observation of
stretched exponentials, introduced from Eq. (7). The time
domain where a nonlinear time behavior is valid can be
extended: in Eq. (7), only the condition t/t0 	 ξ z, which cor-
responds here to t/t0 	 Lz, has to be fulfilled. This paper pro-
poses that the correlation functions are essentially described
by stretched exponentials, even for t/t0 > q−z, provided that
q � ξ−1 (or q � L−1).

The estimate of z = 2.0145 given here is close to the results
of dynamic renormalization group results (z = 2.017) [9],
significantly different from Ref. [5], where τ is obtained by
two methods: evaluation of τ = ∑

g(1)(q, t ) and, assuming a
simple exponential, estimating τ (q) = −|t |/ ln[g(1)(q, t )] for
large t . In the first method, g(1)(q, t ) is sensitive to size and
short-time biases and in the second method, the observation of
an exponential is extremely difficult because the large t means
t/t0 � ξ z (or t/t0 � Lz).

The results of the simulations carried out in this paper can
have important consequences: the Ising model corresponds
to a φ4 model of criticality, with a one-dimensional order
parameter. MC Ising introduces an UV cutoff (the lattice
constant a) and an IR cutoff (La). The small difference
observed in Fig. 12 between an exponential and a stretched
exponential is extended for a fully critical system to an infinite
number of time orders of magnitude. In this case, the fact that
μ − 1 = −0.025 qualitatively changes the dynamics, but its
observation in an XPCS experiment can be difficult.
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