
Single Reception Estimation of Wireless Link
Quality

Henry-Joseph AUDÉOUD, Martin HEUSSE, and Andrzej DUDA
Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France

Email: henry-joseph.audeoud@univ-grenoble-alpes.fr, martin.heusse@univ-grenoble-alpes.fr,
andrzej.duda@univ-grenoble-alpes.fr

Abstract—Quick and accurate estimation of link quality, and
more specifically packet loss probability, is the key element
for efficient and effective communications in wireless multi-hop
networks. We focus on IEEE 802.15.4 and we posit that losses
only occur when noise and interference last long enough and are
strong enough relatively to the received signal, to hinder packet
reception. So, the key information for any ordered node pair is
the signal to noise plus interference ratio distribution, which we
obtain by combining the observed noise plus interference power
at the receiver with the received signal strength.

In this paper, we propose two novel schemes for the estimation
of PER: Burst-NISI and Sample-NISI. Burst-NISI is based on
high frequency measurements of the power level of ambient noise
and interference around a given node. Sample-NISI sporadically
samples the power level of ambient noise and interference when
the radio operates according to a duty cycle.

Using a large scale experimental platform, we show that our
packet error rate estimation schemes are accurate for any packet
length and diverse experimentation sites with different settings,
for which the prediction is within 10 percentage points of the
PER value measured a posteriori.

Index Terms—Wireless Sensor Networks, IEEE 802.15.4, wire-
less link quality estimation, IoT-lab

I. INTRODUCTION

The estimation of link quality in terms of the Packet Error
Rate (PER) in multi-hop wireless sensor networks (WSN) is
essential for their correct operation. Ideally, the estimation
should be accurate, stable, immediate, and energy efficient [1].
Accuracy is required because it determines the soundness of
the routes used by the data traffic and stability avoids frequent
changes of these neighbors. Quick estimation of link quality
enables swift adaptation and allows efficient bootstrapping of
new nodes entering the network.

There are two main approaches to quantify link quality:
i) based on signal characteristics measured upon packet recep-
tion, such as the Radio Signal Strength Indicator (RSSI) or the
Link Quality Indicator (LQI), and ii) packet counting. RSSI
or LQI are correlated with PER but they are not sufficient
for obtaining an accurate PER estimation [2], [1]. Counting
correctly received packets gives a statistical estimation of PER,
however, it requires a large number of packet transmissions to
be reliable [2], [1], so it incurs significant overhead to find the
quality of the links to all neighbors.

In this paper, we explore the idea of deriving a PER
estimation from the distribution of the Signal to Interference
plus Noise Ratio (SINR) and the measurement of RSSI for

a given packet reception. We define the Noise and Interfer-
ence Strength Indicator (NISI) that quantifies the power level
of ambient noise and interference mostly due to co-located
IEEE 802.11 networks around a given node. Nodes measure
the empirical distribution of NISI and with RSSI for a received
packet, they can predict PER of future transmissions for a
given modulation and coding scheme.

We propose two specific estimation schemes: Burst-NISI
and Sample-NISI. In Burst-NISI, a node measures the NISI
distribution by switching its radio on and recording the
ED (Energy Detection) value as often as possible. Then, it
combines the NISI distribution with RSSI measured upon
packet reception to obtain a precise estimation of the SINR
distribution. Finally, it applies a theoretical model to estimate
PER.

To address the energy and computational constraints of
embedded systems, we also propose Sample-NISI, a modified
scheme based on sporadic sampling of NISI in background
when the radio operates according to a duty cycle. When
a node wakes up and does not detect any transmission, it
records the value of NISI to obtain its distribution. Upon the
reception of a packet, the node measures RSSI and applies a
similar theoretical model as in Burst-NISI to obtain the PER
estimation.

We have experimentally validated the proposed schemes
on the IoT-lab testbeds [3]. The PER estimation is in most
cases within 10 percentage points of the measured value. To
ensure that the results do not depend on specific environmental
conditions, we have carried out experiments on three different
testbeds (three different IoT-lab sites) and for nine different
IEEE 802.15.4 channels. We have also checked that the results
are accurate for various packet sizes.

Both schemes present an important advantage with respect
to packet counting: besides the background measurements of
the ambient noise and interference, a single packet reception
allows to obtain an accurate estimation of link quality for
a given channel and the estimation takes into account the
variations of the local interference and noise.

Even if we present the estimation schemes in the context of
IEEE 802.15.4 networks with the typical interference gener-
ated by co-located IEEE 802.11 networks, the principles of the
schemes stay valid for other types of networks and interferers.

In the rest of the paper, we discuss wireless link quality
estimators and related work in Section II, and evaluate the in-
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Fig. 1. Quantile regression (5th and 95th percentile) of PER with respect to
LQI.

terference in the 2.4 GHz ISM band in Section III. Sections IV
and V present the proposed schemes for link quality esti-
mation: Burst-NISI and Sample-NISI, respectively. We then
present the results of the experimental link characterization on
several sites of the IoT-lab testbed in Section VI. Section VII
concludes the paper and presents some future work.

II. RELATED WORK

We start with a review of main link quality estimators,
and discuss the schemes proposed in the literature. Finally,
we tackle the problem of estimating interference of other
networks.

A. Common wireless link quality estimators

a) RSSI (Received Signal Strength Indicator): Upon
packet reception, the radio chip provides a measure of the re-
ceived signal power. Like many others [1], we have recognized
in a previous paper [4] that high reception power implies good
reception quality. However, it is hard to discriminate between
good and bad links for a lower level of the received signal
power.

b) LQI (Link Quality Indicator): The IEEE 802.15.4
standard [5] is evasive on the exact definition of LQI: “a
characterization of the strength and/or quality of a received
packet”. Its interpretation may vary from one radio chip to
another, which may explain the great diversity of opinions on
the usefulness of LQI.

We have previously studied the AT86RF231 radio chip on
the IoT-lab testbed [4] and obtained encouraging results on
the ability of LQI to predict the link PER. In Figure 1, the
precision of the PER estimation is good on channel 26 (the
inter-percentile interval is thin). However, on channels 22 and
23, the inter-percentile interval is wider and a LQI = 255
no longer guarantees PER of 0%. On these channels, we
also observe more noise (see Figure 2). In fact, LQI is
computed only for a few symbols at the start of the reception
of a packet [6] and it says little about the reception quality
of future packets. Baidoo-Williams at al. [7] remark that

LQI estimation could rely on the combination of RSSI with
knowledge from the packet decoder about successful packet
receptions. However, this only works for successfully decoded
packets and does not provide information about transmissions
not intended for the specific receiver.

c) SNR (Signal to Noise Ratio) and SINR (Signal
to Interference plus Noise Ratio): The indicators allow to
estimate the Bit Error Rate (BER) and PER. However, no
radio hardware directly provides a measure of SNR or SINR,
although LQI may be related to them, depending on the
implementation. Their estimation requires the knowledge of
noise and/or interference power as well as RSSI. Our proposed
methods aim at computing SINR based on measurements on
nodes.

B. Evaluating Link Quality

Much research concerned the estimation of link quality,
however, the proposed schemes do not meet the requirements
for a fast and accurate estimation in WSN.

Baccour et al. [1] review the main results on characterization
of link quality and schemes for its estimation. RSSI only
characterizes the received signal strength and does not take
into account neither noise nor interference, so it only partially
reflects the link quality. LQI is better because it does depend
on noise and interference, but it is computed only on a
few symbols at the beginning of the reception, so it poorly
captures the channel conditions during the whole transmission.
Moreover, nodes need to perform several measurements to
obtain a good link quality estimation, which means many
packet receptions if they need to quantify the links with all
neighbors.

Link quality estimation by packet counting may rely on
active probing [8], however, probing packets consume ad-
ditional energy, especially if a node needs to send them
to all neighbors. The same problem arises when nodes use
overhearing to estimate link quality: Liu et al. [9] designed
a passive meter that overhears frames to update link status.
Hermeto et al. [10] proposed a passive scheme to avoid costly
estimation of PER of unicast links by ranking links based
on counting broadcast frames. Nevertheless, all such methods
require a large number of transmissions to be reliable. Zhang
et al. [11] established a model that connects PER to a measure
of LQI for a given packet length under diverse environmental
conditions.

The Expected Transmission Count (ETX) is an example of
other types of link quality estimators that nodes can directly
use without estimating PER. It corresponds to the number of
retries each data packet may experience before it is success-
fully acknowledged by the receiver [12]. ETX is related to the
inverse value of 1 − PER for the data and acknowledgment
packets. Its estimation requires several packet transmissions
to obtain statistically significant estimation. This constraint
is particularly limiting for WSN in which sending numerous
probes to estimate ETX of all links may be inacceptable.



C. Estimating interference of other networks

Our scheme aims at taking into account the interference of
other technologies, especially IEEE 802.11. Shin et al. [13]
proposed an analytical model (backed by simulations) to eval-
uate the effect of mutual interference between both technolo-
gies. They showed that the interference with IEEE 802.15.4
becomes negligible if the ratio of the distance between trans-
mitters is above 8 (8 vs. 1m). Petrova et al. [14] experimen-
tally studied PDR obtained for various IEEE 802.15.4 packet
lengths in presence of IEEE 802.11g/n traffic. They showed
that the channel frequency and modulation of IEEE 802.11 are
both significant. Angrisani et al. [15] also studied this issue on
a real testbed and found a correlation between PER and SIR
(Signal to Interference Ratio), however, they did not compare
the results with any theoretical formula. Brown et al. [16]
proposed a statistical model to predict losses based on the
observation of the interference. Their model is simpler than
ours: it considers the interference as an ON/OFF process that
destroys a transmission as soon as there is an overlap. We
show below that the impact of noise and interference is not so
drastic and we need their better fine-grained quantification.

III. EVALUATING NOISE AND INTERFERENCE

To estimate noise and interference in the 2.4 GHz ISM band,
we have used the IoT-lab testbed [3]: we ran experiments
with many nodes in RX (reception) mode on the Grenoble,
Lille, and Lyon premises. We sample the raw radio power
received by nodes: we call this value the Noise and Interfer-
ence Strength Indicator (NISI)—it corresponds to the value of
Energy Detection (ED)1 measured by the radio chip between
frame receptions. The results appear in Figure 2: NISI depends
on the channel and the considered site. Moreover, there is a
clear correlation with common IEEE 802.11b/g/n channels.

To apprehend the impact of IEEE 802.11 on IEEE 802.15.4
and its key factors, we present their transmission and reception
characteristics in Table I. If we consider that the attenuation
for both signals is the same, which is typically the case if
the distances between the transmitters and the receiver are
identical, the IEEE 802.15.4 signal would then face a SIR
of −10 dB, which makes communication impossible even
with the effective spread spectrum factor of 8 (+9dB). As
IEEE 802.11 networks are less dense (or have a higher
link budget by 6 – 10 dB [17]), it is fair to consider the
case in which the IEEE 802.11 interferer is farther than the
IEEE 802.15.4 transmitter or behind a wall or a door, which
can attenuate the signal power by 6 – 15 dB [18]. Attenuation
decreases the level of interference and makes IEEE 802.15.4
communication possible.

IV. BURST-NISI: PER ESTIMATION FROM HIGH
FREQUENCY NISI MEASUREMENTS

In this section, we present Burst-NISI, a scheme that esti-
mates P̂ERB based on bursts of high frequency measurements

1According to the IEEE 802.15.4 standard [5]: “the Energy Detection (ED)
value is an estimate of the received signal power within the bandwidth of the
channel”
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Fig. 2. Mean NISI measured by IEEE 802.15.4 sensors on the IoT-lab
testbeds in Grenoble, Lille, and Lyon, with confidence intervals. Dashed
curves represent the most used IEEE 802.11 channels (1, 6, and 11). We
can clearly observe interference with the 802.11 traffic.

TABLE I
IEEE 802.15.4 VS. IEEE 802.11.

IEEE 802.15.4 IEEE 802.11n ratio

Channel width 2MHz 20MHz −10dB
Transmission power 0dBm ∼20dBm −20dB

SIR (same attenua-
tion for both signals)

−10dB

SIR (−6 – −15dB
attenuation for
IEEE 802.11)

−4 – +5dB

of noise and interference. We measure NISI on each receiving
node by putting the node radio in RX mode and recording
the ED value as often as possible, which results in a series
of samples NISI[i] at instants ti, i = 1, . . . , I every Ts =
ti+1− ti =166 µs. In our experiments, I = 8300, representing
1.38 s of airtime. We consider this burst of measurements as
a representative of typical NISI.

To compute the probability of successful reception for a
frame received with given RSSI, we assume that the frame
arrives at the instant corresponding to sample index i0, the bit
error probabilities are independent of each other, and the BER
is the same for all bits during Ts:

PER[i0] = 1−
i0+M∏
i=i0

(
1− BER (RSSI−NISI[i])

)bs
, (1)

where RSSI and NISI[i] are in dBm, bs = R × Ts is the
number of bits per sampling period, R is the IEEE 802.15.4
data rate, and the relation BER(SINR) is defined in the
IEEE 802.15.4 standard [5]:

BER(SINR) =
8

15
× 1

16
×

16∑
k=2

−1k
(
16

k

)
e(20×SINR×( 1

k−1)).

Finally, we derive P̂ERB for any possible arrival instant by
averaging PER[i0] for all positions i0:

P̂ERB =
1

I −M

I−M∑
i0=1

PER[i0]. (2)



Algorithm 1: Node operation for packet reception under Sample-
NISI. Lines 7–10 differ from standard duty cycles—they correspond
to the measurement of RSSI and collecting the NISI histogram.

1 K: number of measurable NISI levels
2 Fk: array of size K initialized at zero
3 On every radio duty cycle do
4 switch radio on
5 if synchronization header received then
6 receive packet
7 measure RSSI, record packet duration D
8 else /* collect Fk histogram */
9 k ←− measured NISI

10 Fk ←− Fk + 1
11 switch radio off

We evaluate the accuracy of Burst-NISI in the next section
and show that it results in good estimation of PER. However,
we can hardly apply it to a low power node in real world
deployments. Actually, it requires the radio to be permanently
switched on during long periods of time, which consumes
considerable energy and requires enough computational power
to process measurements.

V. SAMPLE-NISI: PER ESTIMATION FOR ENERGY
CONSTRAINED NODES

To be able to embed the estimation of PER in an en-
ergy constrained node, we propose Sample-NISI, a modified
scheme that takes advantage of sporadic NISI measurements
to compute estimation P̂ERS.

The duty cycle is a common technique to reduce energy
consumption at the MAC layer. For packet reception, it con-
sists of periodically switching radio on at given instants when
the node expects to receive a packet from one of its neighbors.
If it receives the synchronization header (SHR), it keeps the
radio in RX mode to receive the frame. If it does not detect
SHR, it measures NISI and updates Fk corresponding to the
histogram that captures the noise and interference distribution:

P(NISI = k) =
Fk∑K
l=1 Fl

,

where K is the number of measurable NISI levels.
Algorithm 1 describes the operation of a node under

Sample-NISI. At each duty cycle, when a node wakes up
for reception, it can sample NISI without consuming much
additional energy.

To compute estimation P̂ERS for a given frame of duration
D received with a given value of RSSI, based on the distri-
bution of NISI captured by histogram Fk, we use the law of
total probability:

P̂ERS =

K∑
k=1

PER (RSSI−NISI)× P(NISI = k), (3)
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where function PER (SINR) for given SINR is derived from
Equation 1:

PER (SINR) =
1

d+D

∫ D

−d

(
1− (1− BER(SINR))

N(τ)
)
dτ,

(4)
where N(τ) is the number of bits effectively affected by the
interference. We compute N(τ) from the difference τ between
the beginning of the typical interference and a given frame
with respective durations: D of the IEEE 802.15.4 frame and
d of the interference:

N(τ) =


R(D − d)

(
τ
d + 1

)
−d ≤ τ < 0

R(D − d) 0 ≤ τ < D − d

R(D − d)
(
− τ
d + D

d

)
D − d ≤ τ < D

0 elsewhere.

Estimation P̂ERS relies on d, the duration of typical inter-
ference. A wrong value of d may compromise accuracy. In
this paper, we have measured d experimentally and adopted
the fixed value of d = 1.45ms that matches one IEEE 802.11
beacon of size 180B sent at 1Mb/s corresponding to the most
present interfering traffic we observed during experiments.

Figure 3 gives the graphical representation of N and PER
with respect to τ . In a nutshell, when the signal faces interfer-
ence, the effect of the latter lasts longer than the interference
duration: it could mask only one symbol, but it still may result
in a wrong frame check sequence (FCS) so the entire frame
would be dropped. Beyond the interference, we consider that
the SINR is high enough to warrant a negligible BER, which is
not true for the case of packets with RSSI near the sensitivity
threshold, which we discuss below.

A node can continuously update the Fk histogram of NISI
in the background and use it in the PER estimation of links to
all neighbors. Sample-NISI then only requires the reception of
a single packet to estimate PER from the associated value of
RSSI. The scheme gives the estimation of PER for any packet



TABLE II
PARAMETERS OF THE EXPERIMENTS ON THREE DIFFERENT SITES.

IoT-lab Lyon Grenoble Lille

Sensor IoT-lab (ARM Cortex) M3 nodes
Sensor radio hardware AT86RF231 IEEE 802.15.4 chip at 2.4GHz
# nodes 18 30 30
TX power −12dBm 0dBm 0dBm

Data packet size
(MAC layer) 33 / 84 / 126B 84B 84B

Mean # of neighbors 5.0 3.0 7.4

sizes—the packet duration is an input parameter to Sample-
NISI that takes an important role, in particular for marginal
links, which corroborates recent experimental findings [11].

Note that the continuous updating of the Fk histogram is
a means of adaptation to changing channel conditions in the
local radio environment. If we need to enhance adaptation even
more, nodes can update the distribution by weighting the new
samples more than the older ones, e.g., with an exponentially
weighted moving average (EWMA).

Sensitivity limitations

The IoT-lab M3 nodes we used in our experiments have
a minimal measurable radio power level (both for NISI and
RSSI) of −91 dBm. This value is much higher than the
sensitivity of −101 dBm found in the datasheet, which is itself
well above the theoretical limit [19].

So, with this hardware, we do not have any details on NISI
and RSSI in the range between −91 and −101 dBm: all NISI
mesures accumulate in the −91 dBm histogram bin. This fact
limits the range of the RSSI values for which our method
is applicable. However, a large fraction of packets are lost
in this range of reception power [4], so that the majority of
the corresponding links have a high PER and thus should be
avoided except, as a last resort.

VI. EXPERIMENTAL VALIDATION OF THE SCHEMES

We have validated the proposed schemes in an extensive
measurement campaign involving hundreds of wireless links
on several sites of the IoT-lab testbed. The sites are in different
cities and occupy areas of various sizes. They are subject to
different levels of noise and interference mainly generated by
surrounding IEEE 802.11 networks. For each of these links,
we measure RSSI and NISI to compute the PER estimation as
well as we measure the mean PER based on counting received
packets.

Table II shows the key parameters of the experiments.
Due to the small size of the Lyon testbed, we reduce the
transmission power on this site to avoid having only excellent
links. During the experiment, each node sends 90 broadcast
packets on each frequency channel. We measure NISI on each
receiving node in two different ways: in one burst, at the
beginning of the experiment to obtain data for validation of
Burst-NISI, and by discrete sampling, interspersed with packet
transmissions to validate Sample-NISI.
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Fig. 5. Link PER vs. RSSI: PER measurements by counting packets, PER
estimation with Burst-NISI and Sample-NISI. The black crosses represent
the measured RSSI and PER of the links: the horizontal position and length
represent the mean and the standard deviation of RSSI and the height
represents PER with its confidence interval. Dashed red lines correspond to
the PER estimation using Burst-NISI and dotted green lines represent the PER
estimation using Sample-NISI. We also draw the normalized Fk histogram,
i.e., the distribution of NISI (blue bar plots) and its complementary cumulative
distribution function (CCDF), i.e., the proportion of the NISI values above a
given RSSI value associated with this distribution.

A. Estimation of RSSI

We first consider the RSSI estimation of each link (i.e., for
each transmitter, receiver, and channel). Figure 4 shows the
standard deviation of the observed RSSI values on individual
links. The standard deviation is less than 1 dB. Compared
with the precision required for the estimation of PER, we
can conclude that one packet is sufficient to obtain a useful
estimate of the effective RSSI over the considered link. As the
RSSI value varies from one channel to another, we estimate
the link RSSI separately on each channel.

Because of channel fading, the RSSI may still vary along
the time. However, the network is not highly mobile and
not placed in a highly mobile environment, which makes
the fading less concerning. Moreover, the knowledge of the
behaviour of one link may be refined and updated at each
new reception on that link.
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Fig. 6. Link PER vs. SINR: PER measurements by counting packets, PER estimation with Burst-NISI and Sample-NISI for a selection of receivers. Legend
for the graphs as in Figure 5. The estimation is sufficient to distinguish the situation in which 1) there is almost no noise and PER is 0% for every signal
power level except for the lowest value of −91dBm (as for node 13 in Lyon on channel 26) or 2) when noise implies non-zero PER even for strong link
power (e.g., node 79 in Lille on channel 17).

B. Ground truth PER measurements

We measure mean PER by counting packets for all links in
our selection of nodes by sending tens of thousands packets
on each site. As expected, many links have very good quality
and we observe a PER of 0% in many cases. Thus, to compute
the PER confidence interval, we cannot use the common
assumption based on the normal distribution. We have decided
to use the Wilson score [20] instead, as it is more suitable in
this case.

C. Experimental results

We start by observing the relationship between link SINR
and PER. Figure 5 presents a set of measured values for
channel 13 of node 79 in Lille. This graph shows the cor-
respondence between the PER and the SINR. We observe
the distribution of NISI, depicted by the histogram and its
complementary cumulative distribution function (CCDF), i.e.,
the proportion of the NISI values above a given RSSI value
associated with this distribution. We also observe the experi-
mentally measured PER and RSSI values of each link of which
node 79 in Lille is the receiver, traced as black crosses. Then,
we observe the two estimators P̂ERS and P̂ERB, computed
from the NISI samples.

We can observe that the measured value of PER is clearly
related to (but does not superpose on) Fk CCDF. Moreover, the
estimated PER values by both proposed schemes correspond
fairly well to measured PER: the difference between them is

tiny compared to the precision of the RSSI measurements and
the required precision of the PER estimation.

Figure 6 presents all the results with one row of plots
per receiver. We also separate data per channel (in columns)
because of the difference of noise levels shown in Section III.
Both estimators successfully take into account the presence
or absence of perturbations: on noisy channels like channel
13, they increase with Fk CCDF, whereas on channels with
almost no noise like channel 26, they stay at 0%. In some
graphs, the accuracy of the estimation with Burst-NISI differs
from the one estimated by Sample-NISI (e.g., channel 13
of the node 79 in Lille, for low power values). The reason
for the difference is that the burst of NISI measurements in
Burst-NISI is not necessarily representative of the long-term
NISI distribution, whereas Sample-NISI takes advantage of
the Fk histogram of NISI samples gathered over time, more
representative information of the typical values of NISI as they
are constantly updated.

Figure 7 summarizes the estimation accuracy for all data
recorded during our experiments. To obtain the accuracy,
we compute the absolute difference between PER estimated
by Sample-NISI and PER measured during the experiments.
We draw the distribution of the accuracy using letter-value
plots [21]. To analyze the effect of the different parameters,
we group the values according to various criteria.

Three plots on the left show that the accuracy is similar
for all sites. According to Equation 4, PER depends on the
IEEE 802.15.4 packet length, integrated in the PER estimation
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via the packet duration, so Sample-NISI has the same accuracy
for small (33B), medium (64B), or long packets (126B) in
the same environmental conditions. Moreover, two plots on the
right indicate that the estimation correctly captures the differ-
ent noise power levels (or interference levels) encountered on
the various radio channels.

VII. CONCLUSION AND FUTURE WORK

Link quality estimation is subject to a subtle trade-off be-
tween accuracy and energy consumption since PER estimation
based on active or passive packet counting may consume
energy that nodes could otherwise dedicate to application
traffic.

Sample-NISI uses all the information readily available dur-
ing the regular operation of any sensor network: every time
the radio wakes up, if it receives a packet from a neighbor,
it records associated RSSI to refine the PER estimation of
the link. If it does not detect the packet preamble, it refines
the Fk histogram of NISI. This approach is compatible with
any radio duty cycling mechanism like TSCH, beacon-enabled
IEEE 802.15.4, or preamble sampling (such as Contiki MAC).
Moreover, a node can use any packet from a neighbor to
estimate link PER: it merely needs to measure RSSI and it
obtains the same accuracy for any kind of packets (i.e., unicast
data frames of any size, routing protocol broadcast packets,
etc.). Besides background measurements of NISI, Sample-
NISI only requires a single packet reception to estimate PER.

Regarding the estimation of the average interference dura-
tion, we intend to investigate an embedded estimation process
for finding d, e.g., with two consecutive NISI samples. We also
plan to investigate how nodes can take advantage of selecting
different neighbors for different packet sizes as Sample-NISI
intrinsically gives different PER values for different packet
lengths.
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