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Seismic interferometry is a technique to retrieve Green's functions between two points from crosscorrelation functions of seismic ambient noise records at the two points. This technique has been widely used to monitor seismic velocities in the Earth and succeeded in detecting changes in association with large earthquakes and/or volcanic eruptions. However, in doing such monitoring, it is important to judge if a current seismic velocity change is significant or not. We here propose a statistical method for that purpose. First, we study statistical distributions of seismic velocity changes observed during normal periods when no large earthquakes or volcanic eruptions are known to have occurred. Then, we assign a probability to a current value of seismic velocity change using these statistical distributions. Accordingly, we can objectively judge if the current value is normal or abnormal. Analyzing three different data sets of seismic velocities measured in Japan with seismic interferometry, we find that the Gaussian distribution well explains most of the datasets. However, an exception is the truncated Cauchy distribution that accounts for the dataset in lower frequency bands at Sakurajima volcano. Once the statistical distribution is known, whichever it is Gaussian or other distributions, we can quantify the monitoring of seismic velocity changes based on probabilities. That is also useful for automatic detections of anomalies in seismic velocity changes.

Introduction

Monitor seismic velocities in the Earth is important because we might be able to monitor the state of stress, temperature, fluids, materials, etc. through the changes in seismic velocities. Repeated seismic experiments with active sources (e.g., [START_REF] Li | Evidence of shallow fault zone strengthening after the 1992 M7.5 Landers[END_REF][START_REF] Nishimura | Temporal changes in seismic velocity of the crust around Iwate volcano, Japan, as inferred from analyses of repeated active seismic experiment data[END_REF] or natural earthquake multiplets (e.g., [START_REF] Poupinet | Monitoring velocity variations in the crust using earthquake doublets: an application to the Calaveras fault, California[END_REF] have been used for that purpose. These experiments warrant high accuracy for monitoring but usually suffer from sparse samplings in time.

Seismic interferometry [START_REF] Curtis | Seismic interferometryturning noise into signal[END_REF] has been widely used to create Green's functions between two stations from cross-correlations of passive recordings of seismic coda waves (e.g., [START_REF] Campillo | Long-range correlations in the diffuse seismic coda[END_REF] or ambient seismic noise (e.g., [START_REF] Shapiro | Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise[END_REF]. Notably, the use of ambient seismic noise enables us to monitor seismic velocities in the Earth continuously in time. Continuous monitoring has been successfully applied to detect changes in seismic velocity in volcanic regions (e.g., Sens-Schönfelder and Wegler, 2006;Brenguier et al., 2008b) and earthquake source regions (e.g., [START_REF] Wegler | Fault zone monitoring with passive image interferometry[END_REF]Brenguier et al., 2008a;[START_REF] Wegler | Sudden drop of seismic velocity after the 2004 Mw6.6 Mid-Niigata earthquake, Japan, observed with Passive Image Interferometry[END_REF]. We can easily find large seismic velocity changes in association with large earthquakes or volcanic eruptions. However, it is recently possible to estimate seismic velocity changes of 0.1% or less (e.g., [START_REF] Sens-Schönfelder | Passive image interferometry for monitoring crustal changes with ambient seismic noise[END_REF]. Therefore, we can recognize small changes in seismic velocity even when no large earthquakes or volcanic eruptions are known to have taken place. Some of these changes are explained by several external environmental factors: underground water levels controlled by rainfall (e.g., Sens-Schönfelder and Wegler, 2006), thermoelastic strains induced by the surface temperature (e.g., [START_REF] Meier | Detecting seasonal variations in seismic velocities within Los Angeles basin from correlations of ambient seismic noise[END_REF], loading by snow accumulation and sea wave height (e.g., [START_REF] Wang | Seasonal Crustal Seismic Velocity Changes Throughout Japan[END_REF]. These studies clarified that several different physical mechanisms contribute to temporal changes in seismic velocities.
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In monitoring seismic velocity changes in the Earth, we want to detect anomalies that might eventually lead to earthquakes or volcanic eruptions. However, in order to detect anomalies, we need to remove contributions from other factors by disentangling the contributions from the different physical mechanisms. One approach is based on the observation of multiple parameters such as seismic velocity changes, meteorological parameters, oceanographical parameters. [START_REF] Wang | Seasonal Crustal Seismic Velocity Changes Throughout Japan[END_REF] took this approach by clarifying mutual relations and then removed contributions of the meteorological and oceanographical components from observed data. However, contributions from unknown origins would remain in the observed data.

In this study, we propose a statistical approach to detect anomalies. First, we study statistical distributions for three different datasets of seismic velocity changes measured in Japan with seismic interferometry. We focus on the data during normal periods when no large earthquakes or volcanic eruptions are known to have occurred. We consider it important to know characteristics during the normal periods to detect anomalies (i.e., significant changes). Once the statistical distributions during the normal periods are known, we can assign a probability to a current value of seismic velocity change. Accordingly, we become able to objectively judge if the current value is abnormal or normal without human intervention.

Three data sets of seismic velocity changes

We use three different data sets of seismic velocity changes measured with seismic interferometry:

(1) the Iwate-Miyagi data set for the source region of the 2008 Iwate-Miyagi Nairiku, Japan, earthquake of Mw6.9 [START_REF] Hobiger | Coseismic and postseismic elastic wave velocity variations caused by the 2008 Iwate-Miyagi Nairiku earthquake, Japan[END_REF], (2) the entire Japan data set for the Hi-net stations all over Japan [START_REF] Wang | Seasonal Crustal Seismic Velocity Changes Throughout Japan[END_REF], and (3) the Sakurajima data set for Sakurajima volcano, Japan [START_REF] Hirose | Combined use of repeated active shots and ambient noise to detect temporal changes in seismic velocity: application to Sakurajima volcano, Japan[END_REF]. These three study regions are shown in Figure 1. than 100km. Applying one-bit normalization and spectral whitening techniques (e.g., [START_REF] Bensen | Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[END_REF] to ambient seismic noise in three-period bands of 1-2s, 2-4s, and 4-8 s, they calculated all nine components of the cross-correlation tensors for all 190 stations pairs. Seismic velocity changes were measured by applying the stretching method (e.g., Sens-Schöenfelder and Wegler, 2006) to only coda part of these cross-correlation tensors. Averaging seismic velocity changes from positive and negative lag parts of nine cross-correlation tensor components, they stably estimated seismic velocity changes. Figure 2 Figure 2) since post-seismic effects of the Iwate-Miyagi Nairiku earthquake do not seem apparent in that period. Then we investigate the statistical characteristics of the observed seismic velocity changes during this normal period. [START_REF] Wang | Seasonal Crustal Seismic Velocity Changes Throughout Japan[END_REF] studied seasonal variations in seismic velocities all over Japan by analyzing data from the dense Hi-net short-period seismic network. They divided all 718 stations over Japan into two parts: 501 stations in the northeastern part shown by solid squares and 271 stations in the 6 southwestern part by open triangles in Figure 1. The studied period is from 2008 to 2012 in northeast Japan and 2011-2012 in southwestern Japan. They estimated daily seismic velocity changes by applying the doublet method by [START_REF] Brenguier | Mapping pressurized volcanic fluids from induced crustal seismic velocity drops[END_REF] to cross-correlation functions of seismic ambient noise in the 0.15-0.9 Hz band from -60s to 60s in lag time including not only ballistic waves but also coda waves. They adopted one-bit normalization and spectral whitening techniques. They stabilized the estimation of seismic velocity changes by using all nine components of the cross-correlation tensor between a station pair. They estimated seismic velocity changes at a station from cross-correlation tensors between that station and neighbouring stations within 30km. Figure 3 shows daily seismic velocity changes measured at 4 stations in Japan from 2008 to 2012. The top three panels show results obtained at three stations in Northeast Japan, and the bottom panel shows results at one station in Southwest Japan. In the top three panels, we can recognize two sudden velocity drops associated with the Iwate-Miyagi Nairiku earthquake on June 14, 2008 and the Tohoku-Oki earthquake on March 11, 2011. We choose two years of 2009 and 2010 as the normal period for Northeast Japan, and two years of 2011 and 2012 as the normal period for Southwest Japan. [START_REF] Hirose | Combined use of repeated active shots and ambient noise to detect temporal changes in seismic velocity: application to Sakurajima volcano, Japan[END_REF] estimated seismic velocity changes at Sakurajima volcano during the three years between 2012 and 2014 by using active shot records and seismic ambient noise. They used six short-period seismic stations on Sakurajima that are maintained by the Japan Meteorological Agency (JMA) (solid triangles in Figure 1 (c)). They calculated cross-correlations functions between 15 stations pairs by applying one-bit normalization and spectral whitening techniques to ambient seismic noise in three frequency bands (1-2Hz, 2-4Hz, and 4-8 Hz). They calculated phase changes of these cross-correlation functions by applying the moving window cross-spectral technique [START_REF] Poupinet | Monitoring velocity variations in the crust using earthquake doublets: an application to the Calaveras fault, California[END_REF], and measured daily seismic velocity changes by fitting straight lines to the phase changes during -10s to 10 s in the lag time including not only ballistic waves 7 but also coda waves. Figure 4 shows the daily seismic velocity changes measured at Sakurajima from 2012 to 2015. Data analysis is extended to 2015 by one year in addition to [START_REF] Hirose | Combined use of repeated active shots and ambient noise to detect temporal changes in seismic velocity: application to Sakurajima volcano, Japan[END_REF]. The left panels are results for station pair Akobaru-Nabeyama in the 1-2, 2-4, and4-8Hz bands from top to bottom. The right panels are those for Amidagawa-Yuno. The red vertical lines indicate August 15, 2015, when a dike intrusion event took place. We choose three years of 2012, 2013, and 2014 as the normal period for further analysis.
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Method

We investigate the statistical characteristics of observed seismic velocity changes during normal periods when no large earthquakes or volcanic eruptions occur. We draw Gaussian quantile plots and histograms to study the probability density functions of the three data sets of observed seismic velocity changes described in Section 2. We can make normal quantile plots as follows. First, we arrange the observed seismic velocity changes during the normal period in ascending order. If we define i

x to be the i-th smallest seismic velocity change, 1

x is the lowest (usually negative) and n

x the largest (usually positive) seismic velocity change where n is the number of the daily observed velocity changes. Then, the following relation is the basis of the normal quantile plot:
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i i x F      , (1)
where 1   is the inverse error function,  is the average and  is the standard deviation of the observed seismic velocity changes i x , and Fi is calculated according to the mean rank method in the rank statistics as

1 i i F n   . (2)
We plot the right-hand side of equation ( 1) along the abscissa and the left-hand side along the ordinate of the normal quantile plot. When data i

x follow a straight line on the normal quantile plot, the data obey a Gaussian distribution.

We also calculate skewness and kurtosis values of the data. The skewness is a measure of the lack of symmetry that is defined as follows:

3 1 3 1 () sk n i i x n       . (3)
For symmetric distributions including the Gaussian, the skewness value becomes zero. A positive skewness value means that the right tail is longer than the left one, and vice versa. The kurtosis is a measure of whether the data are heavy-tailed or light-tailed:
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The Gaussian distribution has a kurtosis value of three. When the kurtosis is higher than 3, the distribution has a heavier tail than the Gaussian, and vice versa. Therefore, skewness and kurtosis values also help to judge if a distribution can be explained by the Gaussian distribution or not.

Results

In Figures 5 and6, we show histograms and normal quantile plots for the 1-2s, 2-4s, and 4-8 second bands of the station pairs ICEH-NRKH and OGCH-JYK in the Iwate-Miyagi data set. Histograms in the left panels show the number of data in each bin with a width of 0.1 from -5 to 5. Data follow symmetric bell shapes. 'sk' and 'ku' in each panel are skewness and kurtosis of the data. Skewness and kurtosis values are expected to be 0 and 3, respectively, for a Gaussian distribution. On the normal quantile plots in the right panels, data roughly follow straight lines, though data in the 2-4s band of the ICEH-NRKH pair seem slightly convex downward. For the examples shown in Figures 5 and6, skewness values range from -0.599 to 0.219, including 0, and kurtosis values are from 2.453 to 4.252 sandwiching 3. We show histograms of the skewness and kurtosis values for all station pairs in the Iwate-Miyagi data set in Figure 7. Skewness values are peaked around 0 in the left panel suggesting a symmetric distribution. Kurtosis values are ranging between 2 and 4, not peaked around 3 as expected for the Gaussian. However, normal quantile plots still show almost straight lines. Therefore, we judge that all the results of the Iwate-Miyagi data set obey the Gaussian distribution.

Then, we deal with the second data set: seismic velocity changes in the 0.15-0.9Hz band over the entire Japan. Figure 8 shows the results for four stations. The top three stations belong to the Northeast (NE) Japan group, and the bottom station belongs to the Southwest (SW) Japan group.

Left panels show symmetric bell shapes. Right panels exhibit straight lines on the normal quantile plots, which suggests that the Gaussian distribution explains the data. Skewness values for these four stations range from 0.058 to 0.384, slightly higher than 0, and kurtosis values range from 2.512 to 3.241, sandwiching 3. Figure 9 shows skewness and kurtosis values for all stations in the NE Japan group and in the SW Japan group. According to the left panels, skewness values are peaked around 0, suggesting the symmetry of the distributions. The right panels show that kurtosis values are located around 3, suggesting the Gaussian distribution. Therefore, we think that all the results 10 of the entire Japan data set obey the Gaussian distribution well.

We move on to the last data set for Sakurajima volcano. Figures 10 and11 show the results for two station pairs in the 1-2, 2-4, and 4-8 Hz bands. Histograms on the left panels are symmetric but with longer tails to both ends. Skewness values are around 0, which suggests the symmetry of the distributions. However, kurtosis values are much larger than 3 in the 1-2 and 2-4 Hz bands. The normal quantile plots on the left panels exhibit apparent deviations from the straight lines in these two lower frequency bands. The shape is like a skewed letter S. These results suggest that more outliers are expected than the Gaussian in the 1-2 Hz and 2-4Hz bands. On the other hand, results in the 4-8Hz band seem to follow the Gaussian. Indeed, skewness values are close to 0, and kurtosis values are close to 3.

To summarize the results, most of the observed seismic velocity changes during normal periods follow the Gaussian distribution. Exceptions are found in the 1-2 and 2-4 Hz bands for Sakurajima.

In the next section, we discuss what statistical distribution explains these deviations from the Gaussian and what causes these deviations.

Discussions

Cauchy distribution for the Sakurajima dataset in lower frequencies

In the previous section, we found that the observed seismic velocity changes in the 1-2Hz and 2- which suggests that the data follow some power-law like distribution in the tails. On the contrary, the results in the 4-8Hz band are explained by the Gaussian, and the histograms do not show linear decays with the horizontal axis in the log-log scale.

Trying different power-law distributions, we end up with Cauchy distribution C(0, s), whose probability density function p(x) is expressed as

  2 1 ( ) , 1/ px s x s      (5)
where s is the scale parameter, and x is a variable that is a daily seismic velocity change in this study. To show its appropriateness, we make random samplings from populations following the Cauchy distribution. The distribution function of Cauchy distribution

F(x) is 1 11 ( ) tan . 2 x Fx s       (6) 
Putting a uniform random number ui between 0 and 1 into the left-hand side of equation ( 6 12 Finally, we superimpose the Cauchy distribution C(0, s) over the standard normal distribution
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where ri is a random number sampled from the standard normal distribution N(0,1). An underlying assumption of this is as follows; Seismic velocity changes generally obey the Gaussian distribution as shown for all the datasets except for the 1-2 and 2-4 Hz bands at Sakurajima. On the other hand, the seismic velocity change in the 1-2Hz and 2-4Hz bands at Sakurajima are contaminated by the Cauchy distribution that is probably due to small-amplitude volcanic earthquakes and tremors. We will discuss this later in this subsection.

Assuming xm =8 and 16, we try four different s values of 0.25, 0.5, 1, and 2. The assumption of xm does not change shapes of quantile plots seriously. However, larger xm values extend both ends of the distribution and accordingly increase the kurtosis value. To mimic daily seismic velocity changes for three years at Sakurajima, we randomly sample 1100 data from the population. In 13 Now, we discuss why only the results in the lower frequencies at Sakurajima show clear deviations from the Gaussian. We compare dates of outliers in observed seismic velocity changes with days of heavy rainfall by checking precipitation data, but we cannot find the significant correspondence.

Predominant frequencies of volcanic tremors at Sakurajima are known to be between 1.3 and 3Hz [START_REF] Iguchi | A method for monitoring of discharge volume of volcanic ash by using volcanic tremor, Annuals of Disas[END_REF]. We now speculate as follows: Tiny signals from volcanic earthquakes and tremors are hidden in ambient seismic noise and might affect the estimation of seismic velocity changes by contaminating the noise wavefield. The Japan Meteorological Agency (JMA) reported activities of volcanic earthquakes and tremor at Sakurajima between 2012 and 2014. Then, we make the normal quantile plots of data on the days (154 days between 2012 and 2014) when no volcanic tremors were identified by JMA, and show them in Figures 14 and15. The data actually get closer to the Gaussian though some disagreements still remain especially for station pair Amidagawa-Yuno station pair.

Contributions from known physical components

In the results section, we show that most of the observed seismic velocity changes obey a Gaussian distribution with exceptions of the low-frequency bands at Sakurajima. Based on the central limit theorem, we might interpret that several competing factors contribute to the observed seismic velocity changes. However, in some cases, one or two predominant factors such as pore pressure change induced by precipitation and elastic loading change generated by snow accumulation and sea height variation can affect the observed seismic velocity changes [START_REF] Wang | Seasonal Crustal Seismic Velocity Changes Throughout Japan[END_REF]. In this section, we show examples of how a fit to a Gaussian distribution is improved by subtracting contributions of dominant factors from the observed seismic velocity changes in different regions in Japan following the study by [START_REF] Wang | Seasonal Crustal Seismic Velocity Changes Throughout Japan[END_REF].

In Figure 8, we have shown that the results in 0.15-0.9 Hz at four stations almost obey the Gaussian distribution. In order to see the improvement in Gaussian fit by removing the external forcinggenerated changes, we start with the station NSNH, which is relatively less normal distributed compared with others. We make quantile plots of the data and calculate the skewness and kurtosis values in Figure 16. The results show that after subtracting the synthetic velocity changes from the physical model, the skewness changes from 0.384 to 0.275 and the kurtosis changes from 3.241 to 3.199. Both parameters slightly get closer to 0 and 3, respectively. Then we try with the other three stations TREH, ARKH, and UWEH, which are the same as in Figure 10 by [START_REF] Wang | Seasonal Crustal Seismic Velocity Changes Throughout Japan[END_REF].

They discussed that those stations had been strongly affected by some local external forcing.

Globally, we confirm from the values of skewness and kurtosis before and after the physical model correction that the Gaussian fit has been improved after correction.

Finally, we check the changes in skewness and kurtosis for all stations throughout Japan using dv/v measured from 2009 to 2010 in the Northeast and from 2011 to 2012 in Southwest Japan in Figure 17. The two groups of histograms present how the two values systematically change before and after applying the physical model correction. We can see that skewness and kurtosis get more concentrated around 0 and 3, respectively. This observation confirms that the physical model-based seismic velocity correction can help remove some non-random portion of changes in seismic velocity. Applying the physical model correction can further help sort better changes in seismic velocity that related to long-term tectonic deformations and better quantitatively summarize the probability of seismic velocity changes.

Applications of the statistical distributions

Here we discuss some applications of the statistical distributions of observed seismic velocity changes. The discussion in the previous section will help to check if we can correctly remove contributions of known physical mechanisms to the observed seismic velocity changes based on their Gaussianities. That is one practical application of what we found in this study. Moreover, another application is the quantification of anomalies by using probabilities. Once we know that observed seismic velocity changes statistically obey Gaussian distribution, we can assign a probability to each daily seismic velocity change. Then we can quantitatively judge if a current seismic velocity change is normal or abnormal. Figure 18 is similar to Figure 3, but the vertical axis is the seismic velocity change normalized by its standard deviation during the normal period.

Red horizontal lines show +/-four times the standard deviation. According to the Gaussian distribution, a probability of exceeding +/-four times the standard deviation is only about 10^-4 (0.01%). Therefore, we can quantify how often a seismic velocity change exceeds this threshold with this probability. If the seismic velocity change exceeds the threshold for two successive days, the probability becomes as low as 10^-8. In the top three panels, seismic velocity changes exceed -4 times the standard deviation associated with the Tohoku-Oki earthquake on March 11, 2011.

According to the results, we can quantitatively evaluate how rare such a large seismic velocity change is. Such quantification also helps monitor seismic velocity changes and detect some anomalies automatically without human intervention.

Conclusions

We have investigated statistical distributions of seismic velocity changes observed during normal periods when no large earthquakes or volcanic eruptions are known to occur by analyzing three different data sets of seismic velocities measured in Japan. Results show that the Gaussian distribution well explains most of the observed seismic velocity changes. However, an exception is the superposition of the truncated Cauchy distribution over the Gaussian distribution that well describes the results for the 1-2 and 2-4 Hz frequency bands at Sakurajima volcano. The truncated Cauchy distribution is a power-law like distribution which has longer tails than the Gaussian distribution. Reasons for such an exception are still open, but we speculate that small-amplitude volcanic earthquakes and tremors at Sakurajima might change the seismic noise wavefield, and accordingly affect the estimation of seismic velocity changes. Once the statistical distribution is 16 known, either Gaussian or the other, we can assign a probability to a current value of the observed daily seismic velocity change. Accordingly, we can objectively judge if the current value is normal or abnormal based on the probability. The statistical distribution of seismic velocity changes can be utilized to quantify the monitoring of seismic velocity changes using probabilities. Furthermore, such quantitative monitoring is useful for automatic detections of anomalies in seismic velocity changes without human intervention. 

data set 5

 5 Hobiger et al. (2012) studied coseismic and post-seismic velocity changes associated with the 2008 Iwate-Miyagi Nairiku earthquake of Mw6.9 that took place in northeast Japan on June 14, 2008 in Japanese Standard Time (June 13, 2008 in Coordinated Universal Time). They used 20 short-period seismic stations shown by solid triangles in Figure 1 (b). Station separation distances are smaller

  shows examples of daily seismic velocity changes measured from 2008 to the middle of 2011. The left panels are results for a station pair ICEH-NRKH in the 1-2s, 2-4s, and 4-8s from top to bottom. The right panels are those for another station pair OGCH-JYK. These daily seismic velocity changes are smoothed in 10 day-long, 20 day-long, and 30 day-long time windows for the 1-2s, 2-4s, and 4-8s period bands, respectively. Sudden drops in the middle of 2008 and early 2011 correspond to the June 14, 2008 Iwate-Miyagi Nairiku earthquake and the March 11, 2011 Tohoku-Oki earthquake, respectively. To focus on a normal time period when we have no large earthquakes, we choose the two years of 2009 and 2010 (enclosed by red lines in
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  Hz bands for Sakurajima are not explained by the Gaussian distribution. Here, we discuss what distribution explains these data in a good way. To see the characteristics in more detail, we plot the histograms of the two station pairs shown in Figures 10 and 11 in the log-log scale in Figure 12. In these panels, positive velocity changes are expressed by open circles. For negative velocity changes, absolute values are taken and then plotted by open triangles. In the 1-2Hz and 2-4Hz bands, the histograms are flat for smaller dv/v values, and then seem to decay linearly in the log-log scale,

  practically introduce a truncation level xm because there seem upper and lower bounds on real data. When the absolute value of a sample | xi | exceeds the truncation level, this sample is rejected.
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