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S U M M A R Y
Reflection seismic imaging usually suffers from a loss of resolution and contrast because of
the fluctuations of the wave velocities in the Earth’s crust. In the literature, phase distortion
issues are generally circumvented by means of a background wave velocity model. However, it
requires a prior tomography of the wave velocity distribution in the medium, which is often not
possible, especially in depth. In this paper, a matrix approach of seismic imaging is developed
to retrieve a 3-D image of the subsoil, despite a rough knowledge of the background wave
velocity. To do so, passive noise cross-correlations between geophones of a seismic array
are investigated under a matrix formalism. They form a reflection matrix that contains all the
information available on the medium. A set of matrix operations can then be applied in order to
extract the relevant information as a function of the problem considered. On the one hand, the
background seismic wave velocity can be estimated and its fluctuations quantified by projecting
the reflection matrix in a focused basis. It consists in investigating the response between virtual
sources and detectors synthesized at any point in the medium. The minimization of their cross-
talk can then be used as a guide star for approaching the actual wave velocity distribution. On
the other hand, the detrimental effect of wave velocity fluctuations on imaging is overcome
by introducing a novel mathematical object: The distortion matrix. This operator essentially
connects any virtual source inside the medium with the distortion that a wavefront, emitted
from that point, experiences due to heterogeneities. A time reversal analysis of the distortion
matrix enables the estimation of the transmission matrix that links each real geophone at the
surface and each virtual geophone in depth. Phase distortions can then be compensated for
any point of the underground. Applied to passive seismic data recorded along the Clark branch
of the San Jacinto fault zone (SJFZ), the present method is shown to provide an image of the
fault until a depth of 4 km over the frequency range 10–20Hz with an horizontal resolution of
80 m. Strikingly, this resolution is almost one eighth below the diffraction limit imposed by
the geophone array aperture. The heterogeneities of the subsoil play the role of a scattering
lens and of a transverse waveguide which increase drastically the array aperture. The contrast
is also optimized since most of the incoherent noise is eliminated by the iterative time reversal
process. Beyond the specific case of the SJFZ, the reported approach can be applied to any
scales and areas for which a reflection matrix is available at a spatial sampling satisfying the
Nyquist criterion.

Key words: Body waves; Crustal imaging; Seismic noise; Wave scattering and diffraction.

1 I N T RO D U C T I O N

Waves constitute a powerful means to non-destructively probe an
unknown medium. Indeed, wave propagation is fully determined by
the wave equation and boundary conditions. As stated by diffraction

theory in the acoustic approximation, knowing the incident wave-
field and the internal properties in terms of density ρ and celerity
c theoretically allows to compute the wavefield everywhere and
at any time inside the medium. This is the so-called ‘forward’ or
‘modelling’ problem. Conversely, when the medium is unknown,
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the lack of celerity and density knowledge makes it impossible to
compute the spatio-temporal evolution of the wavefield. Yet this
evolution can be known, at least at the boundary, through exper-
imental measurement of the wavefield scattered by the medium.
The inverse problem then consists in deducing the medium internal
properties from the recording of the wavefield at its surface. A first
way to do so is to assume a velocity and density background, solve
the forward problem to compute the time-dependent signal that
would be backscattered if the background model was true, and iter-
atively update this model to minimize the difference with the actual
recordings. Another way is to directly back-propagate the scattered
echoes to reflectors inside the medium. This also amounts to up-
dating a background model since a reflector is nothing else than
a variation in acoustic impedance ρc. In both strategies, referred
to as ‘inversion’ and ‘migration’, respectively, a celerity macro
model is required and the purpose is to compute variations from
this model under the assumption that they are small (Born approx-
imation). If they are not, the reflected wavefield may be subject to
aberrations and multiple scattering that the macro model fails at
modelling. These issues lead to distorted images, lack of resolution
and unphysical features, which are very detrimental to the imaging
process.

In seismic exploration, these issues are important because in
most cases the celerity is non constant in space and its distribution
is unknown. Most geological settings actually consist of several lay-
ers of rocks and sediments with distinct mechanical properties as
well as location-dependent thickness, faulting and strata organiza-
tion. These may be difficult to estimate without previous geologic
expertise of the subsurface, especially in areas with high lateral
mechanical stress that bend and break the layers and make them
superimpose. When trying to retrieve details at a diffraction-limited
resolution, the previous knowledge required to build reliable images
may be already fairly demanding. On the one hand, the inversion
problem cannot be solved if the initial celerity model is too far from
the reality because the regularization procedure can end up stuck in
a local minimum. On the other hand, migration techniques would
lead to loss of resolution due to phase distortions and a blurred
image due to multiple scattering. That being said, the question that
naturally arises and which this work aims at addressing is: how to
retrieve an accurate image when little to no previous knowledge on
the spatial variations of the wave speed is available?

To cope with this issue, our strategy is to develop a matrix ap-
proach of seismic wave imaging. In a linear scattering medium, a
reflection matrix relates the input and output on a single side of the
medium. It contains all the relevant information on the medium as
it fully describes wave propagation inside the scattering medium. In
the last decade, the advent of multi-element arrays with controllable
emitters and receivers has opened up a route towards the ability of
measuring a reflection matrix in the case where the input and outputs
points are located on the same side of the scattering medium. In par-
ticular, the reflection matrix has been shown to be of great interest
for detection and imaging purposes in scattering media, whether it
be in acoustics (Robert & Fink 2008; Aubry & Derode 2009a; Shah-
jahan et al. 2014) or optics (Kang et al. 2015; Badon et al. 2016).
The reflection matrix contains the set of interelement impulse re-
sponses recorded between each array element. It has already been
shown to be a powerful tool for focusing in multitarget media (Prada
& Fink 1994; Popoff et al. 2011), as well as for separating single
and multiple scattering (Aubry & Derode 2009b; Badon et al. 2016)
in strongly scattering media. These matrix methods have been suc-
cessfully applied to geophysics in the extremely challenging case
of the Erebus volcano in Antarctica (Blondel et al. 2018). Seismic

data redatuming leads to the synthesis of a focused reflection matrix
R containing the impulse responses between a set of virtual geo-
phones mapping the underground to be imaged. This matrix is of
particular interest for imaging: its confocal component, that is di-
agonal (or close to diagonal) elements result from single scattering,
whereas multiple scattering is responsible for a spreading outside
the diagonal. By applying an adaptive confocal filter and iterative
time reversal to the redatumed data, most of the multiple scattering
background is removed, thereby revealing main internal structures
of the volcano. Yet, the resulting ‘confocal’ image still suffers from
the phase distortions induced by the long-scale fluctuations of the
seismic velocity. In this paper, we show that the off-diagonal coeffi-
cients of R can be taken advantage of instead of being tossed away.
Phase distortions are overcome, which improves the confocal image
of the subsoil with a diffraction-limited transverse resolution.

To that aim, we will rely on the distortion matrix concept that
has been recently introduced by two seminal works in ultrasound
imaging (Lambert et al. 2020b) and in optical microscopy (Badon
et al. 2020). Inspired by the pioneering work of Robert & Fink
(2008), the distortion matrix D is defined between a set of incident
plane waves (Montaldo et al. 2009) and the set of virtual geophones
inside the medium (Robert & Fink 2008). It contains the deviations
from an ideal reflected wavefront which would be obtained in the
absence of inhomogeneities. As shown by recent studies (Badon
et al. 2020; Lambert et al. 2020b), a time reversal analysis of the
D-matrix allows to synthesize virtual reflectors in depth. This pro-
cess can then be leveraged for unscrambling the phase distortions
undergone by the incident and reflected wave fronts. This matrix
imaging approach has been shown to be particularly robust since it
applies to all kind of scattering regimes: point-like targets (Lambert
et al. 2020b), specular reflectors (Badon et al. 2020) or randomly
distributed scatterers (Lambert et al. 2020b), etc. The range of wave
velocity distributions on which this matrix method can be applied is
vast. It goes from the simple case of multilayered media (Lambert
et al. 2020b) to strongly heterogeneous media (Badon et al. 2020;
Lambert et al. 2020b) displaying both lateral and axial variations
of the wave velocity. These proof-of-concept studies made on both
synthetic samples, ex-vivo or in-vivo tissues have thus shown the
power of the matrix imaging approach to solve very different imag-
ing problems whatever the nature of waves and length scales. It only
requires a spatial sampling of the recorded wavefield that meets the
Nyquist criterion. This paper aims at demonstrating the relevance
of this matrix imaging approach for geophysical imaging.

Indeed, overcoming phase distortions induced by wave velocity
variations would be especially valuable for geophysical applica-
tions given the stratified structures of the environments of interest.
Migration techniques in Fourier domain have actually been very
popular for imaging in layered media (Gazdag 1978; Stolt 1978),
however they only hold for 1-D celerity models with no lateral varia-
tions. Subsequent works have focused on adapting these techniques
to take into account increasing lateral velocity variations, at the
cost of more numerical and computational complexity (Gazdag &
Sguazzero 1984; Claerbout 1996; Biondi 2006). Contrary to these
well-established methods, the matrix approach does not require any
assumption on the structures and on the velocity distribution inside
the medium, while being fairly light on the computational aspect.
This paper aims at studying the relevance of the matrix approach
for geophysical imaging.

Coherent sources (vibrating trucks, explosives, etc.) can be used
in shallow subsurface (<1 km) imaging. Incoherent signals (seismic
noise) can also be taken advantage of for imaging purposes. It was
shown, 20 yr ago, how a coherent information can be extracted
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from this incoherent seismic noise. Under appropriate wavefield
conditions, the cross-correlation of seismic noise recorded by two
stations was actually shown to yield the impulse response between
them (Weaver & Lobkis 2001; Campillo & Paul 2003; Derode et al.
2003; Snieder 2004; Wapenaar 2004; Larose et al. 2006), providing
new opportunities to develop imaging techniques without using
active sources. As surface waves dominate ambient noise, most
papers on the topic aimed at extracting surface wave properties
from ambient noise correlations (Sabra et al. 2005; Shapiro et al.
2005; Yang et al. 2007). However, a few studies also reported the
retrieval of body wave reflection from noise correlations (Roux et al.
2005; Draganov et al. 2007, 2009; Poli et al. 2012b). Reflected
body waves contain information about the subsurface and allow the
imaging of deep structures with an improved resolution (Ruigrok
et al. 2010). Strikingly, Poli et al. (2012a) showed the possibility
of mapping the upper mantle discontinuities (at 410 and 660 km
of depth) by extracting body waves reflection from ambient noise,
while Retailleau et al. (2020) mapped a region of the core–mantle
boundary at about 2900 km depth.

In this paper, inspired by the reflection matrix approach developed
by Blondel et al. (2018) and based on noise cross-correlations, the
distortion matrix approach is extended to satisfy seismic imaging
purposes. Compared to previous works (Badon et al. 2020; Lambert
et al. 2020a), the matrix imaging method is here refined to take the
best advantage of the nature of scatterers in geophysics (sparse scat-
tering). The method thus developed is applied to San Jacinto fault
zone (SJFZ) site. Fault zones are indeed among the most challenging
media for seismic imaging given their highly localized and abrupt
variations of mechanical properties, extensive fractures and damage
zones. In that respect, the SJFZ is the most seismically active fault
zone in Southern California (Hauksson et al. 2012). It accounts for
a large portion of the plate motion in the region (Johnson et al.
1994; Lindsey & Fialko 2013). A highly complex fault-zone struc-
ture with prominent lateral and vertical heterogeneities at various
scales have already been highlighted in previous studies (Allam &
Ben-Zion 2012; Zigone et al. 2014; Roux et al. 2016). In particular,
maps of the P- and S-wave velocities, VP and VS, have been inverted
from earthquake arrival times for a depth range of 2–20 km (Allam
& Ben-Zion 2012; Allam et al. 2014). Surface wave tomographic
images built from noise correlations revealed the velocity structure
in the top 7 km of the complex plate boundary region at a resolution
of about 10 km (Zigone et al. 2014). To complement these regional
studies and provide structural features in the first few kilometres
with an improved resolution, ambient noise at higher frequency up
to 10 Hz was analysed from data recorded by a dense rectangular ar-
ray deployed around the Clark branch of the SJFZ (Ben-Zion et al.
2015; Roux et al. 2016; Mordret et al. 2019). In particular, Zigone
et al. (2019) used ambient noise cross-correlations in the 2–35 Hz
frequency range to derive a velocity model in the top 100 m with a
resolution of 50 m.

Imaging deeper the fault area at such resolution is challenging
because of the damage and the complex distribution of small-scale
heterogeneities. Yet, a much larger penetration depth can be ex-
pected by taking advantage of the reflected bulk waves. To do so,
the matrix approach of seismic imaging is particularly useful since
it only requires a rough idea of the mean wave velocity. Besides, it
shall provide a 3-D image of the subsoil acoustic impedance instead
of just the wave velocity. To implement this matrix approach, we
take advantage of a spatially dense array of geophones deployed
over the damage zone of SJFZ (Ben-Zion et al. 2015). Noise cross-
correlations are used to retrieve the impulse responses between the
geophones (Ben-Zion et al. 2015; Roux et al. 2016). The associated

passive reflection matrix is then investigated to image the first few
kilometres of the crust by virtue of body waves emerging from noise
correlations. As a whole, the process we present in this paper can
be analysed as a combination of six building blocks:

(B1) A Fourier transform of the recorded signals yields a set of re-
sponse matrices K( f ) associated with the dense array of geophones.
(B2) Based on a rough estimate of velocity c0, a double focusing
operation is performed both at emission and reception by means
of simple matrix operations. A set of focused reflection matrices
R( f, z) are obtained at any arbitrary depth z below the surface.
(B3) A coherent sum of these matrices over the frequency bandwidth
yields a broadband reflection matrix R(z) at any depth z.
(B4) By projecting the input or output entries of this matrix in the
far-field, the distorted component D of the reflected wavefield can
be extracted.
(B5) A virtual iterative time reversal process is applied to the matrix
D to extract the phase distortions undergone by the incident or
reflected wavefields during their travel from the Earth surface to the
focal plane.
(B6) The whole process converge towards the focusing laws that
shall be applied at input or output of the reflection matrix in order
to compensate for aberrations.

As a result of these six steps, an in-depth confocal image of
the SJFZ is built. While conventional migration methods lead to
a badly resolved image of the SJFZ subsoil, the matrix approach
clearly reveals sedimentary layers close to the surface (z < 1000 m)
and several geological layers at larger depth (1000 m < z < 4000 m).
The layers structure is shown to be different on each side of the fault.
Large dip angles are also highlighted in the vicinity of the fault. A
structural interpretation of the obtained images can be finally built
on the existing literature about SJFZ.

2 R E F L E C T I O N M AT R I X

2.1 Response matrix between geophones

The data used in this study has been measured from 7 May 2014 to
13 June 2014 by a spatially dense Nodal array consisting of 1108
vertical geophones straddling the Clark Branch of SJFZ, southeast
of Anza (Vernon & Ben-Zion 2014; Ben-Zion et al. 2015). Fig. 1(a)
shows the location of the 1108 vertical geophones organized as
a 600 m × 700 m grid with interstation distances δux ∼ 10 m
and δuy ∼ 30 m. This array has been continuously recording the
ambient noise at 500 sample s−1, from which cross-correlation has
been performed after whitening in the 10–20 Hz range with time
lags ranging from −5 to +5 s. This provides an estimate of the
impulse response between every pair of geophones. Each geophone
is denoted by an index i and its position si. The impulse response
between stations i and j is noted kij(t), with t the time lag. The set of
impulse responses forms a time-dependent response matrix K(t).

Given the high density of the network, neighbouring geophones
belong to the same coherence area of seismic noise. The charac-
teristic dimension of this area is indeed of λ/2 ∼ 50 m which is
larger than the interstation distance δu. This is responsible for a
strong autocorrelation signal around t = 0 for geophones located in
the same coherence area. This peak is proportional to the seismic
noise power and does not account for the impulse response between
neighbour geophones. To prevent this artefact from spoiling the
subsequent analysis, a prior filter has been applied to the data in
order to reduce the weight of the corresponding impulse responses
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Figure 1. (a) Map of the 1108 (10 Hz) geophones installed in a 600 m × 700 m configuration above the Clark branch (red lines) of the San Jacinto Fault
(Southern California). Each row along the x-direction is composed of ∼55 sensors with a pitch of 10 m, and the nominal separation between the rows in the
y-direction is 30 m. Seismic ambient noise was recorded over more than one month, in May–June 2014. (b) Adaptive focusing at emission and reception on
two points rin and rout of the focal plane (z = c0t/2) yields the impulse response between virtual geophones placed at these two points. The same operation is
repeated for any couple of points in the focal plane and yields the focused reflection matrix R.

kij(t) whose associated geophones i and j are contained in the same
coherence area (see Section S1).

The impulse responses exhibit several direct arrivals that have
already been investigated by Ben-Zion et al. (2015) and Roux et al.
(2016). Ballistic waves, likely direct interstation S wave and P wave,
arrive before the Rayleigh wave at apparent velocities larger than
1000 m s–1. Roux et al. (2016) used iterative double beamforming
to map the phase and group velocities of Rayleigh waves across
the fault in the 1–5 Hz frequency bandwidth. Subsequently, Mor-
dret et al. (2019) inverted these dispersion curves to build a 3-D
shear wave velocity model around the Clark fault down to 500 m
depth. Assuming the Vp/Vs ratio to be a linear function of depth,
the following averaged value was found for the P-wave velocity
over the top 800 m: Vp ∼1500 m s–1. More recently, the P-wave
velocity distribution in the 100-m-thick shallow layer has also been
inverted using traveltime data associated with active shots (Share
et al. 2020). Low-velocity structures were detected, associated with
a shallow sedimentary basin (Hillers et al. 2016; Mordret et al.
2019; Share et al. 2020) and a fault zone trapping structure (Ben-
Zion et al. 2015; Qin et al. 2018).

To the best of our knowledge, an accurate model of Vp in the SJFZ
region is not available beyond this shallow layer. As a consequence,
in this study, we will use an approximated homogeneous P-wave
velocity model of c0 = 1500 m s–1. This choice will be validated
and discussed a posteriori by a minimization of the aberration ef-
fects in the 3-D image (see Fig. S3). We are not interested in the
ballistic component of the wavefield but rather in its scattered con-
tribution due to reflections by the in-depth structure along the fault.
The beamformed echoes used in our matrix imaging process are
mainly associated with P waves since only the vertical component
of the impulse responses between geophones is considered in this
study. Unlike our previous study on the Erebus volcano (Blondel
et al. 2018), the scattered wavefield consists of a single scattering
contribution which is a priori predominant compared to the mul-
tiple scattering background. This will be confirmed a posteriori
by the reflection matrix features (see Section 2.2). Singly scattered
echoes can then be taken advantage of to build a 3-D image of the
subsoil reflectivity. This local information can be retrieved from

K(t) by applying appropriate time delays to perform focusing in
post-processing, both in emission and reception. While focusing in
emission consists in applying proper time delays in the recorded
seismic data so that they constructively interfere at an arbitrary po-
sition at depth, focusing in reception consists in applying proper
time delays in the recorded seismic data so that the information
coming from an arbitrary position at depth constructively inter-
fere. Based on the Kirchoff–Helmholtz integral, such a focusing
operation is standard in exploration seismology and referred to as
redatuming (Berkhout 1984; Berryhill 1984; Berkhout & Wapenaar
1993). However, in this case, the strongly heterogeneous distribution
of the seismic wave velocities induces strong phase distortions that
degrade this imaging process. A prior quantification and correction
of these phase distortions is thus required to reach a diffraction-
limited lateral resolution and an optimized contrast for the image.
As we will see, a matrix formalism is a well-matched tool to locally
capture such information.

2.2 Focused reflection matrix

The reflection matrix can be defined in general as an ensemble of
responses, each response linking one vector to another vector. The
type of vector coordinates will be referred to as bases. They can be
spatial coordinates (hence the vector refers to an actual point within
or at the surface of the medium, see Fig. 1b) or wave vector coor-
dinates. Various bases are involved in this work: (i) the recording
basis (u), whose elements are the positions of the geophones; (ii) the
focused basis (r) which corresponds to the positions of virtual geo-
phones at which focusing at emission or reception is intended and
(iii) the Fourier basis (k). Because of linearity and time-invariance,
seismic data can be projected from the recording basis to the focused
basis by a simple matrix product. In the frequency domain, simple
matrix products allow seismic data to be easily projected from the
recording basis to the focused basis where local information on the
medium properties can be extracted (Badon et al. 2016; Blondel
et al. 2018; Lambert et al. 2020a).

Consequently, we first apply a temporal Fourier transform to the
response matrix to obtain a set of monochromatic matrices K( f ).
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To project K( f ) into the focused basis, we then define a free-space
Green’s matrix, G0( f ), which describes the propagation of waves
between the geophones and focused basis. Its elements correspond
to the causal 3-D Green’s functions which connect the geophone’s
transverse position u to any focal point defined by its transverse
position r and depth z in a supposed homogeneous medium:

G0(r, u, z, f ) = e− j2π f
√

‖r−u‖2+z2/c0

4π
√

‖r − u‖2 + z2
(1)

K( f ) can now be projected both in emission and reception to the fo-
cused basis via the following matrix product at each depth z (Blondel
et al. 2018; Lambert et al. 2020a):

R(z, f ) = G∗
0 (z, f ) × K( f ) × G†

0 (z, f ) , (2)

where the symbols ∗, † and × stands for phase conjugate, trans-
pose conjugate and matrix product, respectively. Eq. (2) simulates
focused beamforming in post-processing in both emission and re-
ception. The choice of causal Green’s function in the propagation
matrix G0 (eq. 1) implies that beamformed echoes are associated
with downgoing waves at the input and upgoing waves at the out-
put (see Fig. 1b). Each coefficient of the focused reflection ma-
trix R(z, f ) involves pairs of virtual geophones, rin = (xin, yin) and
rout = (xout, yout), which are located at the same depth z (Fig. 1b).
For broadband signals, ballistic time-gating can be performed to
select only the echoes arriving at the ballistic time tB in the focused
basis (Lambert et al. 2020a): tB = (‖rin − uin‖ + ‖rout − uout‖)/c0.
Under a matrix formalism, this time-gating can be performed by
means of a coherent sum of R( f ) over the frequency bandwidth �f
= 10 Hz. It yields the broadband focused reflection matrix

R(z) =
∫ f +

f−
d f R(z, f ), (3)

where f± = f0 ± �f/2 and f0 = 15 Hz is the central frequency. Each
element of R(z) contains the complex amplitude of the wave that
would be detected by a virtual detector located at rout = (xout, yout)
just after a virtual emitter at rin = (xin, yin) emits a brief pulse
of length δt = �f−1 at the central frequency f0. Importantly, the
broadband focused reflection matrix synthesizes the responses be-
tween virtual geophones which have a greatly reduced axial dimen-
sion δz = cδt compared to their stretching δz0 = 2λ/sin 2θ in the
monochromatic regime (Born & Wolf 2003). θ = arctan(D/2z)is
the maximum angle under which the geophone array is seen from
the common mid-point and D ∼ 700 m, the characteristic size of
the geophone array. As a consequence, considering a broadband
reflection matrix R(z) will significantly improve the vertical reso-
lution of the subsequent analysis. For the sake of a lighter notation,
we will omit, in the following, the dependence in z but keep in mind
that the focused reflection matrix differs at each depth.

Fig. 2(a) displays one example of the broadband focused reflec-
tion matrix R at depth z =3600 m. In the case of SJFZ, it appears
that a part of the backscattered energy is still concentrated in the
vicinity of the diagonal of the focused reflection matrix at z =
3600 m (Fig. 2a); this is very different from the Erebus volcano for
which the reflection matrix displayed a fully random feature (Blon-
del et al. 2018). This indicates that single scattering dominates at
this depth: The beam is focused, scattered just once, and focused
in reception. On the contrary, a broadening of the back-scattered
energy outside the diagonal would mean that the beam undergoes
aberration and/or multiple scattering. In fact, the diagonal elements
of R (rin = rout) correspond to what would be obtained from con-
focal imaging: transmit and receive focusing are simultaneously

performed on each point in the medium. A confocal image can thus
be obtained from the diagonal elements of R, computed at each
depth:

I (r, z) ≡ |R (r, r, z)|2 . (4)

Figs 2(c) displays the 2-D confocal image built from the diagonal of
the reflection matrix in Fig. 2(a) at ballistic time tB = 4.6 s, hence at
an effective depth z = c0tB/2 = 3600 m. Some scattering structures
seem to arise at different locations along the fault but confocal
imaging is extremely sensitive to aberration issues. One thus has to
be very careful about the interpretation of a raw confocal image.
This observation is confirmed by Fig. 2(d) that displays a cross-
sectional view of the SJFZ underground. Each speckle grain in this
image occupies a major part of the field-of-view. Hence, aberrations
seem to be pretty intense at large depths (beyond 1500 m) and the
inner structure of the SJFZ cannot be deduced from a basic confocal
image.

Fortunately, the matrix R contains much more information than
a single confocal image. In particular, focusing quality can be as-
sessed by means of the off-diagonal elements of R. To understand
why, R can be expressed theoretically as follows (Lambert et al.
2020a, 2021a):

R = H�
out × � × Hin, (5)

where the symbol � stands for transpose. The matrix � describes
the scattering process inside the medium. In the single scattering
regime, �(z) is diagonal and its coefficients map the local reflectivity
γ (r) of the subsoil. Hout = [Hout(r, rout)] and Hin = [Hin(r, rin)] are
the output and input focusing matrices, respectively. Their columns
correspond to the transmit or receive point spread functions (PSFs),
that is the spatial amplitude distribution of the focal spots around
the focusing point rin or rout. For spatially invariant aberration, we
have

Hout/in(r, rout/in) = Hout(r − rout/in). (6)

In that case, the previous equation can then be rewritten in terms of
matrix coefficients as follows:

R(rout, rin) =
∫

drHout(r − rout)γ (r)Hin(r − rin). (7)

This last equation confirms that the diagonal coefficients of R, that is
an horizontal slice of the confocal image, result from a convolution
between the medium reflectivity γ and the product of the input and
output PSF, Hout × Hin.

Interestingly, the off-diagonals terms in the reflection matrix can
be exploited to estimate the imaging PSF, and thereby assess the
quality of focusing. To that aim, the relevant observable is the
intensity distribution along each antidiagonal of R,

I (rm, �r ) = R(rm − �r, rm + �r)

=
∫

dr′ Hout(r
′ + �r)γ (r′ + rm)Hin(r′ − �r). (8)

All couple of points on a given antidiagonal have the same midpoint
rm = (rout + rin)/2 , but different spacings �r = (rout − rin)/2.
Whatever the nature of the scattering medium, the common mid-
point intensity profile is a direct indicator of the local PSF. However,
its theoretical expression differs slightly depending on the character-
istic length scale lγ of the reflectivity γ (r) at the ballistic depth and
the typical width δ

(0)
in/out of the PSFs (Lambert et al. 2020a). In layered

media (lγ >> δ
(0)
in/out), the common-midpoint amplitude is directly

proportional to the convolution between the coherent output and in-
put PSFs, [Hout ⊗ Hin] (2�r) (the symbol ⊗ stands for convolution).
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(a)

(b)
(d)

(c)

Figure 2. (a) Focused reflection matrix R in the focal plane at depth z =3600 m. (b) Imaging PSF deduced from the antidiagonal of R in (a) whose common
mid-point exhibits the maximum confocal signal. The white circle accounts for the theoretical transverse resolution cell imposed by the geophone array
aperture. (c) Confocal image extracted from the diagonal of R in (a). (d) Vertical slice of the 3-D confocal image obtained by combining the diagonal of R at
each depth. The slice orientation is chosen to be normal to the fault. The colour scale on the bottom left is linear and applies to panels (a, c). The colour scale
in panels (b, d) is in dB.

In the speckle regime ( lγ << δ
(0)
in/out), the common midpoint inten-

sity I (rm, �r) is directly proportional to the convolution between the
incoherent output and input PSFs,

[|Hout|2 ⊗ |Hin|2
]

(2�r) (Lam-
bert et al. 2021a). In SJFZ, the subsoil can be assumed as a sparse
scattering medium. It means that only a few bright and coherent
reflectors emerge at each depth. This hypothesis will be verified
a posteriori with the 3-D image we will obtain. For an isolated
scatterer, the common mid-point intensity at its position scales as
the product between the two PSFs, Hout(rm + �r) × Hin(rm − �r).
Therefore, the energy spreading in the vicinity of each scatterer po-
sition shall enable one to probe the spatial extension of the PSF. As
the scatterer position is a priori unknown, the imaging PSF will be,
in practice, probed by considering the antidiagonal whose common
mid-point exhibits the maximum confocal signal.

Fig. 2(b) shows the corresponding common midpoint intensity
profile for the matrix R displayed in Fig. 2(a). It shows a significant
spreading of energy over off-diagonal coefficients of R. This effect
is a direct manifestation of the aberrations sketched in Fig. 1(b).
Indeed, in absence of aberration, all the back-scattered energy would
be contained in a diffraction-limited confocal focal spot, H 2(�r) =
sinc2 (π�r/δ0), with δ0 = λ/(2sin θ ). The ideal –6 dB main lobe
width (or full width at half maximum) is roughly equal to δ0 ∼
600 m. This diffraction-limited lateral resolution is depicted by a
white circle in Fig. 2(b). Here the characteristic size of the main
central lobe is δ

(0)
in/out ∼ 1200 m at z = 3600 m. Hence, the back-

scattered energy spreads well beyond the diffraction limit. Besides
this central lobe, few secondary lobes also emerge in Fig. 2(b) due
to the gap between the velocity model and the actual seismic wave
velocity distribution in SJFZ. These side lobes are analogous to
cycle skipping effects that occur in full-waveform inversion (Yao
et al. 2019). As shown in Section S3, they are strongly affected by
our choice of c0. Hence this observable can be used for optimizing
our wave propagation model. As shown by Fig. S3, the value c0 =
1500 m s–1 is the seismic wave velocity that clearly minimizes the
level of these secondary lobes.

Despite this optimization, the focusing quality remains far from
being ideal because of the heterogeneous distribution of c in the
subsoil. In the following, we will show how this fundamental issue
can become a strength since it can enlarge virtually the aperture
angle under which the geophone array is seen, thereby leading to
an enhanced horizontal resolution.

3 D I S T O RT I O N M AT R I X

To overcome aberration, a new operator is introduced: The so-called
distortion matrix D (Badon et al. 2020; Lambert et al. 2020b).
This operator essentially connects each virtual geophone with the
distortion exhibited by the associated wave front in the far-field.
The D-matrix is thus equivalent to a reflection matrix but in a
moving frame, that is centred around each input focusing beam.
This change of frame will allow us to unscramble the contribution
of phase aberrations from the medium reflectivity. Last but not least,
it will be shown to be particularly efficient for spatially distributed
aberrations. While conventional adaptive focusing techniques are
only effective over a single isoplanatic patch, the typical area over
which aberrations are spatially invariant, the D-matrix is an adequate
tool to discriminate them and address them independently.

3.1 Reflection matrix in a dual basis

The reflection matrix R is first projected into the Fourier basis in
reception. To that aim, we define a free-space transmission matrix
T0 which corresponds to the Fourier transform operator. Its elements
link any transverse component k = (kx , ky) of the wave vector in the
Fourier space to the transverse coordinate r = (x, y) of any point in
an ideal homogeneous medium:

T0 (k, r) = exp (ik · r), (9)

where the symbol · stands for the scalar product between the vectors
k and r. Each matrix R can now be projected in the far field at its
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output via the matrix product

Rout = T0 × R, (10)

Each column of the resulting matrix Rout = [R(kout, rin)] contains
the reflected wavefield in the far-field for each input focusing point
rin. Injecting eq. (5) into the last equation yields the following
expression for Rout:

Rout = Tout × � × Hin, (11)

where Tout = T0 × H�
out is the output transmission matrix that de-

scribe wave propagation between the focused basis and the Earth
surface in the Fourier basis. In terms of matrix coefficients, the last
equation can be rewritten as follows:

Rout(kout, rin) =
∫

drTout(kout, r)γ (r)Hin(r, rin). (12)

In a multitarget medium made of a few bright scatterers, the reflec-
tion matrix can be leveraged to focus selectively on each scatterer.
This is the principle of the DORT method [French acronym for De-
composition of the Time Reversal Operator; Prada & Fink (1994);
Prada et al. (1996)]. Mathematically, the DORT method relies on a
singular value decomposition (SVD) of the reflection matrix. Phys-
ically, the singular vectors of Rout are indeed shown to be the time
reversal invariants of the system, that is the wave-fronts on which
would converge an iterative time reversal process, that is a succes-
sion of time reversal operations on the reflected wavefield recorded
by the array. In the single scattering regime, a one-to-one association
actually exists between each eigenstate of Rout and each scatterer.
Each singular value is directly equal to the reflectivity γ i of the cor-
responding scatterer. Each output eigenvector yields the wave front,
T ∗

out(kout, ri ), that should be applied from the far-field in order to
selectively focus on each scatterers’ position ri . The DORT method
is thus particularly useful for selective focusing in presence of aber-
rations (Prada & Fink 1994; Prada et al. 1996) or target detection
in a multiple scattering regime (Shahjahan et al. 2014; Badon et al.
2016; Blondel et al. 2018). However, this decomposition is of poor
interest for diffraction-limited imaging since each input eigenvector
yields an image of the scatterer, Hin(ri , rin), that is still hampered
by aberrations.

3.2 Definition and physical interpretation of the distortion
matrix

To cope with the fundamental issue of imaging, a novel operator, the
so-called distortion matrix D, has been recently introduced (Badon
et al. 2020; Lambert et al. 2020b). Inspired by previous works in
ultrasound imaging (Varslot et al. 2004; Robert & Fink 2008), it
relies on the decomposition of the reflected wavefront into two con-
tributions (see Fig. 3): (i) a geometric component which would be
obtained for a point-like target at rin in a perfectly homogeneous
medium (represented by the black dashed line in Fig. 3b) and which
can be directly extracted from the reference matrix T0 and (ii) a
distorted component due to the mismatch between the propaga-
tion model and reality (Fig. 3c). The principle of our approach is
to isolate the latter contribution by subtracting, from the reflected
wave front, its ideal counterpart. Mathematically, this operation can
be expressed as a Hadamard (element-wise) product between the
normalized reflection matrix Rout and T∗

0,

Dout = Rout ◦ T∗
0, (13)

which, in terms of matrix coefficients, yields

Dout(kout, rin) = Rout(kout, rin)T ∗
0 (kout, rin). (14)

The matrix Dout = [D(kout, rin)] connects any input focal point rin

to the distorted component of the reflected wavefield in the far-field.
Removing the ideal phase law predicted by our propagation model
from the reflected wavefield in the Fourier plane as done in eq. (13)
amounts to a change of reference frame. While the original reflection
matrix is recorded in the Earth’s frame (static underground scanned
by the input focusing beam, see Fig. 3b), the matrix Dout can be seen
a reflection matrix in the frame of the input focusing beam (moving
subsoil insonified by a static focusing beam, see Fig. 3c).

For spatially invariant aberrations [eq. (6)], the D-matrix coeffi-
cients can be derived from eqs (12) and (14):

D(kout, rin) = H̃out(kout)
∫

drγ (r + rin)Hin(r)eikout.r, (15)

where H̃out is the aberration transmittance, that is to say the
2D Fourier transform of the output PSF Hout: H̃out(kout) =∫

drHout(r)e−ikout.r. H̃out is the key for optimal focusing since its
phase conjugate directly provides the focusing law that needs to be
used to overcome the aberrations induced by the medium hetero-
geneities.

To extract H̃out, the D-matrix is the right tool. Eq. (15) can actually
be interpreted as the result of the following fictitious process: Imag-
ine a beam with γ as PSF and impinging onto a (fictitious) scatterer
at the origin, with reflectivity distribution Hin(r) (see Fig. 3c); the
resulting scattered wavefield in the direction kout would be given by
eq. (15) [see the analogy with eq. (12)]. The problem is to isolate
the aberration transmittance H̃out from the scattering (γ ) and input
beam (Hin) terms. In that context, iterative time reversal brings a
solution: it is well known that it eventually converges the wavefront
that overcomes aberrations and optimally focuses on the brightest
point of the (fictitious) scatterer (Robert & Fink 2008). In the next
section, we show how to implement this idea, to estimate aberration,
and finally build a high-resolution image of the subsoil.

4 T I M E R E V E R S A L A NA LY S I S O F T H E
D I S T O RT I O N M AT R I X

The subsequent time reversal analysis consists of different steps
that we will describe below. At each iteration, a virtual scatterer is
synthesized at input or output through the distortion matrix con-
cept. In the first step, a SVD of Dout decomposes the field-of-view
(i.e. the transverse size of the focal plane) into a set of isoplanatic
patches. The corresponding eigenvectors yield an estimation of the
aberration transmittance over each isoplanatic patch. Their phase
conjugate provide the focusing laws that enable a (partial) compen-
sation for the phase distortions undergone by the reflected waves
during their travel between the focal plane and the geophone array.
By alternatively applying the same aberration correction process at
input, the size of the virtual scatterer can be gradually reduced. It
converges to optimal focusing laws that will, ultimately, provide a
high-resolution mapping of the SJFZ subsoil.

4.1 Output distortion matrix and isoplanatic patches

At each depth, a time reversal analysis of the distortion matrix is
performed. The first step consists in a SVD of the output distortion
matrix Dout:

Dout = Uout × 
 × V†
in (16)
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(a) (b) (c) (d) (e) (f)

Figure 3. Time reversal analysis of the distortion matrix. (a) In the matrix imaging scheme, each point in the focal plane is probed by means of a focused beam
at input and output. (b) A far-field projection of the focused reflection matrix [eq. (10)] yields the dual-basis matrix R. (c) By subtracting from each reflected
wave front the geometrical phase law which would be obtained for a perfectly homogeneous medium of wave velocity c0 [eq. (13)], a distortion matrix D is
obtained. D is equivalent to a reflection matrix but with a static input PSF H (r) scanned by moving scatterers (eq. 15). (d) The SVD of the distortion matrix
enables the synthesis of a virtual coherent reflector of scattering distribution |H (r)|2 (see Section S2) and an estimation of the aberration phase transmittance
H̃ (p) for each isoplanatic patch p in the field-of-view [eq. (18)]. (e) This estimation can be refined by considering, in the second part of the process, the SVD of
the normalized time reversal operator δĈ(p) (see Section S4). This operation makes the virtual reflector point-like and the estimation of H̃ (p) more precise. (f)
The phase conjugate of H̃ (p) yields the focusing law to scan the corresponding isoplanatic patch p and synthesize a novel focused reflection matrix Rp [eq. 27].

or, in terms of matrix coefficients,

D(kout, rin) =
N∑

i=1

σi U
(i)
out(kout)V

(i)∗
in (rin). (17)


 is a diagonal matrix containing the real positive singular val-
ues σ i in a decreasing order σ 1 > σ 2 > ··· > σ N. Uout and
Vin are unitary matrices whose columns, U(i)

out = [U (i)
out(kout)] and

V(i)
in = [V (i)

in (rin)], correspond to the output and input singular vec-
tors, respectively. For spatially invariant aberrations, the physical
meaning of this SVD can be intuitively understood by considering
the asymptotic case of a point-like input focusing beam [Hin(r) =
δ(r), with δ(r) the Dirac distribution]. In this ideal case, eq. (15)
becomes D(kout, rin) = H̃out(kout)γ (rin). Comparison with eq. (17)
shows that Dout is then of rank 1 – the first output singular vec-
tor U(1)

out yields the aberration transmittance H̃out while the first input
eigenvector V(1)

in directly provides the medium reflectivity. In reality,
the input PSF Hin is of course far from being point-like. Moreover,
aberration is not laterally invariant across the focal plane. The ma-
trix Dout is thus not singular and its spectrum displays a continuum
of singular values. Fig. 4(a) confirms this prediction by displaying

the normalized singular values, σ̂i = σi/

√∑N
j=1 σ 2

j , of Dout at depth

z = 3600 m (tB = 4.8 s). As shown in Section S3, only the two first
eigenstates are of interest for imaging in this specific case. In the
following, we will thus restrict our study to the corresponding signal
subspace.

In a medium displaying a complex wave velocity distribution,
the SVD of Dout can provide a decomposition of the field-of-view
into several isoplanatic patches. On the one hand, each input sin-
gular vector, V(p)

in , maps onto the corresponding isoplanatic patch
p. Figs 4(b) and (c) confirm this assertion by showing that V(1)

in and
V(2)

in focus onto two disjoint areas at depth z = 3600 m. On the other
hand, each output singular vector U(p)

out is linked to the corresponding
aberration transmittance H̃ (p)

out (Badon et al. 2020):

U (p)
out (kout) ∝ H̃ (p)

out (kout)
[
H̃ (p)

in � H̃ (p)
in

]
(kout), (18)

where the symbol � stands for the correlation product. However,
U(p)

out is also modulated by the autocorrelation function
[
H̃ (p)

in � H̃ (p)
in

]
(see Fig. 3d). This last term is a manifestation of the finite size δ(p)

in

of the virtual reflector (Fig. 3d) that tends to limit the support of
the eigenvector U(p)

out to �k(p)
out ∼ λz/δ(p)

in . Figs 4(d) and (e) confirm

this theoretical prediction by showing the modulus of U(1)
out and U(2)

out,
respectively. Both singular vectors cover a restricted and different
angular domain in the Fourier space (�θ

(p)
out ∼ �k(p)

out/k0 ∼ 10o). To
circumvent this issue, one trick is to use only the phase of these
eigenvectors U(p)

out (Figs 5a and b) by considering the normalized
vector Û(p)

out , such that

Û (p)
out (kout) = U (p)

out (kout)/|U (p)
out (kout)|. (19)

Indeed, if we make the realistic hypothesis of a real and positive
autocorrelation function

[
H̃ (p)

in � H̃ (p)
in

]
in eq. (18), the normalized

vector Û(p)
out should, in principle, provide the aberration transmittance

H̃(p)
out . In practice, noise degrades the estimation of H̃(p)

out outside
the coherence area �kout. In the following, we will note δH̃(p)

out =
Û(p)∗

out ◦ H̃(p)
out , the residual phase mismatch between Û(p)

out and H̃(p)
out .

Despite this phase mismatch, the phase conjugate of Û(p)
out can

be used as a focusing law to compensate (at least partially) for
phase distortions at the output (Fig. 3f). Updated focused reflection
matrices can indeed be obtained as follows:

Rp = (Û(p)
out ◦ T0)† × Rout. (20)

New confocal images, Ip(r, z) = |Rp(r, r, z)|2, can be extracted
from the diagonal of Rp after output aberration compensation. The
result is displayed in Figs 5(e) and (f) at depth z = 3600 m. The
comparison with the initial confocal image (Fig. 2c) illustrates the
benefit of our matrix approach. While the original image displays a
random speckle feature across the field-of-view, I1 reveals a com-
plex structure in the vicinity of the surface traces of the Clark Fault.
On the contrary, the image I2 spans along an oblique direction com-
pared to the direction of the fault. While it shows a more diffuse
image of the Clark Fault at the center of the field-of-view, I2 reveals
a strong scattering structure on the west of the fault.

To quantify the gain in image quality, the local imaging PSF
should be investigated. To that aim, the antidiagonals of Rp can
be used to probe the local imaging PSF across the field-of-view
(eq. 8). The resulting PSFs are displayed in Figs 5(c) and (d). It
should be compared with the initial imaging PSF (Fig. 2b). While
the original PSF exhibits a distorted central lobe that spans over
almost four diffraction-limited transverse resolution cells (white
circle in Fig. 2b), the corrected PSF shows a central lobe thinner
than the diffraction limit. This striking result will be discussed
further. Note, however, the occurrence of a strong secondary lobe
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(a) (b) (c) (d) (e)

Figure 4. Singular value decomposition of the distortion matrix Dout at time tB = 4.8 s and depth z =3600 m. (a) Plot of the normalized singular values σ̂p .

The two first eigenstates form the relevant signal subspace for imaging. The moduli of the corresponding input eigenvectors, V(1)
in (b) and V(2)

in (c), and output

eigenvectors, U(1)
out (d) and U(2)

out (e), are shown with a linear colour scale.

(a) (b)

(c)

(e) (f)

(d)

Figure 5. Output phase distortion correction at time tB = 4.8 s and depth
z =3600 m. (a,b) Output focusing laws derived from the phase conjugation

of normalized eigenvectors Û(1)
out and Û(2)

out, respectively. (c, d) Imaging PSF
extracted from the main antidiagonals of the focused reflection matrices R1

and R2, respectively (eq. 20). The colour scale is in dB. (e, f) Corresponding
confocal images I1 and I2, respectively.

and an incoherent background that can be accounted for by the
subsistence of input aberrations. The latter ones are tackled in the
next section.

4.2 Input distortion matrix and super-resolution

Aberrations undergone by the incident waves are now compensated
by building input distortion matrices D(p)

in (Fig. 3c):

D(p)
in = T†

0 ◦ (
Rp × T�

0

)
. (21)

The SVD of each matrix D(p)
in is performed. Among all the output

eigenvectors of these matrices, one is of special interest: their pth
eigenvector U(p)

in . Its modulus is shown for p = 1 and 2 in Figs 6(a)
and (b), respectively. The input eigenvectors U(p)

in exhibit a much
larger angular aperture (�θ in ∼ 20◦) than the output eigenvectors
U(p)

out (�θ out ∼ 10◦). As U(p)
out [eq. (18)], the input singular vectors

U(p)
in can indeed be expressed as follows:

U (p)
in (kin) ∝ H̃ (p)

in (kin)H̃ (p)
in (kin)

[
δ H̃ (p)

out � δ H̃ (p)
out

]
(kin). (22)

Figure 6. Input phase distortion correction at time tB = 4.8 s and depth z

=3600 m. (a, b) Modulus of input eigenvectors U(1)
in and U(2)

in . (c, d) Output
focusing laws derived from the phase conjugation of normalized eigenvec-

tors Û(1)
in and Û(2)

in , respectively. (e, f) Imaging PSF extracted from the main
antidiagonals of the focused reflection matrices R1 and R2, respectively
(eq. 23). The colour scale is in dB. (g, h) Corresponding confocal images
I1 and I2 , respectively.

As mentioned before, the correlation term, δ Ĥ (p)
out � δ Ĥ (p)

out , can be
seen as the Fourier transform of the virtual scatterer synthesized
from the output focal spots in the distortion matrix D(p)

in (see Fig. 3c).
The width δ

(p)
out of the corrected output PSF δH (p)

out (Figs 5c and d) be-
ing much thinner than the original one δ(0)

in at the input (Fig. 2b), the
correlation width �k(p)

in ∼ λz/δ(p)
out of the incident wavefield is larger

than the output correlation width �k(p)
out ∼ λz/δ(0)

in of the reflected
wavefield at the previous step.

The phase of the first input singular vectors U(p)
in (Figs 6c and d)

are thus better estimators of H̃(p)
in than the original input eigenvectors
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U(p)
out for H̃(p)

out . The phase mismatch between them will be noted δH̃(p)
in

in the following. Despite this residual phase error, the normalized
eigenvectors, Û(p)

in , can be used as focusing laws to compensate for
input aberrations. The resulting focused reflection matrices,

Rp = [
T�

0 ◦ U(p)∗
in ◦ D(p)

in

] × T∗
0 (23)

yields novel confocal images Ip of the subsoil reflectivity. The
result is displayed in Figs 6(g) and (h) at depth z = 3600 m. Their
comparison with the previous images (Figs 5e and f, respectively)
illustrates the benefit of a simultaneous aberration correction at
input and output. While I1 yields a refined image of the complex
structure lying in the first isoplanatic patch (Fig. 6g), the second
eigenvector I2 now clearly highlights a coherent reflector belonging
to a second isoplanatic patch on the west of the fault (Fig. 6h).

The transverse resolution and contrast enhancements are now
quantified from the antidiagonals of the updated reflection matrices
Rp after input and output aberration compensation. An imaging
PSF can be deduced for each isoplanatic patch p by considering
the antidiagonal of Rp whose common mid-point corresponds to
the maximum of each image Ip (eq. 8). The result is displayed
in Figs 6(g) and (h). The strong secondary lobes exhibited by the
imaging PSF at the previous step (Figs 5c and d) have been fully
suppressed thanks to the compensation of aberrations at the input.
Strikingly, the spatial extension δ(p)

in of the imaging PSF at –6 dB is
of the order of 150 m. This value is much thinner than the expected
lateral resolution cell δ0 ∼ 600 m, depicted as a white dashed line in
Figs 6(e) and (f). The observed transverse resolution is one-fourth
of the theoretical limit based on the geophone array aperture.

Two reasons can be invoked to account for that surprising re-
sult. The first possibility is an overestimation of the wave speed c
at shallow depth. This value actually dictates the maximum spatial
frequency exhibited by body waves induced at the Earth surface.
However, the chosen value c0 = 1500 m s–1 seems in agreement
with P-wave velocity measured in the shallow (<100 m) fault zone
at the site under study (Share et al. 2020). The other explanation is
that the heterogeneous subsoil acts as a lens between the geophones
and the focal plane either by scattering or wave guiding. As in a time
reversal experiment, scattering by small-scale heterogeneities can
widen the angular aperture of the focused beam (Derode et al. 1995).
Khaidukov et al. (2004) also mentioned that the scattered compo-
nent of the wavefield holds information on small-scale subsurface
heterogeneities and can therefore contribute to the high resolution
or even superresolution of the migrated images. Alternatively, the
local gradient of the background seismic velocity in the vicinity of
the fault can constitute a waveguide through which seismic waves
can be channeled (Li & Leary 1990). Similarly to scattering, re-
flections on waveguide boundaries can also enlarge the effective
array aperture: This is the so-called kaleidoscopic effect (Roux &
Fink 2001). In both cases, if the induced aberrations are properly
compensated, the spatial extension δ

(p)
in/out of the imaging PSF can

be reduced compared to the diffraction-limited lateral resolution δ0

predicted for a homogeneous medium. These physical phenomena
and their impact on imaging will be discussed further in Section 6.

4.3 Normalized correlation matrix and compensation for
high-order aberrations

Despite these remarkable properties, the imaging PSFs in Figs 6(e)
and (f) still exhibit high-order aberrations that result in an incoherent
background of –20 dB beyond the transverse resolution cell. To
compensate for these residual aberrations and again improve the

(a) (b)

(c)

(e) (f)

(g) (h)

(j)(i)

(d)

Figure 7. Correction of residual phase distortions by making the virtual
scatterer point-like (tB = 4.8 s, z = 3600 m). (a, b, c, d) Output and input
focusing laws derived from the phase conjugation of the normalized eigen-

vectors δÛ(1)
out, δÛ(2)

out, δÛ(1)
in and δÛ(2)

in , respectively. (e, f, g, h) Imaging PSFs
extracted from the main antidiagonal of the focused reflection matrices Rp

after application of the additional focusing law displayed in (a, b, c, d), re-
spectively. The colour scale is in dB. (i, j) Final confocal images built from
the diagonal of the final reflection matrices Rp , respectively (eq. 27).

image quality, a last step consists in considering the normalized
correlation matrix of the residual wave front distortions (see Section
S4).

It first consists in building, from the updated reflection matrix Rp

(eq. 23), a novel output distortion matrix δD(p)
out :

δD(p)
out = [

T0 × Rp

] ◦ T∗
0, (24)

The corresponding correlation matrix, δC(p)
out = δD(p)

out × δD(p)†
out , is

then computed and its coefficients are normalized, such that:

δĈ (p)
out (kout, k′

out) = δC (p)
out (kout, k′

out)/|δC (p)
out (kout, k′

out)|. (25)

As illustrated by Fig. 3(e), this operation makes the virtual reflector
point-like. Such a matrix is actually equivalent to the time reversal
operator associated with a point-like reflector at the origin [Lambert
et al. (2020b), see Section S4]. In that case, the matrix δĈ(p)

out is ideally
of rank 1 and its eigenvector δU(p)

out yields the residual aberration
phase transmittance:

δU(p)
out(kout) = δ H̃ (p)

out (kout). (26)

The phase of the eigenvectors δU(p)
out are displayed in Figs 7(a) and

(b), respectively. Compared to the Fresnel zone fringes exhibited
by the first-order aberrations in U(p)

out (Figs 5a and b), δU(p)
out displays

higher-order aberrations, thereby leading to more complex focusing
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law. Updated focused reflection matrices Rp are then deduced:

Rp = T†
0 ×

[
T0 ◦ δU(p)∗

out ◦ δD(p)
out

]
. (27)

Their main antidiagonal enables an estimation of the imaging PSF
over each isoplanatic patch (see Figs 7e and f). This second correc-
tion step drastically reduces the spatial extension of the PSF width
compared to the previous step (Figs 6e and f). The incoherent back-
ground is below –30 dB beyond the theoretical transverse resolution
cell (δ0= 600 m at depth z = 3600 m). Moreover, the FWHM of the
PSF is now of the order of the wavelength: δ

(p)
out ∼ λ ∼ 100 m. Strik-

ingly, the observed lateral resolution is one-sixth of the theoretical
limit based on the geophone array aperture.

As before, the process can be iterated by exchanging the focused
and Fourier basis at input and output. A novel input distortion matrix
δD(p)

in is built for each isoplanatic patch p. Additional input focusing
laws δU(p)∗

in are extracted through the SVD of the normalized corre-
lation matrix δĈ(p)

in . The corresponding wave fronts are displayed in
Figs 7(c) and (d). They exhibit phase fluctuations that are reduced
compared to their output counterpart (Figs 7a and b), an indication
that our approach gradually converges towards a finite aberration
phase law. The normalized eigenvectors, δÛ(p)

in , can be used as in-
put focusing laws that should be applied to D(p)

in to compensate for
residual input aberrations. The resulting images of the subsoil re-
flectivity are displayed in Figs 7(i) and (j) at z = 3600 m over the
two main isoplanatic patches. Their comparison with the previous
images (Figs 6g and h, respectively) illustrates the benefit of iter-
ating the aberration correction process. The first isoplanatic patch
highlights the presence of three distinct reflectors that arise in the
vicinity of the fault’s surface traces (Fig. 7i). The second isoplanatic
patch yields a highly resolved image of a coherent reflector on the
west of the Clark fault (Fig. 7i). Compared to the previous image in
Fig. 7(j), the contrast is drastically improved. This observation can
be understood by looking at the corresponding PSFs (Figs 7g and h).
The incoherent background is below –35 dB beyond the theoretical
transverse resolution cell (δ0= 600 m at depth z = 3600 m). Last
but not least, the FWHM of the PSF nearly reaches the diffraction
limit δ(p)

in ∼ 80 m. Remarkably, the observed lateral resolution is
nearly one-eighth of the theoretical limit based on the geophone
array aperture. As mentioned in the previous section, the reasons
for this spectacular resolution will be discussed in Section 6.

The comparison of these final images with the original one
(Fig. 2c) illustrates the relevance of a matrix approach for deep
seismic imaging. In the next section, the 3-D structure of the SJFZ
is revealed by combining the images derived at each depth. At last,
based on the derived high-resolution 3-D images, a structural inter-
pretation of the SJFZ is provided.

5 3 - D I M A G I N G O F T H E S J F Z

Having demonstrated in Section 4 how to correct phase distortions at
each depth, a 3-D image of the subsurface can now be uncovered. To
that aim, each isoplanatic patch should be recombined at each depth.
The resulting image IM is a coherent sum between the diagonal
coefficients of the corrected reflection matrices Rp:

IM (r, z) ≡
∣∣∣∣∣∣

P∑
p=1

Rp (r, r, z)

∣∣∣∣∣∣
2

. (28)

In this case, the number P of isoplanatic patches is found to be
equal to 2 over the whole depth range. The fault structure, showing

Figure 8. Vertical slice of the 3-D confocal image obtained from stacked
corrected images derived at each depth. The slice orientation is chosen to
be normal to the fault plane. From this image, the fault location can be
circumscribed and is represented by the shaded area. The colour scale is in
dB.

a different wave velocity distribution on each side of the fault,
probably explains this peculiar behavior.

Fig. 8 shows a slice of the final 3-D image IM (r, z) with the
same orientation as the original cross-sectional view displayed in
Fig. 2(d). While the raw image I is completely blurred, the gain in
horizontal resolution provided by the matrix aberration correction
process reveals an image of the SJFZ subsoil with a refined level of
details. Based on the surface traces displayed in Fig. 1(a), the fault
is expected to spread orthogonally to the x-axis. The choice of the
profiles’ orientation in Figs 2(d) and 8 is dictated by our willingness
to highlight the fault blocks on the right- and left-hand side of the
slip interface.

The SJFZ is a major continental strike-slip fault system that ac-
cumulated through history a significant slip of tens of kilometres.
Such large fault systems induce zones of strongly damaged mate-
rials (Ben-Zion & Sammis 2003, and references therein) and the
damage is expected to be pronounced in the shallow crust. Thanks
to the distortion matrix correction, Fig. 8 shows the two main sig-
natures of the fault in diffraction imaging. First, it reveals a damage
zone associated with a dense distribution of scatterers. The damage
volume extends from the surface to 1000 m below with a section
decreasing in depth. Secondly, beyond a depth of 1000 m, the matrix
image displays strong echoes associated with the presence of sub-
horizontal reflectors. The corresponding strata layers are located at
different depths on both sides of the fault. This discontinuity seems
to indicate the fault location in depth (see the shaded area in Fig. 8),
although the damage area is no longer discernible beyond 1000 m.
This example thus shows both the efficiency of our approach to cope
with phase distortions and the potential of passive seismic imaging
to study the fine structure of active faults in depth.
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In this section, only a slice of the 3-D volume has been shown
to illustrate the drastic improvements granted by a matrix approach
of seismic imaging (Fig. 8). Its comparison with the raw confocal
image highlights the benefit of a drastic gain in horizontal resolution
(Fig. 2c). A more detailed interpretation of the subsurface properties
will be the focus of a future study. Indeed, a detailed interpretation of
the obtained 3-D image and a confrontation with previous studies
may provide information on the structural properties of the fault
zone. More generally, the high transverse resolution and penetration
depth of our matrix imaging method will play an important role in
detecting active faults, evaluating their long-term behaviour and,
consequently, following the deformation of the Earth’s crust. It will
also be an essential tool for understanding earthquake physics and
evaluating seismic hazard.

6 D I S C U S S I O N

Although the image of the SJFZ fault displayed by Fig. 8 is en-
couraging, our matrix imaging approach still suffers from some
limitations in its current form. First, it should be noted that the
available velocity model is a very rough approximation of reality. A
constant velocity of 1500 m s–1 was chosen since it yields the best
image (i.e. optimized resolution) over a larger depth range. Here,
the optimal velocity model is probably lower in the damage zone
and gradually increasing beyond. Fig. S4 confirms that intuition by
showing the final images for three different wave velocity models.
While the image obtained for c0 = 1000 m s–1 seems to provide a
better axial resolution in the damage zone (tB < 1 s), the image built
from c0 = 2000 m s–1 seems to be much better at large depths (tB >

3.5 s).
The time gating operation performed in eq. (3) means that the

echoes considered at each depth are associated with scattering
events that exhibits a time of flight contained in the window [tB −
δt/2; tB + δt/2]. In a layered medium, the corresponding isochronous
volume is an horizontal layer of thickness δz ∼ cδt centered around
a coherence plane located at z̄ ∼ c̄tB/2, with c̄ the integrated speed-
of-sound such that c̄−1 = z−1

∫ z
0 [c(z)]−1dz. The depth z = c0tB/2

imposed by the propagation model is thus likely to be inaccurate. Yet
a correct model would improve the vertical resolution and dilate the
subsboil 3-D image up or down but would not change significantly
its transverse evolution.

For a more complex distribution of seismic wave velocity (such as
an anticline), aberrations will also distort the coherence surface and
the associated isochronous volume. The distortion matrix method
will then correct aberrations along this coherence surface but the
vertical (axial) aberrations and the distortion of the coherence sur-
face will remain unchanged. To cope with this issue, a first option
is to consider the impulse responses between virtual geophones lo-
cated at different depths. Such a 3-D reflection matrix approach
will be addressed in future works. A second strategy is to include
the matrix approach in any inversion scheme that aims at mapping
the velocity distribution of bulk seismic waves in the underground.
This would, in turn, correct the image from its axial aberrations.
Indeed, a wave velocity model closer to reality and a more accu-
rate approximation of the propagating Green’s function (eq. 1) will
always improve the final image, especially its vertical resolution.

Second, our approach relies on a scalar model of wave prop-
agation. In this case, this approximation is justified by the fact
that we are only considering the vertical components of the com-
puted impulse responses between geophones. As the bulk waves
are mostly propagating in the vertical direction, the detected echoes

are mainly associated with P waves. Nevertheless, possible shear
wave conversion during wave propagation can occur. Moreover, a
more contrasted image could be obtained if we were able to con-
sider the other components of the Green’s functions and also take
into account the presence of shear waves in our propagation model.
The method could thus be refined in the near future by taking into
account both P and S waves as well as potential wave conversion
between them induced by scattering. However, these aspects are
out-of-scope for a first demonstration in the context of the seismic
imaging of a fault zone.

Despite the limits of the propagation model used in our matrix ap-
proach, the 3-D image of the SJFZ subsoil exhibits striking proper-
ties that are subject to physical interpretation. In a layered medium,
constant horizontal slowness implies that the structure outside of
the lateral extension of the receiver area cannot be imaged. On the
contrary, in Fig. 8, the horizontal strata layers are imaged on each
side of the fault over a field-of-view much larger than the geophone
array dimension. Two reasons can account for this surprising result.
First, the scattering between each layer may not be only specular
but also induced by a distribution of localized inhomogeneities at
each layer interface. The transverse images shown at depth z =
3600 m in Fig. 7 confirm this by highlighting the presence of four
localized scattering structures in the first isoplanatic patch (Fig. 7i).
Secondly, the large extension of the image in Fig. 8 can also be
due to the scattering induced by the strongly heterogeneous damage
area. The effective geophone array aperture can thus be increased
by scattering and so is the imaged area.

Last but not least, the matrix image of the SJFZ fault shows
a transverse super resolution highlighted by the imaging PSF dis-
played in Figs 7(e)–(h). A first reason for this striking result could be
an overestimation of the wave speed c at shallow depth. This value
actually dictates the maximum spatial frequency exhibited by body
waves induced at the Earth surface. However, the chosen value c0

= 1500 m s–1 seems in agreement with P-wave velocity measured
in the shallow (<100 m) fault zone at the site under study (Share
et al. 2020). Alternatively, the local gradient of the background seis-
mic velocity in the vicinity of the fault can constitute a waveguide
through which seismic waves can be channeled (Li & Leary 1990).
Reflections on waveguide boundaries can also enlarge the effective
array aperture: This is the so-called kaleidoscopic effect (Roux &
Fink 2001). As mentioned above, a last hypothesis is that the hetero-
geneous subsoil acts as a lens between the geophones and the focal
plane either by scattering or wave guiding. As in a time reversal
experiment, scattering by small-scale heterogeneities can widen the
angular aperture of the focused beam (Derode et al. 1995). Here the
damage area is particularly heterogeneous and can play the role of
scattering lens. Moreover, its location near the surface and its finite
thickness (∼1000 m) implies the existence of an angular memory
effect even for multiple scattering speckle (Feng et al. 1988; Freund
et al. 1988; Katz et al. 2012, 2014). In that configuration, multiple
scattering manifests itself as high-order aberrations associated with
relatively small isoplanatic patches. Such high-order aberrations can
be corrected by our matrix method in the plane wave basis (Badon
et al. 2020). This justifies a posteriori the choice of this basis for
the correction of aberrations. Moreover, plane wave beamforming
is particularly adequate in a multilayered medium since aberrations
are laterally invariant in that frame. Beyond the specific case of
SJFZ, note that the choice of basis for the aberration correction is
flexible (Lambert et al. 2021b). The reflection matrix can be ideally
projected onto any aberrating layer in the subsoil. This choice shall
be dictated by the local topography and any prior knowledge on the
local distribution of seismic wave velocities in the zone under study.
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Multiple scattering and/or wave-guiding effects could also ex-
plain the optimal velocity (c0 = 1500 m s–1) found for the wave
propagation model. Initially, this choice was justified by the focus-
ing quality and image resolution reached at the end of the matrix
imaging process (see Figs S3 and S4). Nevertheless, a physical in-
terpretation can now be provided to account for it. Our hypothesis
is that a weak wave velocity model can enable the time gating of
multiply scattered or guided waves that are, ultimately, transmit-
ted until the focal plane where they can be efficiently scattered by
subsoil heterogeneities. Indeed, such distorted paths are associated
with larger echo times than the ballistic waves usually considered
by reflection imaging methods. As mentioned above, they can en-
large the angular aperture of our imaging system and account for
a transverse resolution much better than what would be expected
if we had used direct ballistic waves. In other words, the use of a
relatively weak wave velocity allows us to adapt a rough homoge-
neous model to a medium that displays a strongly heterogeneous
wave velocity distribution. This remains of course an hypothesis
and a further analysis will be required in order to prove rigorously
the origin for the transverse super resolution in the context of fault
seismic imaging.

7 C O N C LU S I O N

Inspired by pioneering works in optical microsopy (Badon et al.
2016, 2020) and ultrasound imaging (Robert & Fink 2008; Lam-
bert et al. 2020b), a novel matrix approach to seismic imaging is
proposed in this paper. Taking advantage of the reflection of bulk
seismic waves by heterogeneities in depth, it can be applied to both
active or passive seismic imaging. The strength of this approach
lies in the fact that it works even when the velocity distribution of
the subsoil is unknown. By projecting the seismic data either in the
focused basis or in the Fourier plane, it takes full advantage of all
the information contained in the collected data. For aberration cor-
rection, projection of the reflection matrix into a dual basis allows
the isolation of the distorted component of the reflected wavefield.
Seen from the focused basis, building the distortion matrix D con-
sists in virtually shifting all the input or output focal spots at the onto
the same virtual location. An iterative time reversal analysis then
allows to unscramble the phase distortions undergone by the wave
front during its travel between the Earth surface and the focal plane.
A one-to-one association is actually found between each eigenstate
of D and each isoplanatic patch in the field-of-view. More precisely,
each singular vector in the Fourier space yields the far-field focusing
law required to focus onto any point of the corresponding isopla-
natic patch. A confocal image of the subsoil reflectivity can then be
retrieved as if the underground had been made homogeneous.

In this paper, as a proof-of-concept, the case of the SJFZ is
considered. While a raw confocal image suffers from an extremely
bad horizontal resolution due to the strong lateral variations of the
seismic velocities in the vicinity of the fault, our matrix approach
provides a high-resolution image. Strikingly, its lateral resolution
is almost one eighth below the diffraction limit imposed by the
geophone array aperture. This surprising property may be accounted
for by the heterogeneities of the subsoil that can play the role of
a scattering and/or channeling lens which increases drastically the
effective array aperture. The matrix image reveals a damage volume
particularly pronounced in the shallow crust (<1000 m). At larger
depth, the 3-D image of the fault exhibits the fault blocks on the right
and left side of the slip interface. A more detailed interpretation of
the obtained image will be the focus of a future study.

Besides seismic fault zones, a matrix approach of passive imaging
is particularly suited to the study of volcanoes. While the multiple
scattering problem in volcanoes has been recently tackled under the
reflection matrix approach (Blondel et al. 2018), the distortion ma-
trix would be particularly powerful to restore a diffraction-limited
image of the in-depth structure of a volcano. Additionally, our ma-
trix method could advantageously be applied to real-time geophys-
ical imaging, similarly to adaptive optics in astronomy. This may
provide a valuable tool for monitoring oil or gas reservoirs when
drilling, extracting hydrocarbon or injecting CO2. However, more
research is needed to see whether the current method would suc-
ceed in these complex areas that exhibit very strong variations of
the background wave velocity. Finally, matrix imaging can be taken
advantage of for marine exploration where the variations of sea lo-
cal properties can distort the acoustic wave front depending on the
gradients of temperature and salinity, not to mention streams and
swirls. The matrix approach presented here can compensate for the
phase distortions undergone by the received echoes and improve
the interpretation of the data with no more required knowledge than
the speed of sound in water. Although not leveraged in this paper,
Lambert et al. (2020b) have also demonstrated the relevance of the
matrix approach at removing multiple reverberations between strata
layer interfaces. This also may be useful for any marine or seismic
exploration purpose.
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Supplementary data are available at GJI online.

Figure S1. Reflection matrix in the geophones basis. (a) Raw re-
flection matrix K at time t = 0.5 s. (b) Filtered reflection matrix K′

at time t = 0.5 s. (c) Reflected wavefield deduced from the spatial
interpolation of the central column of K′ (uin = 0), depicted by a
dashed orange line in panel (b). The white dashed circle accounts for
the expected position of the direct surface wave front for a Rayleigh
wave speed of 350 m s–1 (Roux et al. 2016).
Figure S2. Singular value decomposition of the distortion matrix
Dout at time tB = 4.8 s and depth z =3600 m. (a, b) Modulus of input
eigenvectors V(3)

in and V(4)
in . (d, e) Modulus of output eigenvectors

U(3)
out and U(4)

out. (e) Hadamard product between U(3)
out and U(1)∗

out . (f)
Hadamard product between U(4)

out and U(2)∗
out .

Figure S3. Imaging PSF deduced from the antidiagonal of R whose
common mid-point exhibits the maximum confocal signal. This
imaaging PSF is shown at different times of flight (tB = 1.05, 1.5 and
2.65 s, from top to bottom) for different wave velocity models: c0 =
1000 m s–1 (a), c0 = 1500 m s–1 (b), c0 = 2000 m s–1 (c). Each panel
displays the modulus of the reflected wavefield normalized by its
maximum. The white circle accounts for the theoretical resolution
cell (disk of radius δ0) imposed by the geophone array aperture.
Figure S4. Vertical slice of the 3-D matrix images computed under
the matrix approach for different seismic wave velocity models: c0

= 1000 m s–1 (a), c0 = 1500 m s–1 (b), c0 = 2000 m s–1 (c). The
slice orientation is chosen to be normal to the fault plane. The colour
scale for each image is in dB.
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