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Reflection seismic imaging usually suffers from a loss of resolution and contrast because of the fluctuations
of the wave velocities in the Earth’s crust. In the literature, phase distortion issues are generally circumvented
by means of a background wave velocity model. However, it requires a prior tomography of the wave velocity
distribution in the medium, which is often not possible, especially in depth. In this paper, a matrix approach of
seismic imaging is developed to retrieve a three-dimensional image of the subsoil, despite a rough knowledge of
the background wave velocity. To do so, passive noise cross-correlations between geophones of a seismic array
are investigated under a matrix formalism. They form a reflection matrix that contains all the information avail-
able on the medium. A set of matrix operations can then be applied in order to extract the relevant information as
a function of the problem considered. On the one hand, the background seismic wave velocity can be estimated
and its fluctuations quantified by projecting the reflection matrix in a focused basis. It consists in investigating
the response between virtual sources and detectors synthesized at any point in the medium. The minimization
of their cross-talk can then be used as a guide star for approaching the actual wave velocity distribution. On
the other hand, the detrimental effect of wave velocity fluctuations on imaging is overcome by introducing a
novel mathematical object: The distortion matrix. This operator essentially connects any virtual source inside
the medium with the distortion that a wavefront, emitted from that point, experiences due to heterogeneities. A
time reversal analysis of the distortion matrix enables the estimation of the transmission matrix that links each
real geophone at the surface and each virtual geophone in depth. Phase distortions can then be compensated for
any point of the underground. Applied to seismic data recorded along the Clark branch of the San Jacinto fault
zone, the present method is shown to provide an image of the fault until a depth of 4 km over the frequency
range 10-20 Hz with a transverse resolution of 80 m. Strikingly, this resolution is almost one eighth below the
diffraction limit imposed by the geophone array aperture. The heterogeneities of the subsoil play the role of
a scattering lens and of a transverse wave guide which increase drastically the array aperture. The contrast is
also optimized since most of the incoherent noise is eliminated by the iterative time reversal process. Beyond
the specific case of the San Jacinto Fault Zone, the reported approach can be applied to any scales and areas for

which a reflection matrix is available at a spatial sampling satisfying the Nyquist criterion.

Waves constitute a powerful means to non destructively
probe an unknown medium. Indeed, wave propagation is fully
determined by the wave equation and boundary conditions.
As stated by diffraction theory in the acoustic approximation,
knowing the incident wave-field and the internal properties
in terms of density p and celerity c theoretically allows to
compute the wave field everywhere and at any time inside the
medium. This is the so-called “forward” or “modeling” prob-
lem. Conversely, when the medium is unknown, the lack of
celerity and density knowledge makes it impossible to com-
pute the spatio-temporal evolution of the wave field. Yet this
evolution can be known, at least at the boundary, through ex-
perimental measurement of the wave-field scattered by the
medium. The inverse problem then consists in deducing the
medium internal properties from the recording of the wave
field at its surface. A first way to do so is to assume a ve-
locity and density background, solve the forward problem to
compute the time-dependent signal that would be backscat-
tered if the background model was true, and iteratively update
this model to minimize the difference with the actual record-
ings. Another way is to directly back-propagate the scattered
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echoes to reflectors inside the medium. This also amounts
to updating a background model since a reflector is nothing
else than a variation in acoustic impedance pc. In both strate-
gies, referred to as “inversion” and “migration”, respectively,
a celerity macro model is required and the purpose is to com-
pute variations from this model under the assumption that they
are small (Born approximation). If they are not, the reflected
wave-field may be subject to aberrations and multiple scatter-
ing that the macro model fails at modeling. These issues lead
to distorted images, lack of resolution and unphysical features,
which are very detrimental to the imaging process.

In seismic exploration, these issues are important because
in most cases the celerity is non constant in space and its dis-
tribution is unknown. Most geological settings actually con-
sist of several layers of rocks and sediments with distinct me-
chanical properties as well as location-dependent thickness,
faulting and strata organization. These may be difficult to
estimate without previous geologic expertise of the subsur-
face, especially in areas with high lateral mechanical stress
that bend and break the layers and make them superimpose.
When trying to retrieve details at the physical limit, the pre-
vious knowledge required to build reliable images may be al-
ready fairly demanding. On the one hand, the inversion prob-
lem cannot be solved if the initial celerity model is too far
from the reality because the regularization procedure can end



up stuck in a local minimum. On the other hand, migration
techniques would lead to loss of resolution due to phase dis-
tortions and a blurred image due to multiple scattering. That
being said, the question that naturally arises and which the
present work aims at addressing is: how to retrieve an accu-
rate image when little to no previous knowledge on the spatial
variations of the wave speed is available?

To cope with this issue, our strategy is to develop a ma-
trix approach of seismic wave imaging. In a linear scatter-
ing medium, a reflection matrix relates the input and output
on a single side of the medium. It contains all the relevant
information on the medium as it fully describes wave propa-
gation inside the scattering medium. In the last decade, the
advent of multi-element arrays with controllable emitters and
receivers has opened up a route towards the ability of mea-
suring a reflection matrix in the case where the input and
outputs points are located on the same side of the scatter-
ing medium. In particular, the reflection matrix has been
shown to be of great interest for detection and imaging pur-
poses in scattering media, whether it be in acoustics [1-3] or
optics [4, 5]. The reflection matrix contains the set of inter-
element impulse responses recorded between each array el-
ement. It has already been shown to be a powerful tool for
focusing in multi-target media [6, 7], as well as for separat-
ing single and multiple scattering [5, 8] in strongly scattering
media. These matrix methods have been successfully applied
to geophysics in the extremely challenging case of the Ere-
bus volcano in Antarctica [9]. However, although the main
internal structures are successfully revealed by removing the
multiple scattering background, the matrix image still suffers
from the phase distortions induced by the long-scale fluctua-
tions of the seismic velocity. To retrieve a diffraction-limited
resolution, the concept of distortion matrix has been recently
introduced by two seminal works in ultrasound imaging [10]
and in optical microscopy [11]. Inspired by the pioneering
work of Robert and Fink [1], the distortion matrix D is defined
between a set of incident plane waves [12] and a set of points
inside the medium [1]. It contains the deviations from an ideal
reflected wavefront which would be obtained in the absence of
inhomogeneities. As shown by recent studies [10, 11], a time
reversal analysis of the D-matrix allows to synthesize virtual
reflectors in depth. This process can then be leveraged for
unscrambling the phase distortions undergone by the incident
and reflected wavefronts.

Overcoming such phase distortions would be especially
valuable for geophysical applications given the stratified
structures of the environments of interest. Migration tech-
niques in Fourier domain have actually been very popular for
imaging in layered media [13, 14], however they only hold
for 1D celerity models with no lateral variations. Subsequent
works have focused on adapting these techniques to take into
account increasing lateral velocity variations, at the cost of
more numerical and computational complexity [15-17]. Con-
trary to these well-established methods, the matrix approach
does not require any assumption on the structures and on the
velocity distribution inside the medium, while being fairly
light on the computational aspect. The present paper aims at
studying the relevance of the matrix approach for geophysical

imaging.

Coherent sources (vibrating trucks, explosives, efc.) can
be used in shallow subsurface (<1 km) imaging. Incoher-
ent signals (seismic noise) can also be taken advantage of for
imaging purposes. It was shown, twenty years ago, how a
coherent information can be extracted from this incoherent
seismic noise. Under appropriate wave-field conditions, the
cross-correlation of seismic noise recorded by two stations
was actually shown to yield the impulse response between
them [18-23], providing new opportunities to develop imag-
ing techniques without using active sources. As surface waves
dominate ambient noise, most papers on the topic aimed at
extracting surface wave properties from ambient noise cor-
relations [24-26]. However, a few studies also reported the
retrieval of body wave reflection from noise correlations [27-
30]. Reflected body waves contain information about the sub-
surface and allow the imaging of deep structures with an im-
proved resolution [31]. Strikingly, Poli et al. [32] showed
the possibility of mapping the upper mantle discontinuities (at
410 and 660 km of depth) by extracting body waves reflec-
tion from ambient noise, while Retailleau ez al. [33] mapped
aregion of the core-mantle boundary at about 2900 km depth.

In this paper, inspired by the reflection matrix approach
developed by Blondel ef al. [9] and based on noise cross-
correlations, the distortion matrix approach is extended to sat-
isfy seismic imaging purposes. The method is applied to San
Jacinto fault zone (SJFZ) site. Fault zones are indeed among
the most challenging media for seismic imaging given their
highly localized and abrupt variations of mechanical proper-
ties, extensive fractures and damage zones. In that respect,
the SJFZ is the most seismically active fault zone in South-
ern California [34]. It accounts for a large portion of the plate
motion in the region [35, 36]. A highly complex fault-zone
structure with prominent lateral and vertical heterogeneities at
various scales have already been highlighted in previous stud-
ies [37-39]. In particular, maps of the P and S wave velocities,
Vp and Vg, have been inverted from earthquake arrival times
for a depth range of 2-20 km [37, 40]. Surface wave tomo-
graphic images built from noise correlations revealed the ve-
locity structure in the top 7 km of the complex plate boundary
region at a resolution of about ten kilometers [38]. To com-
plement these regional studies and provide structural features
in the first few kilometers with an improved resolution, ambi-
ent noise at higher frequency up to 10 Hz was analysed from
data recorded by a dense rectangular array deployed around
the Clark branch of the SJFZ [39, 41, 42]. In particular,
Zigone et al. [43] used ambient noise cross-correlations in the
2-35 Hz frequency range to derive a velocity model in the top
100 m with a resolution of 50 m.

Imaging deeper the fault area at such resolution is challeng-
ing because of the damage and the complex distribution of
small-scale heterogeneities. Yet, a much larger penetration
depth can be expected by taking advantage of the reflected
bulk waves. To do so, the matrix approach of seismic imag-
ing is particularly useful since it only requires a rough idea
of the mean wave velocity. Besides, it shall provide a three-
dimensional image of the subsoil acoustic impedance instead
of just the wave velocity. To implement this matrix approach,



we take advantage of a spatially dense array of geophones
deployed over the damage zone of SJFZ [41]. Noise cross-
correlations are used to retrieve the impulse responses be-
tween the geophones. The associated passive reflection ma-
trix is then investigated to image the first few kilometers of
the crust by virtue of body waves emerging from noise corre-
lations. As a whole, the process we present in this paper can
be analyzed as a combination of six building blocks:

¢ (B1) A Fourier transform of the recorded signals yields
a set of response matrices K(f) associated with the
dense array of geophones.

* (B2) Based on a rough estimate of velocity cg, a double
focusing operation is performed both at emission and
reception by means of simple matrix operations. A set
of focused reflection matrices R(f, z) are obtained at
any arbitrary depth z below the surface.

(B3) A coherent sum of these matrices over the fre-
quency bandwidth yields a broadband reflection matrix
R(z) at any depth 2.

3

(B4) By projecting the input or output entries of this
matrix in the far-field, the distorted component D of
the reflected wave-field can be extracted.

(B5) A virtual iterative time reversal process is applied
to the matrix D to extract the phase distortions un-
dergone by the incident or reflected wave-fields during
their travel from the Earth surface to the focal plane.

* (B6) The whole process converge towards the focusing
laws that shall be applied at input or output of the re-
flection matrix in order to compensate for aberrations.

As a result of these six steps, an in-depth confocal image of
the SJFZ is built. While conventional migration methods lead
to a badly resolved image of the SJIFZ subsoil, the matrix ap-
proach clearly reveals sedimentary layers close to the surface
(z < 1000 m) and several geological layers at larger depth
(1000 m< z < 4000 m). The layers structure is shown to be
different on each side of the fault. Large dip angles are also
highlighted in the vicinity of the fault. A structural interpreta-
tion of the obtained images can be finally built on the existing
literature about SJFZ.

I. REFLECTION MATRIX
A. Response matrix between geophones

The data used in this study has been measured from May 7,
2014 to June 13, 2014 by a spatially dense Nodal array con-
sisting of 1108 vertical geophones straddling the Clark Branch
of SJFZ, southeast of Anza [41]. Figure 1a shows the location
of the 1108 vertical geophones organized as a 600 mx700 m
grid with inter-station distances du, ~ 10m and du, ~ 30m.
This array has been continuously recording the ambient noise
at 500 sample.s !, from which cross-correlation has been per-
formed after whitening in the 10-20 Hz range with time lags

ranging from —5 s to +5 s. This provides an estimate of the
impulse response between every pair of geophones. Each geo-
phone is denoted by an index ¢ and its position s;. The impulse
response between stations ¢ and j is noted k;;(t), with ¢ the
time lag. The set of impulse responses form a time-dependent
response matrix K(t).

Given the high density of the network, neighbouring geo-
phones belong to the same coherence area of seismic noise.
The characteristic dimension of this area is indeed of \/2 ~
50 m which is larger than the interstation distance du. This is
responsible for a strong auto-correlation signal around ¢ = 0
for geophones located in the same coherence area. This peak
is proportional to the seismic noise power and does not ac-
count for the impulse response between neighbour geophones.
To prevent this artifact from spoiling the subsequent analysis,
a prior filter has been applied to the data in order to reduce the
weight of the corresponding impulse responses k;;(t) whose
associated geophones 7 and j are contained in the same coher-
ence area (see Section S1 in supporting information).

The impulse responses exhibit several direct arrivals that
have already been investigated by Ben-Zion et al. [41] and
Roux et al. [39]. Ballistic waves, likely direct inter-station S-
wave and P-wave, arrive before the Rayleigh wave at apparent
velocities larger than 1000 m/s. Roux et al. [39] used iterative
double beamforming to map the phase and group velocities
of Rayleigh waves across the fault in the 1-5 Hz frequency
bandwidth. Subsequently, Mordret et al. [42] inverted these
dispersion curves to build a 3-D shear wave velocity model
around the Clark fault down to 500 m depth. Assuming the
Vp/ V5 ratio to be a linear function of depth, the following av-
eraged value was found for the P-wave velocity over the top
800 m: V), ~1500 m/s. More recently, the P-wave velocity
distribution in the 100 m-thick shallow layer has also been in-
verted using travel time data associated with active shots [44].
Low-velocity structures were detected, associated with a shal-
low sedimentary basin [42, 44, 45] and a fault zone trapping
structure [41, 46].

To the best of our knowledge, an accurate model of V,, in
the SJFZ region is not available beyond this shallow layer. As
a consequence, in the present study, we will use an approx-
imated homogeneous P-wave velocity model of ¢y = 1500
m/s. This choice will be validated and discussed a poste-
riori by a minimization of the aberration effects in the 3D
image (see Supplementary Fig. S1). We are not interested
in the ballistic component of the wave-field but rather in its
scattered contribution due to reflections by the in-depth struc-
ture along the fault. These vertical echoes are mainly asso-
ciated with P-waves since only the vertical component of the
Green’s functions is considered in this study. Unlike our pre-
vious study on the Erebus volcano [9], the scattered wave-
field consists of a single scattering contribution which is a
priori largely predominant compared to the multiple scat-
tering background. This will be confirmed a posteriori by
the reflection matrix features (see Sec. IB). Singly-scattered
echoes can then be taken advantage of to build a 3D image
of the subsoil reflectivity. This local information can be re-
trieved from K(¢) by applying appropriate time delays to per-
form focusing in post-processing, both in emission and recep-
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FIG. 1. (a) Map of the 1108 (10 Hz) geophones installed in a 600 m x 700 m configuration above the Clark branch (red lines) of the San
Jacinto Fault (Southern California). Each row along the x-direction is composed of ~55 sensors with a pitch of 10 m, and the nominal
separation between the rows in the y-direction is 30 m. Seismic ambient noise was recorded over more than one month, in May-June 2014.
(b) Adaptive focusing at emission and reception on two points ri, and roy of the focal plane (z = cot/2) yields the impulse response between
virtual geophones placed at these two points. The same operation is repeated for any couple of points in the focal plane and yields the focused

reflection matrix R.

tion. While focusing in emission consists in applying proper
time delays in the recorded seismic data so that they con-
structively interfere at an arbitrary position at depth, focus-
ing in reception consists in applying proper time delays in the
recorded seismic data so that the information coming from an
arbitrary position at depth constructively interfere. Based on
the Kirchoff-Helmbholtz integral, such a focusing operation is
standard in exploration seismology and referred to as reda-
tuming [47-49]. However, in the present case, the strongly
heterogeneous distribution of the seismic wave velocities in-
duces strong phase distortions that degrade this imaging pro-
cess. A prior quantification and correction of these phase dis-
tortions is thus required to reach a diffraction-limited resolu-
tion and an optimized contrast for the image. As we will see,
a matrix formalism is a well-matched tool to locally capture
such information.

B. Focused reflection matrix

The reflection matrix can be defined in general as an en-
semble of responses, each response linking one vector to an-
other vector. The type of vector coordinates will be referred
to as bases. They can be spatial coordinates (hence the vec-
tor refers to an actual point within or at the surface of the
medium, see Fig. 1b) or wave vector coordinates. Various
bases are involved in this work : (i) the recording basis (u),
whose elements are the positions of the geophones., (ii) the
focused basis (r) which corresponds to the positions of vir-
tual geophones at which focusing at emission or reception is
intended; and (iii) the Fourier basis (k). Because of linearity
and time-invariance, seismic data can be projected from the
recording basis to the focused basis by a simple matrix prod-

uct. In the frequency domain, simple matrix products allow
seismic data to be easily projected from the recording basis
to the focused basis where local information on the medium
properties can be extracted [5, 9, 50].

Consequently, we first apply a temporal Fourier transform
to the response matrix to obtain a set of monochromatic ma-
trices K(f). To project K(f) into the focused basis, we then
define a free-space Green’s matrix, Go(f), which describes
the propagation of waves between the geophones and focused
basis. Its elements correspond to the 3D Green’s function
which connects the geophone’s transverse position u to any
focal point defined by its transverse position r and depth z in
a supposed homogeneous medium:

e—i2nf/lr—ul?+22/co

A/ |lr — ul|® + 22

K(f) can now be projected both in emission and reception
to the focused basis via the following matrix product at each
depth z [9, 50]:

Go(r,u,z, f) =

6]

R(z f) =Gy (2, ) xK(f) x G (2, /), (@

where the symbols *, 1 and X stands for phase conjugate,
transpose conjugate and matrix product, respectively. Equa-
tion (2) simulates focused beamforming in post-processing in
both emission and reception. Each coefficient of the focused
reflection matrix R(z, f) involves pairs of virtual geophones,
Tin = (®in, Yin) and royw = (Tout, Yout)» Which are located
at the same depth z (Fig. 1b). For broadband signals, bal-
listic time-gating can be performed to select only the echoes
arriving at the ballistic time ¢z in the focused basis [50]:



tg = (||rin — Wil + ||ou — Wout|])/co- Under a matrix for-
malism, this time-gating can be performed by means of a co-
herent sum of R(f) over the frequency bandwidth Af. Tt
yields the broadband focused reflection matrix

f+
R(z) = / AR (=, ), 3)

where fr = fo = Af/2 and fp is the central frequency.
Each element of R(z) contains the complex amplitude of
the wave that would be detected by a virtual detector lo-
cated at royy = (Zout,Yout) just after a virtual emitter at
Tin = (Tin,Yin) emits a brief pulse of length §t = Af~!
at the central frequency fo. Importantly, the broadband fo-
cused reflection matrix synthesizes the responses between vir-
tual geophones which have a greatly reduced axial dimension
8z = ¢dt compared to their stretching dzp = 2)\/sin” 6 in
the monochromatic regime [51]. § = arctan(®/2z) is the
maximum angle under which the geophone array is seen from
the common mid-point and @ ~ 700 m, the characteristic
size of the geophone array. As a consequence, considering a
broadband reflection matrix R(z) will significantly improve
the accuracy and axial resolution of the subsequent analysis.
For the sake of a lighter notation, we will omit, in the follow-
ing, the dependence in z but keep in mind that the focused
reflection matrix differs at each depth.

Figure 2a displays one example of the broadband focused
reflection matrix R at depth z =3600 m. In the case of SJFZ,
it appears that a significant part of the backscattered energy is
still concentrated in the vicinity of the diagonal of the focused
reflection matrix at z = 3600 m (Fig. 2a); this is very different
from the Erebus volcano for which the reflection matrix dis-
played a fully random feature [9]. Here a significant part of
the backscattered energy is still concentrated in the vicinity of
the diagonal of the focused reflection matrix. This indicates
that single scattering dominates at this depth: The beam is fo-
cused, scattered just once, and focused in reception. On the
contrary, a broadening of the back-scattered energy outside
the diagonal would mean that the beam undergoes aberration
and/or multiple scattering. In fact, the diagonal elements of
R (rin = rou) correspond to what would be obtained from
confocal imaging: transmit and receive focusing are simulta-
neously performed on each point in the medium. A confocal
image can thus be obtained from the diagonal elements of R,
computed at each depth:

9o (r,2) = R (r,r,2)[*. (4)

Figure 2c displays the 2D confocal image built from the di-
agonal of the reflection matrix in Fig. 2a at time ¢ = 4.6 s,
hence at an effective depth z = ¢pt/2 = 3600 m. Some scat-
tering structures seem to arise at different locations along the
fault but confocal imaging is extremely sensitive to aberration
issues. One thus has to be very careful about the interpreta-
tion of a raw confocal image. This observation is confirmed
by Figure 2d that displays a slice of the confocal B-scan of
the SJFZ underground. Each speckle grain in this image oc-
cupies a major part of the field-of-view. Hence, aberrations

seem to be pretty intense at large depths (beyond 1500 m) and
the inner structure of the SJFZ cannot be deduced from a basic
confocal image.

Fortunately, the matrix R contains much more information
than a single confocal image. In particular, focusing quality
can be assessed by means of the off-diagonal elements of R.
To understand why, R can be expressed theoretically as fol-
lows [50]:

R=H], xT x Hy, (5)
where the symbol T stands for transpose. The matrix I" de-
scribes the scattering process inside the medium. In the sin-
gle scattering regime, I'(z) is diagonal and its coefficients
map the local reflectivity (r) of the subsoil. H,,, and Hj, are
the output and input focusing matrices, respectively. Their
columns correspond to the transmit or receive point spread
functions (PSFs), i.e. the spatial amplitude distribution of
the focal spots around the focusing point rj, or ryy. For
spatially-invariant aberration, Hoy (T, Tow) = How(r — Tou)
and Hiy(r,riy) = Hin(r — riy). The previous equation can
then be rewritten in terms of matrix coefficients as follows:

R(rouh I'in) = /drHout(r - roul)’y(r)Hi (I‘ - I'in)- (6)

This last equation confirms that the diagonal coefficients of
R, i.e. an horizontal slice of the confocal image, result from a
convolution between the medium reflectivity v and the prod-
uct of the input and output PSF, H,y x Hj,.

Interestingly, the off-diagonals terms in the reflection ma-
trix can be exploited to estimate the imaging PSF, and thereby
assess the quality of focusing. To that aim, the relevant ob-
servable is the intensity distribution along each antidiagonal
of R,

I(ry,,Ar) = R(r,, — Ar,r,,, + Ar)
_ / dr’ How(t' — Ar)Y(E + 1) Hin(r' + AXY)

All couple of points on a given antidiagonal have the same
midpoint r,,, = (rou + Iin)/2 , but different spacings Ar =
(rour — Tin)/2. Whatever the nature of the scattering medium,
the common midpoint intensity profile is a direct indicator
of the local PSE. However, its theoretical expression differs
slightly depending on the characteristic length scale [ of the
reflectivity ~(r) at the ballistic depth and the typical width

6i(r3())ut of the PSFs [50].
(0)

(ly >> 6,00 the common-midpoint amplitude is directly
proportional to the convolution between the coherent output

and input PSFs, [Hoy ® Hiy] (2Ar) (the symbol ® stands

for convolution). In the speckle regime ( [, << 6i(13(>)ut ,
the common midpoint intensity I(r,,, Ar) is directly propor-
tional to the convolution between the incoherent output and
input PSFs, [|Houw? ® [Hin|?] (2Ar). In the present case,
the subsoil of SJFZ can be assumed as a sparse scattering
medium. It means that only a few bright and coherent re-
flectors emerge at each depth. This hypothesis will be ver-

ified a posteriori with the three-dimensional image we will

In the specular scattering regime
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FIG. 2. (a) Focused reflection matrix R in the focal plane at depth z =3600 m. (b) Imaging PSF deduced from the antidiagonal of R in (a)
whose common mid-point exhibits the maximum confocal signal. The white circle accounts for the theoretical resolution cell imposed by the
geophone array aperture. (c) Confocal image extracted from the diagonal of R in (a). (d) Vertical slice of the 3D confocal image obtained
by combining the diagonal of R at each depth. The slice orientation is chosen to be normal to the fault. The color scale on the bottom left is
linear and applies to panels (a,c). The color scale on the right is in dB and applies to panels (b,d).

obtain. For an isolated scatterer, the common mid-point in-
tensity at its position scales as the product between the two
PSFs, How(r,, — Ar) X Hiy(r,, — Ar). Therefore, the en-
ergy spreading in the vicinity of each scatterer position shall
enable one to probe the spatial extension of the PSF. As the
scatterer position is a priori unknown, the imaging PSF will
be, in practice, probed by considering the antidiagonal whose
common mid-point exhibits the maximum confocal signal.

Figure 2b shows the corresponding common midpoint in-
tensity profile for the matrix R displayed in Fig.2a. It shows a
significant spreading of energy over off-diagonal coefficients
of R. This effect is a direct manifestation of the aberrations
sketched in Fig. 1b. Indeed, in absence of aberration, all the
back-scattered energy would be contained in a diffraction-
limited confocal focal spot, H2(Ar) = sinc? (rAr/dy), with
0o = A/(2sin@). The ideal -6dB main lobe width (or full
width at half maximum) is roughly equal to 6y ~ 600 m. This
diffraction-limited resolution is depicted by a white circle in
Fig. 2b. Here the characteristic size of the main central lobe

is 652[)“][ ~ 1200 m at z = 3600 m. Hence, the back-scattered
energy spreads well beyond the diffraction limit. Besides this
central lobe, few secondary lobes also emerge in Fig. 2b due
to the gap between the velocity model and the actual seismic
wave velocity distribution in SJFZ. As shown in Supplemen-
tary Section S2, these secondary lobes are strongly affected
by our choice of cy. Hence this observable can be used for
optimizing our wave propagation model. As shown by Sup-
plementary Fig. S2, the value ¢y = 1500 m/s is the seismic
wave velocity that clearly minimizes the level of these sec-
ondary lobes.

Despite this optimization, the focusing quality remains far
from being ideal because of the heterogeneous distribution of
c in the subsoil. In the following, we will show how this fun-
damental issue can become a strength since it can enlarge vir-
tually the aperture angle under which the geophone array is
seen, thereby leading to an enhanced spatial resolution.

II. DISTORTION MATRIX

To that aim, a new operator is introduced: The so-called
distortion matrix D [10, 11]. This operator essentially con-
nects each virtual geophone with the distortion exhibited by
the associated wave front in the far-field. The D-matrix is
thus equivalent to a reflection matrix but in a moving frame,
i.e centered around each input focusing beam. This change of
frame will allow us to unscramble the contribution of phase
aberrations from the medium reflectivity. Last but not least,
it will be shown to be particularly efficient for spatially dis-
tributed aberrations. While conventional adaptive focusing
techniques are only effective over a single isoplanatic patch,
the typical area over which aberrations are spatially-invariant,
the D-matrix is an adequate tool to discriminate them and ad-
dress them independently.

A. Reflection matrix in a dual basis

The reflection matrix R is first projected into the Fourier
basis in reception. To that aim, we define a free-space trans-
mission matrix Ty which corresponds to the Fourier trans-
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FIG. 3. Time reversal analysis of the distortion matrix. (a) In the matrix imaging scheme, each point in the focal plane is probed by means
of a focused beam at input and output. (b) A far-field projection of the focused reflection matrix [Eq. (9)] yields the dual-basis matrix R. (c)
By removing the geometrical tilt of each reflected wave-front [Eq. (12)], a distortion matrix D is obtained. D is equivalent to a reflection
matrix but with a static input PSF H (r) scanned by moving scatterers (Eq. 15). (d) The SVD of the distortion matrix enables the synthesis of

a virtual coherent reflector of scattering distribution | H (r)|?

(Eq. 18) and an estimation of the aberration phase transmittance H® for each

isoplanatic patch p in the field-of-view [Eq. (21)]. (e) This estimation can be refined by considering, in a second iteration of the process, the
SVD of the normalized time reversal operator 69“" ) [Eq. (32)]. This operation makes the virtual reflector point-like and the estimation of
H® more precise. (f) The phase conjugate of H (®) yields the focusing law to scan the corresponding isoplanatic patch p and synthesize a

novel focused reflection matrix R'P/.

form operator. Its elements link any transverse component
k = (ks,ky) of the wave vector in the Fourier space to the
transverse coordinate r = (z,y) of any point in an ideal ho-
mogeneous medium:

To (k,r) = exp (ik.r). 8)

Each matrix R can now be projected in the far field at its out-
put via the matrix product

Rout = TO X R7 (9)

Each column of the resulting matrix Roy = [R(Kout, T'in)]
contains the reflected wave-field in the far-field for each input
focusing point rj,. Injecting Eq. 5 into the last equation yields
the following expression for Ry:

Rout = Tou X T x Him (10)

where Ty, = T X HOTm is the output transmission matrix
that describe wave propagation between the focused basis and
the Earth surface in the Fourier basis. In terms of matrix co-
efficients, the last equation can be rewritten as follows:

Ruul(kout7 I‘in) = / drTou{(koutv r)v(r)Hm(r, rin)~ (1 1)

In a multi-target medium, the reflection matrix can be lever-
aged to focus iteratively by time reversal processing on each
scatterer. This is the principle of the DORT method [French
acronym for Decomposition of the Time Reversal Operator;
Prada et al. [6, 52]]. Derived from the theoretical study of the
iterative time reversal process, it relies on the singular value
decomposition of Ry,. In the single scattering regime, a one-
to-one association exists between each eigenstate of R, and
each scatterer. Each singular value is directly equal to the re-
flectivity v; of the corresponding scatterer. Each output eigen-
vector yields the wave-front, 7%, (Kout, r'; ), that should be ap-

out

plied from the far-field in order to selectively focus on each
scatterers’ position r;. The DORT method is thus particularly
useful for selective focusing in presence of aberrations [6, 52]
or target detection in a multiple scattering regime [3, 9]. How-
ever, this decomposition is of poor interest for diffraction-
limited imaging since each input eigenvector yields an image
of the scatterer, Hi, (r;, rin), that is still hampered by aberra-
tions.

B. Definition and physical interpretation of the distortion
matrix

To cope with the fundamental issue of imaging, a novel op-
erator, the so-called distortion matrix D, has been recently
introduced [10, 11]. Inspired by previous works in ultrasound
imaging [1, 53], it relies on the decomposition of the reflected
wavefront into two contributions (see Fig. 3): (i) a geometric
component which would be obtained for a point-like target at
ri, in a perfectly homogeneous medium (represented by the
black dashed line in Fig. 3b) and which can be directly ex-
tracted from the reference matrix T, and (if) a distorted com-
ponent due to the mismatch between the propagation model
and reality (Fig. 3c). The principle of our approach is to iso-
late the latter contribution by subtracting, from the reflected
wave-front, its ideal counterpart. Mathematically, this oper-
ation can be expressed as a Hadamard product between the
normalized reflection matrix R, and T,

Dou = Rou © T, 12)

which, in terms of matrix coefficients, yields
Dout(Kout Tin) = Rou(Kout, I‘in)TJ (Kout, Tin)- (13)
The matrix Doy = [D(Kout, I'in)] connects any input focal

point rj, to the distorted component of the reflected wave-field



in the far-field. Removing the geometrical component of the
reflected wave-field in the Fourier plane as done in Eq. (12)
amounts to a change of reference frame. While the original
reflection matrix is recorded in the Earth’s frame (static un-
derground scanned by the input focusing beam, see Fig. 3b),
the matrix D, can be seen a reflection matrix in the frame of
the input focusing beam (moving subsoil insonified by a static
focusing beam, see Fig. 3c).

C. Decomposition of the distortion matrix over isoplanatic
patches

To confirm this intuition, Dy, is now expressed mathemat-
ically. To do so, we will decompose the matrix Dy, into a

set of sub-matrices D), such that Dowt = Zp D). Each

out » out *
matrix D((,ﬁl) is associated with a distinct isoplanatic patch p
in the field-of-view. An isoplanatic patch is, by definition,
an area over which the aberrations are spatially-invariant. In
each of them, phase distortions can be modelled by: (i) a
spatially-invariant input PSF, H” (r,v') = HP (r — 1),
in the focused basis; (ii) a far-field phase screen of trans-
mittance H?) = [H%)(kou)] in the Fourier basis, where
f{éﬁ)(kout) = fdrHéft)(r) exp(—ikoysr) is the 2D Fourier
transform of the corresponding output PSF Héﬁ? (r). The

output transmission matrix Tf,ﬁB can then be expressed as

an Hadamard product between ﬁgﬁﬁ and T, the free-space

transmission matrix,
T = A o To. (14)

In each isoplanatic patch, the injection of Eq. (10) into
Eq. (12) gives the following expression for the coefficients of

D(P).

out *

DG (Kou, Tin) = / A/ T8 (Kout, ) HLY (', 0)y (xin H(15)

where r’ = r — 1y, is the position vector in a new coordi-
nate system centered around the input focusing point rj,. In
any isoplanatic patch p, the distortion matrix [Eq. (15)] can
be interpreted as the result of a fictitious process: Imagine a
beam with v as PSF and impinging onto a (fictitious) scat-
terer at the origin, with reflectivity distribution Hi,(r); the
resulting scattered wavefield in the direction k,,; would be
given by Eq. (15) [see the analogy with Eq. (11)]. The prob-
lem is to isolate the propagation term T, from the scattering
() and input beam (H;,) terms, and estimate the aberration.
In that context, iterative time reversal brings a solution : it
is well known that it eventually converges the wavefront that
overcomes aberrations and optimally focuses on the brightest
point of the (fictitious) scatterer [6, 52]. In the next section,
we show in details how to implement this idea, to estimate
aberration for each isoplanatic patch, and finally build a high-
resolution image of the subsoil.

III. TIME REVERSAL ANALYSIS OF THE DISTORTION
MATRIX

At each depth, a time reversal analysis of the distortion
matrix is performed. This iterative method consists of dif-
ferent steps that we will describe below. At each iteration,
a virtual scatterer is synthesized at input or output through
the distortion matrix concept. In the first setp, a singular

value decomposition of Dgﬁ? decomposes the field-of-view
(i.e., the transverse size of the focal plane) into a set of iso-

planatic patches. The corresponding eigenvectors yield an es-

timation of the aberration transmittance ﬁéﬁ){) over each iso-
planatic patch. Their phase conjugate provide the focusing
laws that enable a (partial) compensation for the phase dis-
tortions undergone by the incident and reflected waves during
their travel between the geophone array and the focal plane.
By alternatively applying the same aberration correction pro-
cess at input, the size of the virtual scatterer can be gradually
reduced. It converges to optimal focusing laws that will, ul-
timately, provide a high-resolution mapping of the SJFZ sub-
soil.

A. Output distortion matrix and isoplanatic patches

Mathematically, the iterative time reversal process is equiv-
alent to the singular value decomposition of D, that can be
written as follows:

Doy = Ugu X T x V]| (16)

or, in terms of matrix coefficients,

N
D(kout, Tin) = Z O—(()lZ:l) Uo(ft) (kOUt)‘/;t(lp)* (Tin)- (17)

p=1

3 is a diagonal matrix containing the real positive singular
values o, in a decreasing order oy > 02 > .. > on. Ugy and

Vi, are unitary matrices whose columns, U®) = [U) (ko))

and V?) = [V (r;,)], correspond to the output and input
singular vectors, respectively. In the present case, we ex-

pect a one-to-one association between each sub-matrix Dg,’[)
and each eigenstate of D,,. Each isoplanatic patch being

mapped onto a single virtual scatterer, the associated matrix

D(()ﬁt) should be, in first approximation, of unity rank.

To check this intuition, the correlation matrix (or time-
reversal operator), C\¥) = D®) x D@ can be investi-
gated. Its eigenvalue decomposition is actually equivalent to
the SVD of D) [10, 11, 54]. Using Eq. (15), the coefficients

of each matrix Cf,ﬁt) can be expressed as follows:

Clulle ) = py FR (W) ) (1) [ @ ] (1~ 1),
(18)
where p, is the overall patch reflectivity and the symbol

® stands for a correlation product. The correlation term in
Eq. (18) results from the Fourier transform of the scattering
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FIG. 4. Singular value decomposition of the distortion matrix Doy at time ¢ = 4.8 s and depth z =3600 m. (a) Plot of the normalized singular

values 6. (b,c) Modulus of input eigenvectors anl) and Vi(:). (d,e) Modulus of output eigenvectors U,

distribution |H " (r)[? of the virtual scatterer in Eq. (15). Its
support is the correlation width Ak, of the aberration phase
transmittance that scales as the inverse of the spatial extension
5\ of the input PSF intensity [H"|2: Akgy = Az/5\". Tf
the virtual scatterer was point-like, this correlation term would

be constant and the matrix C((,f:t) would be of rank 1. Its main

eigenvalue 0'12) is then equal to p, and the associated eigenvec-
tor Ugﬁz directly yields the aberration transmittance fI{,’m. In
practice, the virtual scatterer is of finite size and the correla-

tion term in Eq. (18) is not negligible. The rank of Cc®) and

out

D(()ﬁt) then scales as the number of resolution cells mapping

the virtual scatterer [55, 56]: Q = (51(;))/50)2. Q is typi-
cally equal to 4 for the local PSF |HiEf’) |2 displayed in Fig.2b.
Among these ) eigenmodes of D)

out » only the first eigenstate

U‘(,ﬁ‘) is of interest since it maximizes the backscattered energy

by focusing at the center of the virtual scatterer.

In the following, we thus expect an overall distortion matrix
Dy of rank P x @ with the following singular value distri-
bution: (i) P largest singular values associated with the main
eigenstates U(()‘ﬁt> of each patch p; (if) a set of (P — 1) x Q of
smaller singular values associated with secondary eigenstates
that focus on the edges of the virtual scatterers. Figure 4a
confirms this prediction by displaying the normalized singu-

lar values, 6, = 0,,/4/ Zfil 02, of Doy at depth z = 3600 m
(t = 4.8 s). As expected, a few singular values potentially as-
sociated with the signal subspace seem to predominate over a
continuum of eigenvalues characteristic of the noise subspace.
However, it is difficult to determine the effective rank of the
signal subspace. This issue can be circumvented by comput-
ing the Shannon entropy # of the singular values [10, 11],
such that

N
== 57log, (67). (19)
i=1

The Shannon entropy can be used as an indicator of the rank
of the signal subspace. In the case of Fig.4, the singular values
of Doy display an entropy # =~ 9.2. As the effective rank of
Dy scales as P x @ and that Q ~ 4, this means that the
number P of isoplanatic patches is roughly equal to 2.

Figure 4 shows the corresponding eigenstates of D,. The

1) and UP

out out *

two first input singular vectors, v

in > exhibit a rough image
of the corresponding isoplanatic patch p (see Figs.4b and c).
This observation can be explained by deriving their theoretical

expression [11]:
VP (ri) = / dry(r) HY (x, 1i0). (20)

The input eigenvectors provide an underground image still
polluted by input aberrations. They are thus of limited inter-
est. On the contrary, the output eigenvectors U((,ﬁ[) display the
corresponding phase distortion in the Fourier plane [11]:

U(P) k I:I(P) k I:I-(p) FI.(P) k 21
( out) X ( out) in ® in ( 0ut)~ ( )

out out

U(P)

The eigenvectors U

mittance I;T(Eft) modulated by its autocorrelation function

[lfliglp )@ HP )} (see Fig 3d). This last term tends to limit

provide the aberration trans-

the support of the eigenvector Uf,ﬁt) to Akoy. Figures 4d
and e confirm this theoretical prediction by showing the mod-
ulus of Uf,ﬁE and U((f“), respectively. Both singular vectors
cover a restricted and different angular domain in the Fourier

space (Abyy = Akoy/ko ~ 10°). To circumvent this issue,

one trick is to use only the phase of these eigenvectors Uf)ﬁ?

(Figs. 5a and b) by considering the normalized vector ﬁﬁﬁ? ,
such that

U (kout) = USE) (Kout) /U (Kous)|-— (22)

Indeed, if we make the realistic hypothesis of a real and pos-
itive autocorrelation function [ﬁ[ﬁf )@ AP )} in Eq. (21), the

normalized vector ﬁﬁﬁ? should, in principle, provide the aber-
(p)

ration transmittance H,, .

timation of Ilﬂ? outside the coherence area Akoy. In the fol-

lowing, we will note SH®) — @ g®)

out out out >

mismatch between U) and FF).

In practice, noise degrades the es-

the residual phase

Despite this phase mismatch, the phase conjugate of ﬂ§ﬁ3

can be used as a focusing law to compensate (at least partially)



FIG. 5. Output phase distortion correction at time ¢ = 4.8 s and
depth z =3600 m. (a,b) Output focusing laws derived from the
phase conjugation of normalized eigenvectors Ijgll,l) and Ugi) , Te-
spectively. (c,d) Imaging PSF extracted from the main antidiago-
nals of the focused reflection matrices R and R, respectively
(Eq. 25). The color scale is in dB. (e,f) Confocal images built from
input vectors\?i(n1> and Vi(nz), respectively [Eq. (24)].

for phase distortions at the output. The resulting input vector,
v — L) Dy, (23)

yields an image of the subsoil reflectivity. \71(“1 ) and \71(‘12 ) are
displayed in Figs. Se and f, respectively, at depth z = 3600 m.
The comparison with the initial confocal image (Fig. 2c) illus-
trates the benefit of our matrix approach. While the original
image displays a random speckle feature across the field-of-
view, \71("1 ) reveals a complex structure in the vicinity of the
surface traces of the Clark Fault. On the contrary, the image
\A/'l(n2 ) spans along an oblique direction compared to the direc-
tion of the fault. While it shows a more diffuse image of the
Clark Fault at the center of the field-of-view, VI(HQ ) reveals a
strong scattering structure on the west of the fault. The differ-
ence between these images and the input eigenvectors Vi(f )
(Figs. 4b and c) can be understood by expressing the coeffi-

cients of Vi(f> using Eqgs. 14, 15 and 21:
Vi () = / droH) (v, vy (0 HY (v 1) (24)

where 6H(§p ) is the novel output PSF related to the resid-

ut

ual phase transmittance 0 H, () through a Fourier transform.

out
(p)

While the input eigenvectors V..~ display an incoherent im-

age of the subsoil strongly hampered by input aberrations

10

(Eq. 20), the vectors fo ) yield a confocal image with an opti-
mized focusing at the output. A gain in resolution and contrast
is thus obtained and confirms our previous analysis.

To quantify the gain in image quality, the local imaging PSF
should be investigated. To that aim, one can notice that the
input vector fo ) is actually equivalent to the confocal image
that would be extracted from a focused reflection matrix R(?)
after output aberration compensation (Fig. 3f):

R® = (TP o To)! x Rou (25)

The focused matrix is useful since its antidiagonals can
be used to probe the local imaging PSF across the field-of-
view [Eq. (7)]. The resulting PSFs are displayed in Figs. 5c
and d. It should be compared with the initial imaging PSF
(Fig. 2b). While the original PSF exhibits a distorted central
lobe that spans over almost four diffraction-limited resolution
cells (white circle in Fig. 2b), the corrected PSF shows a cen-
tral lobe thinner than the diffraction limit. This striking result
will be discussed further. Note, however, the occurence of a
strong secondary lobe and an incoherent background that can
be accounted for by the subsistence of input aberrations. The
latter ones are tackled in the next section.

B. Input distortion matrix and super-resolution

Aberrations undergone by the incident waves are now com-
pensated by building input distortion matrices Di(f ) (Fig. 3c¢).
To that aim, the reflection matrices R(®) should be projected
in the Fourier plane at emission:

D =T} o (R<P> xTg ). (26)

The SVD of each matrix Dl(f ) is performed. Among all the
output eigenvectors of these matrices, one is of special in-
terest: their p** eigenvector Ui(f ). Its modulus is shown for
p = 1and 2 in Fig. 6a and b, respectively. The input eigenvec-
tors Ui(f ) exhibit a much larger angular aperture (A6, ~ 20°)
than the output eigenvectors U((,ﬁt) (Abyy ~ 10°). To under-
stand this effect, the eigenvectors Ul(f )
first approximation, as follows [11]:

can be expressed, in

U (in) ox A (kin) B (i) [SHE) © 67 | ().
(27)
As mentioned before, the correlation term, 6 H ) @ s HE),

can be seen as the Fourier transform of the virtual scatterer
synthesized from the output focal spots in the distortion matrix

Di(f ) (see Fig. 3c). The width §) of the corrected output PSF

ut
(5H§ft) (Figs. 5c and d) being much thinner than the original
one 61(:) at the input (Fig. 2b), the correlation width Aki(np )~
Az/ 65,17 ) of the incident wave-field is larger than the output

ut

correlation width AkP) ~ Az / 5 of the reflected wave-field

out mn
at the previous step.
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FIG. 6. Input phase distortion correction at time ¢ = 4.8 s and depth
z =3600 m. (a,b) Modulus of input eigenvectors Ufnl) and Ui(f).
(c,d) Output focusing laws derived from the phase conjugation of
normalized eigenvectors Ui(nl) and ijf ), respectively. (e,f) Imaging
PSF extracted from the main antidiagonals of the focused reflection
matrices R™") and R, respectively [Eq. (30)]. The color scale is in
dB. (g,h) Confocal images built from input vectors \75,31) and \7((,31),
respectively [Eq. (29)].

The phase of the first input singular vectors Ui(f ) (Figs. 6¢

and d) are thus better estimators of ﬂff ) than the original in-

put eigenvectors U((fu’t). The phase mismatch between them

will be noted 6Iili(f ) in the following. Despite this residual

phase error, the normalized eigenvectors, le(f ) , can be used

as focusing laws to compensate for input aberrations. The re-
sulting output vectors,

Vil =D <o, (28)

yield images of the subsoil reflectivity. The result is displayed
in Figs. 6g and h at depth z = 3600 m. Their comparison with
the previous images (Figs. 5e and f, respectively) illustrates
the benefit of a simultaneous aberration correction at input
and output. While the first vector VéﬁQ yields a refined im-
age of the complex structure lying in the first isoplanatic patch

(Fig. 6g), the second eigenvector Vgﬁ? now clearly highlights

11

a coherent reflector belonging to a second isoplanatic patch

on the west of the fault (Fig.6h). The gain in image quality

can be understood by expressing the coefficients of Véﬁt) us-

ing Eqgs. (14), (15) and (21):
Vot ) = [ s 0, vy (03H (5,1 29

where 5Hi(np ) is the novel input PSF related to the residual

phase transmittance 5I~{i(np ). While the previous images fo )

still suffer from input aberrations [Eq. (24)], V((,ﬁl) yields a
nearly perfect confocal image.

The resolution and contrast enhancements are now quanti-
fied. As before, it can be done by extracting the local imaging
PSF from the antidiagonals of the updated reflection matrices
R®) after input and output aberration compensation:

R = [UP" o D[] x To* (30)

An imaging PSF can be deduced for each isoplanatic patch

p by considering the antidiagonal of R(”) whose common

mid-point corresponds to the maximum of each image\?‘(,ﬁt)

[Eq. (7)]. The result is displayed in Figs. 6g and h. The strong
secondary lobes exhibited by the imaging PSF at the previous
step (Figs. 5c and d) have been fully suppressed thanks to the
compensation of aberrations at the input. Strikingly, the spa-

tial extension 5i(f ) of the imaging PSF at -6dB is of the order
of 150 m. This value is much thinner than the expected res-
olution cell 6y ~ 600 m, depicted as a white dashed line in
Figs. 6e and f. The observed resolution is one-fourth of the
theoretical limit based on the geophone array aperture. Two
reasons can be invoked to account for that surprising result.
The first possibility is an overestimation of the wave speed c at
shallow depth. This value actually dictates the maximum spa-
tial frequency exhibited by body waves induced at the Earth
surface. However, the chosen value ¢y = 1500 m/s seems in
agreement with recent measurements of the P-wave velocity
in SJFZ [44]. The other explanation is that the heterogeneous
subsoil acts as a lens between the geophones and the focal
plane either by scattering or wave guiding. As in a time rever-
sal experiment, scattering by small-scale heterogeneities can
widen the angular aperture of the focused beam [57]. Alter-
natively, the local gradient of the background seismic velocity
in the vicinity of the fault can constitute a wave guide through
which seismic waves can be channeled [58]. Similarly to scat-
tering, reflections on wave guide boundaries can also enlarge
the effective array aperture: This is the so-called kaleido-

scopic effect [59]. In both cases, if the induced aberrations
are properly compensated, the spatial extension 552 )/Ou , of the
imaging PSF can be improved compared to the diffraction-

limited resolution dy predicted for a homogeneous medium.



FIG. 7. Correction of residual phase distortions by making the virtual
scatterer point-like. (a,b,c,d) Output and input focusing laws derived
from the phase conjugation of the normalized eigenvectors 61]'((,&3,
613((,33, 6Iji(nl) and 6ﬂfn2>, respectively. (e,f,g,h) Imaging PSFs ex-
tracted from the main antidiagonal of the focused reflection matrices
R® after application of the additional focusing law displayed in
(a,b,c,d), respectively. The color scale is in dB. (i,j) Final confocal
images built from the diagonal of the final reflection matrices R®,
respectively [Eq. (36)].

C. Normalized correlation matrix and compensation for
high-order aberrations

Despite these remarkable properties, the imaging PSFs in
Figs. 6e and f still exhibit high-order aberrations that result
in an incoherent background of -20 dB beyond the resolution
cell. To compensate for these residual aberrations and again
improve the image quality, a last step consists in considering
a normalized correlation matrix in order to make the virtual
scatterer point-like [10] (see Fig. 3d).

It first consists in projecting the updated reflection matrix
R(?) (Eq. 30) in the Fourier basis at the output: R((,ﬁt) =Ty x

R(®). Then, a novel output distortion matrix 6D((,ﬁ2 from the
focused reflection matrix R®) resulting from Eq. 30:

oD = R o T, 31
The corresponding correlation matrix, JC?) = D) x

6D(()ﬁt) T, should be investigated. By analogy with Eq. (18),

12

its coefficients can be expressed as follows:
OCG (kout, K)o O (ont)SHGR" (o)
x [6E[i<np) ® OHY | (Kour — Kby1032)

As previously highlighted in Sec. III A [Eq. (18)], the correla-

tion term in Eq. (32) prevents a proper estimation of the aber-
ration phase transmittance over the whole angular spectrum.
To circumvent that issue, the correlation matrix coefficients
can be normalized as follows [10]

SO (Kouts Khue) = 0CR (Kot Kot )/ ICER (Kot Koy

(33)
As illustrated by Fig. 3d, this operation makes the virtual
reflector point-like [10]. Indeed, if we make the realis-
tic hypothesis of a real and positive autocorrelation function

[61}1(“” ) @ 0, iip )] in Eq. 32, the coefficients of §C'*) can ac-
tually be expressed as follows:

BCEE (ot Kiue) o SHGE (owt)SHGE (ki) (34)
Such a matrix is equivalent to the time reversal operator asso-

ciated with a point-like reflector at the origin [6, 52]. In that

case, the matrix (5@(()1”73 is of rank 1 and its eigenvector sulp)

out
yields the residual aberration phase transmittance:
UG (kout) = Hyl (kout) (35)

The phase of the eigenvectors 6U((,ﬁ2 are displayed in Fig. 7a
and b, respectively. Compared to the Fresnel zone fringes

exhibited by the first-order aberrations in ulr) (Fig. 5a and

out
b), 6U£ﬁ3 displays higher-order aberrations, thereby leading
to more complex focusing law. It can be directly applied to
the entries of Rgﬁz to compensate for residual aberrations. An
updated focused reflection matrix R(?) is then obtained

R® = T} x [5U§{,’2* ° 5D5,ﬁ2] (36)

The resulting focused reflection matrices enables an estima-
tion of the imaging PSFs displayed in Fig. 7e and f over each
isoplanatic patch. This second correction step drastically re-
duces the spatial extension of the PSF width compared to the
previous step (Figs.6e and f). The incoherent background is
below -30 dB beyond the theoretical resolution cell (69= 600
m at depth z = 3600 m). Moreover, the FWHM of the PSF is
now of the order of the wavelength: 6551) ~ A ~ 100 m. Strik-
ingly, the observed resolution is one-sixth of the theoretical
limit based on the geophone array aperture.

As before, the process can be iterated by exchanging the fo-
cused and Fourier basis at input and output. A novel input dis-

tortion matrix (5fo ) is built for each isoplanatic patch p. Ad-
ditional input focusing laws 5Ui(np )* are extracted through the
eigenvalue decomposition of the normalized correlation ma-

trix 5C§f ). Their phases are displayed in Figs. 7c and d. They
are flatter than their output counterparts (Figs. 6¢ and d), indi-



cation that our approach gradually converges towards a finite

aberration phase law. The normalized eigenvectors, (5[1(5 ),

can be used as input focusing laws that should be applied to
Di(f ) to compensate for residual input aberrations. The result-
ing images of the subsoil reflectivity are displayed in Figs. 7
iandjat z = 3600 m over the two main isoplanatic patches.
Their comparison with the previous images (Figs. 6g and h,
respectively) illustrates the benefit of iterating the aberration
correction process. The first isoplanatic patch highlights the
presence of three distinct reflectors that arise in the vicinity
of the fault’s surface traces (Fig.7i). The second isoplanatic
patch yields a highly-resolved image of a coherent reflector on
the west of the Clark fault (Fig.7i). Compared to the previous
image in Fig. 7], the contrast is drastically improved. This ob-
servation can be understood by looking at the corresponding
PSFs (Figs.7g and h). The incoherent background is below
-35 dB beyond the theoretical resolution cell (do= 600 m at
depth z = 3600 m). Last but not least, the FWHM of the PSF

nearly reaches the diffraction limit 61(5’ ) ~ 80 m. Remarkably,
the observed resolution is nearly one-eighth of the theoreti-
cal limit based on the geophone array aperture. As mentioned
in the previous section, the scattering events induced by the
small-scale heterogeneities or the wave guiding induced by
the gradient of the seismic velocity around the fault can both
account for this unexpected resolution.

The comparison of these final images with the original one
(Fig. 2¢) illustrates the relevance of a matrix approach for deep
seismic imaging. In the next section, the three-dimensional
structure of the SJFZ is revealed by combining the images
derived at each depth. At last, based on the derived high-
resolution 3D images, a structural interpretation of the SJFZ
is provided.

IV. THREE-DIMENSIONAL IMAGING OF THE SAN
JACINTO FAULT ZONE

Having demonstrated in Sec. III how to correct phase dis-
tortions at each depth, a 3D image of the subsurface can now
be uncovered. To that aim, each isoplanatic patch should be
recombined at each depth. The resulting image J,; is a co-
herent sum between the diagonal coefficients of the corrected
reflection matrices R(P):

2

g]\/[ (I‘, Z) = (37)

P
Z R® (r,r, 2)
p=1

Figure 8 shows a slice of this 3D image with the same ori-
entation as the original b-scan displayed in Fig. 2c. While
the raw image Yy is completely blurred, the gain in resolution
provided by the matrix aberration correction process reveals
an image of the SJFZ subsoil with a refined level of details.
Based on the surface traces displayed in Fig. 1la, the fault is
expected to spread orthogonally to the x-axis. The choice of
the profiles’ orientation in Figs. 2¢ and 8 is dictated by our
willingness to highlight the fault blocks on the right and left
side of the slip interface.
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FIG. 8. Vertical slice of the 3D confocal image obtained from stacked
corrected images derived at each depth. The slice orientation is cho-
sen to be normal to the fault plane. The color scale is in dB.

The SJFZ is a major continental strike-slip fault system that
accumulated through history a significant slip of tens of kilo-
meters. Such large fault systems induce zones of strongly
damaged materials [60, and references therein] and the dam-
age is expected to be pronounced in the shallow crust. Thanks
to the distortion matrix correction, Fig. 8 shows the two main
signatures of the fault in diffraction imaging. First, it reveals
a damage zone associated with a dense distribution of scatter-
ers and highlighted by a shaded area in Fig. 8. The damage
volume extends from the surface to 2000 m below with a sec-
tion decreasing in depth. Second, beyond a depth of 2000
m, the matrix image displays strong echoes associated with
the presence of sub-horizontal reflectors. The corresponding
strata layers are located at different depths on both sides of the
fault. This discontinuity seems to indicate the fault location in
depth, although the damage area is no longer discernible be-
yond 2000 m. This example thus shows both the efficiency of
our approach to cope with phase distortions and the potential
of passive seismic imaging to study the fine structure of active
faults in depth.

In this section, only a slice of the 3D volume has been
shown to illustrate the drastic improvements granted by a ma-
trix approach of seismic imaging (Fig. 8). Its comparison with
the raw confocal image highlights the benefit of a drastic gain
in resolution (Fig. 2c). A more detailed interpretation of the
subsurface properties will be the focus of a future study. In-
deed, a detailed interpretation of the obtained 3D image and a



confrontation with previous studies may provide information
on the structural properties of the fault zone. More gener-
ally, the high resolution and penetration depth of our matrix
imaging method will play an important role in detecting ac-
tive faults, evaluating their long-term behaviour and, conse-
quently, following the deformation of the Earth’s crust. It will
also be an essential tool for understanding earthquake physics
and evaluating seismic hazard.

V. CONCLUSION

Inspired by pioneering works in optical microsopy [5, 11]
and ultrasound imaging [1, 10], a novel matrix approach to
seismic imaging is proposed in this paper. Taking advantage
of the reflection of bulk seismic waves by heterogeneities in
depth, it can be applied to both active or passive seismic imag-
ing. The strength of this approach lies in the fact that it works
even when the velocity distribution of the subsoil is unknown.
By projecting the seismic data either in the focused basis or in
the Fourier plane, it takes full advantage of all the information
contained in the collected data. For aberration correction, pro-
jection of the reflection matrix into a dual basis allows the iso-
lation of the distorted component of the reflected wave-field.
Seen from the focused basis, building the distortion matrix
D consists in virtually shifting all the input or output focal
spots at the onto the same virtual location. An iterative time
reversal analysis then allows to unscramble the phase distor-
tions undergone by the wave-front during its travel between
the Earth surface and the focal plane. A one-to-one associa-
tion is actually found between each eigenstate of D and each
isoplanatic patch in the field-of-view. More precisely, each
singular vector in the Fourier space yields the far-field focus-
ing law required to focus onto any point of the corresponding
isoplanatic patch. A confocal image of the subsoil reflectiv-
ity can then be retrieved as if the underground had been made
perfectly homogeneous. However, it should be noted that the
available velocity model is often a rough approximation of re-
ality and the estimated depth is likely to be inaccurate. Yet
a correct model would dilate the subsboil 3D image up or
down but would not change significantly its transverse evo-
lution. Moreover, the matrix approach can be easily incorpo-
rated in any iterative procedure that aims at mapping the ve-
locity distribution of bulk seismic waves in the underground.
This would, in turn, correct the image from its axial aberra-
tions.

In this paper, as a proof-of-concept, the case of the San Jac-
into Fault zone is considered. While a raw confocal image suf-
fers from an extremely bad resolution due to the strong lateral
variations of the seismic velocities in the vicinity of the fault,
our matrix approach provides a high-resolution image. Strik-
ingly, its resolution is almost one eighth below the diffraction
limit imposed by the geophone array aperture. The hetero-
geneities of the subsoil play the role of a scattering and/or
channeling lens which increases drastically the effective array
aperture. The matrix image reveals a damage volume partic-
ularly pronounced in the shallow crust (2000 m). At larger
depth, the 3D image of the fault exhibits the fault blocks on
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the right and left side of the slip interface. A more detailed in-
terpretation of the obtained image will be the focus of a future
study.

Besides seismic fault zones, a matrix approach of passive
imaging is particularly suited to the study of volcanoes. While
the multiple scattering problem in volcanoes has been recently
tackled under the reflection matrix approach [9], the distortion
matrix would be particularly powerful to restore a diffraction-
limited image of the in-depth structure of a volcano. Addi-
tionally, our matrix method can advantageously be applied to
real-time geophysical imaging, similarly to adaptive optics in
astronomy. This may provide a valuable tool for monitor-
ing oil or gas reservoirs when drilling, extracting hydrocar-
bon or injecting CO,. Finally, this method can be taken ad-
vantage of for marine exploration where the variations of sea
local properties can distort the acoustic wave-front depend-
ing on the gradients of temperature and salinity, not to men-
tion streams and swirls. The matrix approach presented here
can compensate for the phase distortions undergone by the re-
ceived echoes and improve the interpretation of the data with
no more required knowledge than the speed of sound in wa-
ter. Although not leveraged in the present paper, Lambert et
al. [10] have also demonstrated the relevance of the matrix
approach at removing multiple reverberations between strata
layer interfaces. This also may be useful for any marine or
seismic exploration purpose.
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Supplementary Information

This supplementary material includes details about: (i) the
prior filtering applied to the reflection matrix in the geophone
basis; (i) the choice of the wave velocity model based on the
focused reflection matrix.

S1. PRIOR FILTERING OF THE REFLECTION MATRIX.

Figure Sla displays the response matrix K(¢) at time
lag t = 0.50 s. Surprisingly, this matrix is dominated
by a predominant signal along its diagonal. To under-
stand the origin of this effect, let us first recall that each
coefficient K (uoy, Uin, t) of the response matrix is com-
puted from the cross-correlation of the seismic noise wave-
field ¢ (u, 7) recorded by geophones located at u = u,y)
and u = uy,). Under appropriate wave-field conditions,
coda cross-correlation converges towards the Greens function
G(uou, Ui, t) between receiving stations as if one of them
(uj,) had become a source:

1" §
K (uoy, Uin, t) :T1Lm T/ A7) (i, 7)Y (Uow, t + 7)
oo 0
—t)

For the special case of u;; = ugy, the autocorrelation sig-
nal K (uy, ui, 7) gives rise to an intense peak at lag time
t = 0, that physically corresponds to the seismic noise power
spectral density measured at point uj,. Only the non zero
lag time contribution carries information on the reflectivity
at depth and is thus of interest for imaging purposes. How-
ever, this zero time peak gathers most of the energy content in
the retrieved signal, and can have a detrimental impact on our
analysis. In the present situation, the limited frequency band-
width makes this initial pulse duration far from being negligi-
ble (6t ~ 1/Af = 0.1 s). It also gives rise to strong side
lobes that pollute the relevant signal in the full time range
(see Fig. Sla). Additionally, the ambient seismic wave ex-
hibits a coherence length close to A/2. Given the high density
of the geophones network, neighbour stations thus belong to
the same coherence area. Therefore the corresponding cross-
correlation signals, that lie close to the diagonal of K, are also
dominated by this autocorrelation peak.

To get rid of this central pulse, a gaussian mask is applied
to each element of the raw reflection matrix

= G(uouh Win, t) - G(uouh UWin, (S1)

K' outs Win, T =K outs Win, T 1-
(Wouts Win, t) (utu,)x{ exp( 2

where ) is the wave-length of body waves at the central fre-
quency (here A = 100 m). This filter gradually penalizes the
impulse responses computed for interstation distances smaller
than /2, the coherence length of the body waves in the 10
Hz-20 Hz working frequency range.

Figure S1b displays the filtered version K’ of the measured
reflection matrix K shown in Figure Sla. The filtered wave-
field is no longer dominated by the seismic noise autocorre-

_ ||u0ut - uin“2

)
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lation. Note the strong gap in terms of order of magnitude
between the diagonal coefficients of K (Fig. S1a) and the ac-
tual wave-field patterns in K’ (Fig. S1b). This pre-filtering
operation is thus critical for an accurate interpretation of the
effective Earth’s response.

Each column of K’ corresponds to the wavefield that would
be recorded by the set of geophones if a pulse were emitted
from one geophone at u;,. Figure Slc displays the wavefield
generated from the central geophone position and interpolated
at the surface between all receiving geophones. This wave-
field clearly exhibits the contribution of direct Rayleigh waves
that emerges along the white dashed circle. Interestingly, we
observe fast travelling waves (see for instance the top left-
hand corner of the array) that correspond to the signature of
the body waves propagating below the Earth’s surface at larger
speed than the surface waves tracked by the geophones. They
overtake the surface waves and eventually get first to the edge
of the array, after reflection on some shallow structures or re-
fraction at overcritical angles.

S2. CHOICE OF THE WAVE VELOCITY MODEL.

In the accompanying paper, the reflected body waves are
used to build a high-resolution in-depth image of the SJFZ.
To that aim, the choice of the initial wave velocity model is
crucial. As mentioned in the accompanying paper, this choice
can be enlightened by the properties of the focused reflection
matrix R. In particular, a common mid-point intensity profile
can be extracted from the main antidiagonal of R that exhibits
the maximum confocal (diagonal) signal. Figure S2 shows
the corresponding intensity profile at several times of flight
(t = 1.05, 1.5 and 2.65 s, from top to bottom) and for different
seismic wave velocity (co = 1000, 1500 and 2000 m/s, from
left to right) in our propagation model. To make the com-
parison quantitative, each intensity profile is displayed as a
function of spatial coordinates normalized by dy, the expected
resolution for each velocity model at the corresponding depth.
In each panel, the focal spot consists of a main lobe centered
around the input focusing point and a random distribution of
secondary lobes. The dimension of the main lobe is roughly
twice the diffraction limit prediction Jg, depicted by a white
circle in each panel Fig. S2. This loss of resolution is a man-
ifestation of the aberrations induced by the gap between the
velocity model and the actual seismic wave velocity distribu-
tion in the SJFZ underground. However, the dimension of
this main lobe is not significantly affected by our choice of ¢.
Hence this observable cannot be used for optimizing our wave
propagation model. On the contrary, the amplitude and spatial
extension of the secondary lobes strongly depend on the wave
velocity model. The value ¢y = 1500 m/s is the seismic wave
velocity that clearly minimizes the level of these secondary
lobes in Fig. S2.

The choice is validated a posteriori by the quality of the
confocal image obtained under our matrix approach. Figure
S3 shows a slice of this image for different wave velocity mod-
els (cg = 1000, 1500 and 2000 m/s). The slice orientation is
the same as the b-scans displayed in the accompanying pa-
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line in panel b. The white dashed circle accounts for the expected position of the direct surface wave-front for a Rayleigh wave speed of 350
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FIG. S2. Imaging PSF deduced from the antidiagonal of R whose common mid-point exhibits the maximum confocal signal. This imaaging
PSF is shown at different times of flight (¢t = 1.05, 1.5 and 2.65 s, from top to bottom) for different wave velocity models: co = 1000 m/s (a),
co = 1500 m/s (b), co = 2000 m/s (c). Each panel displays the modulus of the reflected wave-field normalized by its maximum. The white
circle accounts for the theoretical resolution cell (disk of radius do) imposed by the geophone array aperture.

per. While the raw image J is completely blurred (Fig. 2¢ of
the accompanying paper), a gain in resolution is provided by
the matrix aberration correction process. However, the image
quality strongly depends on the choice of the wave velocity
model. This sensitivity can be explained by the fact that ax-
ial aberrations are not tackled by our matrix approach so far.
Hence, an optimized wave velocity model allows to properly

capture all the echoes back-scattered at the focal depth z in
R(z). The comparison between Fig.S3a and b confirms that
a model with cg = 1000 m/s clearly underestimates the actual
body wave velocity in the depth range considered in this work.
While Fig. S3b (¢p = 1500 m/s) clearly highlights strata lay-
ers at different depths on both sides of the fault, Fig. S3a
(co = 1000 m/s) shows a blurred image of the subsoil. For



co = 2000 m/s (Fig.S3c), the strata structure of the SJFZ un-
derground is partially revealed but with a worse resolution and
lower contrast than for ¢y = 1500 m/s (Fig.S3b) until an echo
time =4 s. Nevertheless, note that, beyond that time, the two
last interfaces seem to be better resolved for ¢y = 2000 m/s.
This indicates that, not surprisingly, the seismic wave veloc-
ity increases with depth and that ¢c; = 1500 m/s is probably
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not the optimal wave velocity for ¢ > 4 s. A mapping of the
wave velocity could be indeed possible through the focused
reflection matrix approach as already demonstrated in ultra-
sound imaging [50]. However, the extension of this method
to seismology is beyond the scope of this paper. The matrix
mapping of the bulk seismic wave velocity will be tackled in
future works.
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FIG. S3. Vertical slice of the 3D matrix images computed under the matrix approach for different seismic wave velocity models: co = 1000
m/s (a), co = 1500 m/s (b), co = 2000 m/s (c). The slice orientation is chosen to be normal to the fault plane. The color scale for each image
is in dB.
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