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SUMMARY7

Continuous noise-based monitoring of seismic velocity changes provides insights into8

volcanic unrest, earthquake mechanisms and fluid injection in the sub-surface. The stan-9

dard monitoring approach relies on measuring travel time changes of late coda arrivals10

between daily and reference noise-cross-correlations, usually chosen as stacks of daily11

cross-correlations. The main assumption of this method is that the shape of the noise12

correlations does not change over time or, in other terms, that the ambient-noise sources13

are stationary through time. These conditions are not fulfilled when a strong episodic14
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source of noise, such as volcanic tremor, for example, perturbs the reconstructed Green’s15

function. In this paper we propose a general formulation for retrieving continuous time16

series of noise-based seismic velocity changes without the requirement of any arbitrary17

reference cross-correlation function. We perform synthetic tests in order to establish a18

general framework for future applications of this technique. In particular, we study the re-19

liability of velocity changes measurements versus the stability of noise cross-correlation20

functions. We apply this approach to a complex dataset of noise cross-correlations at21

Klyuchevskoy volcanic group (Kamchatka), hampered by loss of data and the presence22

of highly non-stationary seismic tremor.23

Key words: Seismic noise; Time series analysis; Volcano monitoring; Seismic interfer-24

ometry; Coda waves.25

1 INTRODUCTION26

Noise-based monitoring techniques have been used extensively in the past decade for different applica-27

tions. The observation of continuous seismic velocity changes proved to be useful for detecting crustal28

seasonal changes (e.g., Sens-Schönfelder & Wegler 2006; Meier et al. 2010; Ugalde et al. 2014), co-29

and post-seismic evolution of stress in fault areas (e.g., Brenguier et al. 2008a; Hobiger et al. 2012)30

and, more recently, for stuying the effects of fluid injection (e.g., Zhou et al. 2010; Ugalde et al. 2013)31

and aseismic deformation transients (Hillers et al. 2015).32

Estimation of temporal velocity changes in volcano interiors using seismic noise cross-correlation33

has been shown to be an efficient method for early detection of volcanic unrest prior to eruptions at34

Piton de la Fournaise Volcano, La Réunion (e.g., Brenguier et al. 2008b; Duputel et al. 2009). Although35

precise eruption and eruption intensity forecasting is still a challenge, it has been demonstrated that36

this method provides meaningful constraints on the location of oncoming eruptions (Obermann et al.37

2013).38

The most important step in noise-based monitoring is the reconstruction of Green’s function (GF)39

between two receivers from the correlation of ambient seismic noise (e.g., Shapiro & Campillo 2004;40

Shapiro et al. 2005; Larose et al. 2006; Wapenaar et al. 2010; Campillo et al. 2011). If the noise sources41

are evenly distributed over the Earth’s surface, leading to an isotropic and equipartioned wavefield at42

the two station locations, the cross-correlation function (CCF) between these two stations converges43

towards the GF (e.g., Roux et al. 2005; Wapenaar & Fokkema 2006). This is an ideal situation but, in44
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practice, noise sources are distributed irregularly leading to a partial reconstruction of the GF (Shapiro45

et al. 2006).46

For monitoring purposes, it is possible to retrieve temporal seismic velocity changes over a set47

of repetitive in time noise cross-correlations, even with anisotropic distributions of noise sources, as48

long as this distribution does not change too much over time (Hadziioannou et al. 2009). Moreover,49

measuring travel time changes in the coda part of the noise cross-correlations makes velocity change50

measurements less sensitive to noise source temporal changes (Sens-Schönfelder & Wegler 2006;51

Wegler & Sens-Schönfelder 2007; Colombi et al. 2014). The standard monitoring approach relies52

on measuring travel time changes of late coda arrivals between a daily and a reference noise-cross-53

correlation, usually chosen as a stack of all daily cross-correlations. We assume that the measured time54

delay from the coda waveform of noise cross-correlations (dτ ) is caused by a spatially homogeneous55

relative velocity change, dν/ν. Under this assumption, the relative delay time (dτ/τ ) is constant and56

independent of the lapse time at which it is measured: dτ/τ = −dν/ν.57

In different environments, and especially on volcanoes, the noise correlations can be altered by58

strong episodic sources of noise as volcanic tremor, for example, that overlaps in frequency with more59

stable microseismic noise. There is thus a problem with the definition of the reference function if the60

sources are non-stationary (Sens-Schönfelder et al. 2014). Very strong non-stationary noise has been61

described by Ballmer et al. (2013) and Droznin et al. (2015) in case of emission of low frequency62

volcanic tremor, a typical feature of the unrest of many volcanoes and an important seismic source for63

monitoring plumbing systems (e.g., Chouet 1996).64

In this article, we describe a new generalized approach for retrieving continuous time series of65

noise-based seismic velocity changes without the definition of an arbitrary reference CCF. Brenguier66

et al. (2014) proposed the method used in this paper (Section 2). We detail the method carrying out67

synthetic tests that allow us to evaluate the reliability of measured velocity changes in regard to the68

level of stability of noise cross-correlation functions and the influence of temporary strong changes69

(Section 3). Finally, we apply our procedure to a real dataset in Section 4. We choose the Klyuchevskoy70

volcanic group (Kamchatka) as a case study where the recorded wavefield is dominated by strongly71

localized volcanic tremor sources and is hampered by lose of data and the presence of highly non-72

stationary seismic noise. This approach will be useful for improving noise-based seismic monitoring73

at all scales in cases where noise sources are not stable in time.74

2 METHOD75

The standard approach for measuring continuous time series of noise-based seismic velocity changes76

relies on measuring travel time differences between a set of noise cross-correlations at different dates77
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and a so-called reference cross-correlation. The reference CCF is usually defined as the stack of all78

cross-correlations for a given station pair at different days (Brenguier et al. 2008b). Temporal changes79

of seismic velocities are then measured using a Moving Window Cross Spectral (MWCS) procedure80

between the daily and reference cross-correlation functions by measuring travel time changes along81

the coda part of the cross-correlation functions (Clarke et al. 2011).82

Here, we propose a general formulation for retrieving continuous time series of velocity changes83

without the requirement of a reference stacked cross-correlation function. The novel procedure relies84

on measuring seismic velocity changes between all possible pairs of daily cross-correlation functions.85

An inversion step is further required to retrieve a continuous time series of daily seismic velocity86

changes (Brenguier et al. 2014).87

By considering (ccfi) as a cross-correlation function that corresponds to day i, we can thus esti-88

mate a seismic velocity (νij) change between day i and day j by applying the MWCS analysis to ccfi89

and ccfj :90

δνij =
νj − νi
νi

= MWCS(ccfi, ccfj) (1)

δνij is referred as a doublet measurement. This concept was used, initially, in pairs of microearthquakes91

(Poupinet et al. 1984). In a systematic manner, we can then estimate a velocity change between all of92

the pairs of daily cross-correlation functions for one given station pair. This constitutes the data vector93

of Equation (2):94

d =



δν12

δν13

δν14
...

δνn−1n


(2)

where d is of length n·(n−1)
2 , with n the number of daily cross-correlation functions.95

Our final goal is to reconstruct the time series of daily velocity changes. We can define these96

velocity changes as δνi =
νi−νref
νref

, with νref the reference velocity averaged along the entire studied97

time period. The series of velocity changes constitutes our model vector, m, of Equation (3):98
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m =



δν1

δν2

δν3
...

δνn


(3)

where m is of length n, the number of daily cross-correlation functions.99

The relation between d and m is given by:100

δνj − δνi =
νj − νi
νref

=
νj − νi
νi

· νi
νref

= δνij ·
νi
νref

= δνij · (1 + δνi) (4)

Under the assumption that δνi and δνij are small compared to 1 (< 0.1 %), we can write at the101

first order the direct linear relationship between d and m as δνij = δνj − δνi or d = Gm, with G102

being a sparse matrix of dimension
[
n·(n−1)

2 , n
]
:103

G =



−1 1 0 . . . . . . 0

−1 0 1 0 . . .
...

−1 0 0 1 0 . . .
...

. . .
...

0 . . . . . . 0 −1 1


(5)

The assumption made above (δνi and δνij < 0.1 %) is necessary to apply our method. Temporal104

velocity changes (δνi) are sensitive to transient stress changes (e.g., Niu et al. 2008) and the magnitude105

order of the seismic velocity changes depends on the level of applied stress in the medium. Some106

examples of typical magnitude orders of δνi estimations are ∼ −0.1% in the Piton de la Fournaise107

volcano (Brenguier et al. 2008b; Obermann et al. 2013),∼ −0.12% due to the Tohoku-Oki earthquake108

(Brenguier et al. 2014),∼ −0.15% due to the Parkfield earthquake (Schaff 2012),∼ −0.5% due to the109

Nicoya Peninsula earthquake (Chaves & Schwartz 2016) or ∼ −0.8% in Ruapehu volcano (Mordret110

et al. 2010).111

The final time series of velocity changes (m) is obtained by further inversion, using a classical112

Bayesian linear least square formulation (Tarantola 2005; details in Brenguier et al. 2014):113

m =
(
GtC−1

d G+ αC−1
m
)−1

GtC−1
d d (6)

where Cd is a covariance matrix of dimension
[
n·(n−1)

2 , n·(n−1)
2

]
that describes the Gaussian114
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uncertainties of the data vector d. These values correspond to the estimated uncertainties of each δνij115

estimate, using the MWCS analysis.116

Cm is an a priori covariance matrix of dimension [n, n] for model vector m. The parameter α is117

a weighting coefficient. It is determined in a way that matrix
(
GtC−1

d G
)

and
(
αC−1

m
)

have approx-118

imately the same weight. Since α behaves as the amplitude of the inverse of the distribution Cm, the119

larger the α, the less the model can change from one point to another point and, therefore, the lower120

the amplitude and smoother the final time series will be.121

The values of Cm describe for day i how δνi is correlated to δνj at day j:122

Cmij = e
−|i−j|

2β (7)

where β is the characteristic correlation length between the model parameters δν. A day, i, is123

more correlated with the β days before and after than with any others. For this reason, large values124

of β correspond to velocity change curves (long-term variations) that avoid short-term fluctuations,125

whereas small β values represent the opposite situation (short-term variations).126

In Fig. 1 we compare the standard and the general approach. Even though the computing cost127

of the general formulation is higher than that of the standard approach, this formulation manifests128

several advantages. We can deal with irregular sampling in time of noise correlations; therefore, this129

technique is more efficient when the dataset is complex. Also, long-term or short-term trends are130

obtained directly from the inversion process rather than fitting the velocity change time series with131

polynomial functions, as in the standard approach (Brenguier et al. 2008b).132

In this work we consider station pairs independently to obtain single time series of velocity fluc-133

tuations but we can also invert several raypaths at the same time to achieve a more homogeneous and134

general trend of seismic velocity variations rather than averaging over different time series from dif-135

ferent station pairs. By concatenating doublet measurements from different station pairs for a global136

inversion, the robustness of retrieved velocity changes improves by minimizing the effect of missing137

data.138

In the following, we describe synthetic tests to explicit the advantages and limits of that novel139

approach.140

3 SYNTHETIC TESTS141

In this section we analyze how the stability of noise-correlations influences the reconstruction of ve-142

locity change time series for different cases. Specifically, the causes that we want to study are:143
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Daily noise records (n) 
from 2 stations

Daily noise correlations (n) 
between the 2 stations

Standard approach Generalized formulation

Moving-window 
average of 

noise correlations

Doublet measurements
between all daily 

correlations (n(n-1)/2)

Doublet measurements
between reference and 
daily correlations (n) 

Inversion
with different

smoothing parameters

Reference-based 
velocity change curve

 (n)

Velocity change curve
 (n)

Figure 1. Workflow diagram showing the main steps of the standard approach and the general one. n is the

number of days.

• Seasonal-type trends which produce long-term periodic-type velocity changes, i. e., long-term144

variations.145

• Rapid transient changes similar to those produced as a result of an earthquake or a volcanic146

eruption. The effect of those changes in the noise correlations is the retrieval of a sudden velocity drop147

(short-term variations), corresponding to a permanent or almost permanent velocity change.148

• Transient strong perturbations of the noise correlations due to a local source emission, such as the149

perturbation induced by episodic volcanic tremor (Droznin et al. 2015). The consequence is a sudden150

velocity drop and a sudden recovery, producing short and medium-term velocity fluctuations.151

We use a synthetic test approach by artificially stretching noise cross-correlations in order to152

simulate synthetic velocity changes. We further degrade the quality of the dataset of noise cross-153

correlations by adding different levels of random noise in order to simulate unstable to stable noise154

cross-correlations. We then apply our novel method for reconstructing velocity changes and finally155
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compare the ’expected’ and the ’reconstructed’ time series of velocity changes. We also study the156

improvement of averaging the inverted times series of velocity changes for different station pairs.157

The Pearson correlation coefficient (coherence) between two synthetic noise cross-correlations is158

used as a proxy for the quality of the associated doublet measurement and used to built the Cd matrix159

of data weighting. The average of all Pearson correlation coefficients between all pairs of noise cross-160

correlations (CCFs) is referred as the coherence level. This value describes the level of added random161

noise by varying from 0 (totally incoherent noise CCFs) to 1 (no random noise added).162

3.1 Long-term periodic-type fluctuation test163

In this section we refer to velocity change measurements at a crustal scale using micro-seismic noise164

correlations in the frequency range from 0.1 to 1 Hz. However, this approach can be extended to other165

frequency domains and sources of seismic noise.166

By stretching a single arbitrary CCF with different daily velocity changes (referred as expected167

velocity changes henceforth), we simulate daily synthetic CCFs. Fig. 2, right panel shows the expected168

velocity changes that we apply and that simulate long-term periodic-type velocity changes. The other169

panels of Fig. 2 show examples of synthetic CCFs with different levels of noise. The different panels of170

synthetic CCFs are associated with a coherence level (referred as coh in the figures), that is a measure171

of the level of added random noise. By adding random noise we are ’hiding’ the original time series172

of velocity changes that we want to reconstruct after inversion, i. e., the ’expected’ velocity changes.173

We obtain the data vector of velocity changes, d, by applying a MWCS analysis between all possi-174

ble pairs of CCFs. For n daily cross-correlation functions, we estimate n(n−1)
2 doublet measurements.175

We measure doublets in windows of 10 s centered between the direct surface-wave arrival time and176

a lapse time of 70 s in the coda. Moving windows are overlapped by 80 %. We finally perform the177

inversion for retrieving daily velocity changes (vector m). As we are studying long-term variations,178

we use a large β values to retrieve dν/ν series, β = 1000, while α decreases with the coherence level,179

from α = 5000 to α = 100.180

In Fig. 3 we compare the reconstructed time series of velocity changes obtained from the synthetic181

CCFs of Fig. 2 with the expected one. The more noise we add, the less coherence level we have and182

the more the reconstructed time series of velocity changes differ from the expected velocity changes.183

We test three different levels of expected velocity changes (Fig. 4a) to achieve the final time series184

of velocity changes. The peak amplitude of the expected velocity change curve 1 is 0.001 %, while185

expected velocity change curves 2 and 3 present peak amplitudes of 0.005 % and 0.01 %, respectively.186

For Figs. 2 and 3 we use the expected velocity curve 3.187

Fig. 4b shows the correlation coefficients between the reconstructed and the expected time series188
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as a function of the coherence levels, for the three different expected velocity changes. By considering189

greater velocity change amplitudes (expected velocity change curve 3), we achieve higher similarity190

between the reconstructed time series of velocity changes and the expected ones, for the same level of191

noise.192

To simulate the averaging of inverted time series of velocity changes over different station pairs,193

we build different station pairs with synthetic stretched cross-correlation data. We apply the same194

velocity change stretching procedure but with different random noise to simulate different synthetic195

station pairs. We use the expected velocity change curve 3 and a fixed high level of noise (coh = 0.06)196

to simulate up to 50 different synthetic station pairs. After obtaining the 50 reconstructed velocity197

change curves, we average them to study the improvement. Nsta is the number of averaged curves of198

reconstructed velocity changes.199

Fig. 5a shows higher correlation between time series (Fig. 5b) with higher number of averaged200

curves, Nsta. With this low coherence level we can retrieve a correlation coefficient between the in-201

verted and expected velocity change curves of more than 0.9 for Nsta = 50 and for Nsta = 20 we202

already reach a correlation coefficient of 0.7. Fig. 5b shows the averaged curve for Nsta = 50 and203

the expected velocity change curve 3. In general, it is thus recommended to average seismic velocity204

changes over at least 20 station pairs when the noise cross-correlations are so unstable. Although Fig.205

5a shows a correlation coefficient of 0.22 for Nsta = 1, in Fig. 3 we show a greater correlation coeffi-206

cient, 0.41, for the same coherence level, coh = 0.06, because we picked one of the best examples to207

show.208

With this test we have studied how our method resolves the effects of a seasonal-type trend. To209

recover long-term periodic-type fluctuations, we choose a high β value, β = 1000, while depending210

on the coh of the CCFs, we use different values for α, choosing lower values for lower coh, to fit better211

the expected velocity change curve. With the use of three different expected velocity change curves,212

we also have seen that the reconstructed time series of velocity changes is closer to the expected one213

when the velocity change amplitudes to retrieve are greater. On the other hand, it is also important to214

note that, although there is a great improvement when averaging over different station pairs (Fig. 5a,215

from a correlation of 0.22 for Nsta = 1 to 0.87 for Nsta = 50, increasing then the correlation by a216

factor of 3.9), the reconstructed velocity changes will remain underestimated (there is no convergence217

to 1, Fig. 5a, and the amplitude of the reconstructed time series of velocity changes for Nsta = 50218

is one magnitude order smaller than the expected velocity changes, Fig. 5b), probably due to an edge219

effect of the time series. In case of CCFs with low coh, it is recommended to average seismic velocity220

changes over several station pairs, at least over 20 in case of very unstable CCFs.221



10 C. Gómez-Garcı́a et al.

Figure 2. Examples of synthetic stretched CCFs with different levels of random noise. The coherence level

(coh) is on top of each figure. On the right, expected velocity changes applied to stretch the CCFs (red curve).
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3.2 Velocity drop test222

To test the reconstruction of an abrupt, rapid change of velocity, similar to the effect of an earthquake223

(e.g., Brenguier et al. 2008a), we add a Heaviside step function with a velocity change of 0.05 %, to224

the previous expected velocity change curve 3 (Fig. 6, red curve), referred as the drop curve in this225

section226

As we are interested in recovering the drop, we use another coefficient to study the similarity227

between the reconstructed time series and the drop curve instead of using the Pearson correlation228

coefficient. To estimate the quality of the reconstructed drop, we measure the difference between the229

mean velocity changes after and before the drop:230

diff =

(
dν
ν

)
after drop

−
(

dν
ν

)
before drop

(8)

We compute diff for both the reconstructed velocity change curve and the expected drop curve.231

We then estimate the quality of the reconstructed drop by the ratio:232

Qdrop = |
diff reconstructed velocity change curve

diff drop curve

| (9)

Qdrop is 1 when perfectly reconstructed, and< 1 otherwise. In this test, we invert for time series of233

velocity changes by using a small β to obtain short-term variations, β = 5 and we avoid a smoothing234

factor (α ≈ 0).235

Fig. 6 shows the retrieved drops for several examples of different coherence levels. As the level of236

noise increases (coh decreases), the drop in the reconstructed time series of velocity changes becomes237

smaller until it almost disappears (when the coherence level is nearly zero).238

Fig. 7 shows the convergence of Qdrop for different coherence values of the synthetic cross-239

correlations.240

We also study the improvement of averaging the reconstructed velocity change curves over differ-241

ent station pairs. For a fixed coherence level of 0.37, we study the convergence of the retrieved drop by242

increasingNsta (Fig. 8a). Interestingly, by averaging more reconstructed velocity changes, we smooth243

the sharp short-term fluctuations while the recovered drop remains the same. We also estimate the244

increasing Signal to Noise Ratio (SNR) associated with the increasing number of averaged synthetic245

functions, Nsta, as:246

SNR =
level of recovered drop

rms(averaged dν
ν curve)

(10)
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with rms(averaged dν
ν curve) being the root mean square of velocity change mean curve for each247

Nsta (Fig. 8a).248

A way to increase the coherence between CCFs and, therefore, to improve the temporal resolution249

of the velocity change measurements, is the use of denoising methods such as Curvelet filtering (Stehly250

et al. 2015) or Wiener filtering. We applied a FIR Wiener filter to our CCFs without obtaining a great251

improvement in the reconstructed velocity changes, probably because this technique affect only to the252

amplitude of the frequency spectrum whereas the method presented in this article only uses the phase253

of the signal.254

For a coherence level of 0.37 and Nsta = 50, we get a Qdrop of 0.6 and a SNR of 38 (Figs 8a255

and 8b). Again, it is interesting to note that, for highly unstable correlations (e.g., coh=0.37), averag-256

ing over different station pairs will not improve the value of the level of the velocity drop that will257

remain underestimated. Averaging over different receiver pairs will however improve the SNR of the258

recovered velocity changes and thus allow a better estimate of the timing of the velocity drop.259

To summarize, the reason for this test was to check the effect of a sudden change in the structure,260

similar to the effect of a volcanic eruption or an earthquake. Simulating a transient change, we can261

infer short-term velocity fluctuations. We used β = 5, avoiding the smoothing (α ≈ 0), in order to262

study just the effect of the velocity drop with our method. The lower the coh of the CCFs considered,263

the smaller the velocity drop in the reconstructed time series of velocity changes. We have seen that264

this velocity drop remains underestimated, even averaging over several station pairs, although the265

improvement associated to the SNR of the reconstructed velocity changes allows us to set better when266

the velocity drop happens.267
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Figure 6. Reconstructed velocity change time series (blue curves) vs. the drop curve (red curve) for different

coherence levels. Qdrop on top of each figure.
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Figure 7. Convergence curve between the coherence levels and the percentage of the recovered drop.
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Figure 8. For a coherence level = 0.37: (a) Percentage of recovered drop (associated standard deviations in blue

bars) and signal-to-noise ratio (SNR) (black curve) as a function of the number of synthetic averaged functions

(Nsta). (b) Reconstructed velocity change time series for Nsta = 50 and drop curve.

3.3 Transient noise perturbation test268

In this test we study the effect of an episodic strong change in the noise-correlation shape induced by a269

strong noise source change, e.g., a passing storm or a episodic volcanic tremor. This last situation has270

been described by Ballmer et al. (2013) and Droznin et al. (2015) in case of noise-correlations affected271

by the occurrence of low-frequency volcanic tremor. We herewith test the ability of our method to272

recover robust velocity changes in this situation.273

To compute the synthetic stretched CCFs, we consider two real normalized CCFs, one during a274

non-tremor period (C1) and the other during a tremor period (C2). Basically we consider C1 as the275

true GF and C2 as a pure tremor-related bias. With both, we make two new averaged correlations:276

C3 = 0.8×C1+0.2×C2 and C4 = 0.8×C2+0.2×C1, corresponding to a calm period (C3) and to277

a tremor period (C4), respectively. We concatenate N1 correlations C3, N2 correlations C4 and again278

N1 correlations C3, N1 and N2 being random numbers of daily CCFs. Then, we stretch the CCFs and279

add different levels of random noise to these correlations in the same way than in previous tests.280

Fig. 9a is an example of synthetic stretched CCFs with a certain level of random noise (coh =281

0.54). We see clearly the differences in the shape of CCFs corresponding to a calm period, C3 (from282

n = 1 to n = 30 and from n = 90 to n = 120 in Fig. 9a), and to a tremor period, C4 (from n = 30 to283

n = 90 in Fig. 9a). Fig. 9b is the associated correlation coefficient matrix of Fig. 9a which represents284

all Pearson correlation coefficients between all pairs CCFs. We observe the lower correlation between285

CCFs of the tremor period comparing with the calm periods.286
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Fig. 10 shows some examples of the resulting reconstructed time series of velocity changes for287

the maximum coherence level of 0.85 and for some lower ones, where the coherence level decreases288

due to the increased level of random noise in the synthetic CCFs. We also plot the expected velocity289

curve for comparison. In the cases of a high coherence level, we observe a double velocity drop in the290

recovered synthetic velocity change curves (between days 30 and 90) due to the three different parts291

of the synthetic functions, i.e., the first N1 days (calm period), the next N2 days (tremor period) and292

the last N1 days (calm period again) (Fig. 9). We explain this double velocity drop by looking at the293

correlation coefficient matrix (Fig. 9b). Since the correlation coefficients of the noise CCFs between294

the calm and the tremor period are very low (Fig. 9b), our method treats these data segments separately295

and thus generates this baseline difference between the two periods. Therefore, these artificial velocity296

drops are artefacts from our method. The double velocity drop observed in the reconstructed time297

series is hidden when the level of noise increases.298

Even more interesting, when we increase the number of inverted synthetic time series of velocity299

changes for a low coherence value to study the improvement associated with averaging over different300

station pairs (Fig. 11a), we see clearly the improvement in the similarity between the inverted curves301

and the expected one (Fig. 11b). This is because only C1, the medium, is coherent and the noise source302

perturbation is not seen the same way by all receiver pairs. This means that for some station pairs, the303

double velocity drop induced by the tremor has, sometime, opposite sign which, simply, cancels out304

while summing over different receiver pairs.305

We have tested in this subsection the effect of a transient and sudden local source emission, pro-306

ducing short to medium-term fluctuations. Since we are interested on evaluating the sudden velocity307

drop and sudden recovery in the reconstructed time series of velocity variations, we consider β = 5308

and α ≈ 0, as in the previous test. We have observed artificial velocity drops produced by our method,309

visible only when the coh of the CCFs is high and hidden with low coh.310

In conclusion, there are two approaches in the situation of strong noise perturbations. In case the311

coherence level between the noise CCFs is high, it might worth correcting for the artificial baseline312

difference after the inversion to retrieve proper velocity changes. When the coherence is low, the only313

way to retrieve a proper velocity change curve is to average over sufficient station pairs (50 in that314

example).315
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Synthetic stretched correlations (coh = 0.54)
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Figure 9. (a) Example of a normalized synthetic stretched CCFs of the tremor test with a random level of

noise (shown for a coherence level between CCFs of 0.54). (b) Correlation coefficient matrix associated to the

doublets.
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Figure 10. Synthetic velocity change time series (blue curves) vs. the expected velocity changes (red curve) for

different coherence levels.
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velocity change time series for Nsta = 50 compared to the expected velocity changes (red curve).
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4 APPLICATION TO REAL DATA316

With synthetic tests, we have established a general framework to identify and interpret long-term317

periodic-type velocity changes from seasonal-type trends, rapid velocity drops, due to transient changes,318

and sudden velocity drop and recovery as an effect of transient and sudden local source emissions. We319

have analyzed the effect of the regularization parameters and the averaging over station pairs for the320

three different cases. Now, we apply the method to a complex dataset of noise cross-correlations at321

Klyuchevskoy volcanic group (Kamchatka), hampered by lose of data and the presence of highly322

non-stationary seismic tremor.323

4.1 Klyuchevskoy volcanic group324

The Klyuchevskoy volcanic group (KVG), located in Kamchatka, is one of the most active clusters325

of subduction-zone volcanoes in the world, where the annual rate of explosive eruptions is three to326

five (Schneider et al. 2000). The KVG has an averaged extension of 70 km and 13 stratovolcanoes. It327

includes active volcanoes such as Klyuchevskoy, Krestovsky, Ushkovsky, Bezymianny and Tolbachik.328

The Klyuchevskoy Volcano, the most outstanding volcano with 4750 m high, is associated with the329

emission of basaltic and basaltic-andesitic lavas and it has a mean eruptive rate of 1 m3 s-1 over the330

last 10 kyr (Fedotov et al. 1987). Two other active volcanoes, Shiveluch and Kizimen, are located only331

60 kilometers north and south, respectively, of KVG.This cluster of volcanoes is located off the edge332

of a tectonic junction: the Pacific Plate is subducting down the Aleutian Trench and also moving under333

the Okhotsk Plate. The high volcanic activity is also a consequence of the Hawaii–Emperor Seamount334

chain that terminates in the Kuril-Kamchatka Trench. Geodynamic models that have been proposed335

to explain the exceptional activity of the KVG include fluid being released from the thick, highly336

hydrated Hawaii–Emperor Seamount crust (Dorendorf et al. 2000), mantle flow around the corner of337

the Pacific plate (Yogodzinski et al. 2001), and recent detachment of a portion of the subducting slab338

(Levin et al. 2002; Levin et al. 2005).339

The volcanic activity of the KVG leads to the generation of strong volcanic tremors (Gordeev et340

al. 1990) with sources located very close to the surface and at depth near the crust mantle boundary341

(Shapiro et al. 2017a) which spoil the ambient noise cross-correlations. We use the information of342

Droznin et al. (2015) and Soubestre et al. (2017) about detection of these signals and about location of343

their sources in Klyuchevskoy volcanic group to recover seismic velocity fluctuations in this region,344

since we use the same dataset of noise cross-correlations as well.345

The particular tectonic settings surrounding KVG and its strong eruptions with high seismic ac-346

tivity (e.g. Senyukov et al. 2009; Zharinov & Demyanchuk 2009; Ozerov et al. 2013) enable many347
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seismic tomographic surveys (e.g. Slavina et al. 2012; Koulakov et al. 2013; Lees et al. 2013) and348

receiver function analysis to study the internal structure of the KVG (Nikulin et al. 2010).349

Tomographic studies on the KVG reveal a extremely high Vp/Vs ratio (up to 2.2), below 25 km350

deep. This feature can acts as a channel which brings deep mantle materials from the mantle to the351

bottom of the crust and is responsible for all volcanic activity in the KVG (Koulakov et al. 2013).352

Our study period goes from January 2009 to July 2013 in which both the Klyuchevskoy and the353

Tolbachik volcanoes erupted. From the Klyuchevskoy volcano, two eruptions took place. The first354

one started in June 2008 and the volcanic activity ceased at the end of January 2009. The second355

Klyuchevskoy eruption goes from July 2009 to December 7, 2010. Spatterings of hot magma started356

on August 2, 2009. The summit eruption activity were characterized by weak ash emissions (less than357

300 m of height) although in 2010 the ash emissions were stronger (9 km of height). The eruption358

decreased at the end of 2010. All the recorded Klyochevskoy summit eruptions are characterized by359

a gradual growth of activity (Senyukov 2013). A detailed analysis of records of volcanic tremors has360

been used by Soubestre et al. (2017) to identify two different stages of the 2009-2010 Klyuchevskoy361

eruption with the stronger second stage starting approximately in June 2010.362

The last eruption is the fissure eruption of the Tolbachik volcano (2012-2013). The 2012-13 Tol-363

bachik eruption starts on November 27, 2012 corresponding to an eruptive tremor (Fig. 16) due to364

a first magma migration (Caudron et al. 2015). The Tolbachik regional zone of cinder cones is 900365

km2 in size and 70 km long. Before last eruption (2012-2013), historical eruptions in Tolbachik zone366

occurred in 1740, 1941 and 1975-1976 (Gordeev et al. 2013).367

The three eruptions are characterized by emissions of seismic tremors (Gordeev et al. 1990;368

Droznin et al. 2015; Shapiro et al. 2017a).369

4.2 Data370

We use continuous records from a total of 18 three-component seismic stations (Fig. 12) of the seis-371

mic network deployed by the Kamchatka Branch of the Geophysical Service (KBGS) of the Russian372

Academy of Sciences (Chebrov et al. 2013). Every component of the stations presents a CM-3 short373

period sensor. We analyze data recorded continuously between 1 January 2009 and 7 July 2013.374

Records are digitalized at 128 samples per seconds and downsampled to 8 samples per second.375

Cross-correlations are calculated in 24-h long segments. We pre-process the continuous records fol-376

lowing the method described by Bensen et al. (2007). We choose a spectral band between 0.08 – 0.7377

Hz because, after 0.7 Hz, the correlations are too much affected by volcanic tremor correlation sig-378

nals. After whitening, 1-bit normalization suppresses high-amplitude data, such as earthquake signals,379

and emphasizes low-amplitude data, such as ambient seismic vibrations. Volcanic tremors still act as380
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potential biasing signals perturbing the reconstructed GF, after reducing persistent signals from local-381

ized sources with pre-processing. Then, we compute daily cross-correlation functions for all possible382

station pairs. We work with coda waves of daily CCFs between the vertical-component records of the383

station pairs (Rivet et al. 2014).384

For passive monitoring techniques, both the continuity of the records and the good quality of data385

are important. For this reason, we do first a quality check of the daily cross-correlation functions for386

each possible seismic station pair, 209 pairs in total. We visually inspect all CCFs of each station387

pair to rank them in different groups according to the quality of the recordings. Taking into account388

the continuity and regularity over time of the CCFs where coda waves are clearly distinguished, we389

consider three quality groups, from best to worst: A, B and C. We can apply our method to the CCFs390

of the station pairs ranked in groups A and B but not to those of group C.391

We work with station pairs ranked in group A, there are 23 in total. Fig. 13 shows an example of392

daily CCFs computed for a station pair ranked in group A with its associated correlation coefficient393

matrix. The periods with highest correlation coefficients correspond to the first two-thirds of 2010394

and to 2013. While most of the station pairs of the group A are in the vicinity of Klyuchevskoy and395

Tolbachik volcanoes, three station pairs (from stations BDR, SMK and SRK) are farther away from the396

rest, in the vicinity of the Shiveluch volcano (Fig. 12). Because of this, in our study we separate these397

three stations near Shiveluch from the others. By the MWCS analysis, we compute all the doublets for398

the 23 station pairs.399

Figs 14 and 15 show correlation coefficient matrices for each station pair ranked with A. We can400

see different patterns in correlation coefficients if we compare the main group of station pairs (Fig. 14)401

with the northern group (Fig. 15). All pairs show a strong correlation in the second half of 2010 and402

in 2013, matching with the ongoing Klychevskoy and Tolbachik eruptions (Droznin et al. (2015), fig.403

5), respectively. Highest correlation values are observed between the stations of the main group (Fig.404

14).405

Daily averaged levels of tremors are shown in Fig. 16, determined by the KBGS operators. The406

strongest tremor activities of both volcanoes also match with the highest correlation coefficients be-407

tween CCF (Fig. 14).408

Before the inversion, we reject the doublets where the associated correlation coefficients (Figs 14409

and 15) are smaller than 0.3. Thereby, we ensure the recovered temporal velocity variation curves tend410

towards zero for days with bad quality recordings.411
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Figure 12. Topographic map of the Klyuchevskoy group of volcanoes in Kamchatka peninsula with positions

of seismic stations. Red starts are the eruptive centres of the 2009-2010 Klyuchevskoy and of the 2012-2013

Tolbachik volcanoes.
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(a) (b)

Figure 13. (a) Daily CCF computed from station pair BZM-KIR. (b) Correlation coeffient matrix associated to

the doublets of the station pair BZM-KIR.

Figure 14. Correlation coefficient matrices between all daily CCF from January 2009 to August 2013 associated

to 20 station pairs of group A located in the vicinity of Klyuchevskoy and Tolbachik vocanoes.
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Figure 15. Correlation coefficient matrices between all daily CCF from January 2009 to August 2013 associated

to the station pairs of group A located in the vicinity of Shiveluch.
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Figure 16. Normalized tremor amplitudes for Klychevskoy (green) and Tolbachik (blue) volcanoes.
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4.3 Results412

We show averaged velocity change time series reconstructed from CCFs of the quality group A. We413

average independently the stations near Shiveluch (3 station pairs) (Fig. 17) and the main group of414

station pairs (20 pairs in total) (Fig. 18) near Klyuchevskoy because the velocity changes associated415

with these two volcanoes can be very different. We compute raw relative velocity changes for all416

station pairs and average all curves. The parameters used for the inversion regularization are β = 5417

and α = 100. The mean coherence level of the CCFs considered in the inversion after rejecting418

correlation coefficients smaller than 0.3 (Figs 14 and 15), is 0.41 for both cases of averaged station419

pairs (3 station pairs near Shiveluch and 20 station pairs of the main group of stations).420

To converge toward the actual relative velocity changes of the medium, we need to retrieve a421

stable trend due to long-term variations (LTV). We compute reconstructed velocity change time series422

from all considered station pairs with a large β value (β = 1000) to obtain precise velocity change423

curves that avoid short-term variations (STV). The value of the ponderation coefficient is the same424

than before, α = 100. After obtaining all the individual LTV, we average them all to get the general425

trend.426

We also plot the eruptive periods in the background of Figs 17 and 18, in green (Klyuchevskoy427

eruptions) and blue (Tolbachik eruption), overlaid with the reconstructed time series of velocity changes.428

The maximum peak-to-peak amplitude of the retrieved LTV and the raw relative velocity changes,429

i.e., STV + LTV, is about 0.02 % (Fig. 18) which corresponds to the magnitude order of the amplitude430

of the expected velocity change curves used in sections 3.1 (Fig. 4a, expected velocity curve 3), 3.2431

and 3.3. Regarding the inversion parameters, we use those tested in the synthetics: β = 5 for STV and432

β = 1000 for LTV. We keep the same ponderation coefficient for both cases: α = 100. Comparing433

the results with the synthetics, for the mean coherence level obtained, 0.41, the correlation with the434

expected velocity change curve is 0.77 for long-term periodic-type fluctuations (Fig. 4b) while, for435

short-term fluctuations, Qdrop = 0.67 (Fig. 7). We can say that we achieve stable long and short-term436

variations with the averaged time series of velocity changes from 3 and 20 station pairs (Figs 17 and437

18) since the mean coherence level of real CCFs for both cases (coh = 0.41) is greater than those in the438

synthetic averages of inverted time series of velocity changes over different station pairs (Figs 5a and439

8a). Considering the uncertainties associated with the measurements, in case of seasonal variations, the440

correlation with the expected velocity curves of the reconstructed time series of velocity changes goes441

from 0.22± 0.28, in case of one station pair used, to 0.38± 0.25, averaging over 3 station pairs, and442

to 0.74±0.10 with 20 station pairs (Fig. 5a). This means that, in cases of very low coh, the correlation443

increases by a factor between
0.38− 0.25

0.22 + 0.28
= 0.3 and

0.38 + 0.25

|0.22− 0.28|
= 10.5, averaging over 3 station444
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Figure 17. Evolution of relative velocity changes measured from three stations located near Shiveluch from

January 2009 to August 2013. Raw relative velocity changes (STV+LTV in black) and long-term velocity varia-

tions (red curve) are overlaid. Klyuchevskoy and Tolbachik eruptions are shown with green and blue rectangles,

respectively.

pairs, and between
0.74− 0.10

0.22 + 0.28
= 1.3 and

0.74 + 0.10

|0.22− 0.28|
= 14 with 20 station pairs. It is important445

to note that, for long-term and short-term variation, averaging over different pairs keeps these changes446

underestimated (Figs 5a and 8a) but the SNR increases by a factor of 1.6 when considering 3 station447

pairs instead of only one, and up to 2.5 with 20 station pairs (Fig. 8a). The increase of the SNR allows448

a better estimate of the timing of the abrupt velocity changes.449

We also improve the ability of our method to recover velocity changes during the occurrence of450

low-frequency volcanic tremors by averaging different synthetic station pairs (Fig. 11a). Although451

there are high correlations between CCFs when high tremor activities take place (around 0.8 during452

2010 and 2013 periods in Figs 14 and 16), the mean coherence level of the CCFs used in the final in-453

version is low (coh = 0.41). Taking into account our synthetic results, in the situation of strong noise454

perturbations in the noise-correlation shape, when the correlations are highly unstable and, therefore,455

the coherence level is low, we need to average over enough station pairs. By averaging over 20 station456

pairs the correlation of the reconstructed time series of velocity changes with the expected velocity457

curve increases by a factor between 2.2 and 17.3, in regard to a single station pair (Fig. 11a). How-458

ever, we would retrieve more proper short to medium-term velocity changes due to episodic volcanic459

tremors by averaging over more than 40 station pairs, to interpret these velocity drops and retrievals460

without ambiguity (Fig. 11a).461
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Figure 18. Evolution of relative velocity changes on Klyuchevskoy volcanic group from January 2009 to Au-

gust 2013 (averaging of time series of velocity changes over 20 station pairs). Raw relative velocity changes

(STV+LTV in black) and long-term velocity variations (red curve) are overlaid. Klyuchevskoy and Tolbachik

eruptions are shown with green and blue rectangles, respectively.



A general formulation for retrieving robust noise-based seismic velocity changes 29

5 INTERPRETATION OF THE RESULTS462

The seismic velocity variations measured near Shiveluch (Fig. 15) are difficult to interpret because463

this measurement was done only with three station pairs and is, therefore very noisy. Besides, the464

measurements made with 20 station pairs surrounding the Klyuchevskoy group of volcanoes show465

velocity variations that can be interpreted in relationship of eruptive history of the two most active466

volcanoes of this group: Klyuchevskoy and Tolbachik. The whole velocity variations (STV+LTV) are467

controlled by the combination of two main mechanisms: by the variations of the media mechanical468

properties caused by the magma motion and pressurization within the volcano plumbing systems and469

by the environmental effects. These two mechanisms cannot be simply separated as STV and LTV470

computed during the data analysis because the long-duration eruptions of Klyuchevskoy and Tolbachik471

have their imprint on both STV and LTV.472

The environmental contribution to the seismic velocity variations is expected to be controlled by473

seasonal changes in temperature, in hydrological loads, and in snow cover. These seasonal effects are474

particularly strong in Kamchatka and, therefore, we decided to estimate it and to remove from the475

whole time series, expecting that the remaining velocity variations mainly reflect the dynamics of the476

volcano plumbing system. To estimate the average long-term seasonal component from the velocity477

variation time series shown in Fig. 18, we computed median dν
ν values for every Julian day. Then,478

the obtained one-year periodic function has been smoothed in a 3-month long moving window. The479

resulted seasonal variations are shown with a thick gray line in Fig. 19a. The seasonality is very clear480

with a very pronounced velocity increase during winter (between end of December and end of April)481

and a pronounced velocity decrease during summer (between end of May and end of August).482

After removing this seasonal trend, the velocity variations exhibit three significant periods with483

decrease over 0.01% (Fig 19b). The first of this velocity drops corresponds to the end of the 2008-2009484

Klyuchevskoy eruption. The second drop starts at the end of May 2010 and terminates simultaneously485

with the 2009-2010 Klyuchevskoy eruption. The third velocity decrease starts approximately simul-486

taneously with the 2012-2013 Tolbachik eruption. Therefore, all detected decreases in seismic veloc-487

ity are observed during eruptions and most likely reflect the inflation-caused dilation of the shallow488

crustal layers. Nevertheless, the durations of the observed velocity drops do not exactly coincide with489

the known periods of eruptive activity. A possible explanation for this is that during the long-duration490

of Kamchatka volcanoes, the state of the plumbing system exhibits significant changes.491

The detailed source analysis of co-eruptive tremors by Soubestre et al. (2017) has identified two492

separate stages of activity during the 2009-2010 Klyuchevskoy eruption. The second stage that started493

approximately in May 2010 (indicated with vertical dashed line in Fig. 19b) was more intensive with494

magma likely moving closer to the surface. The observed velocity drop coincides in time with the495
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Figure 19. Evolution of relative velocity changes on Klyuchevskoy volcanic group from January 2009 to Au-

gust 2013 (averaging of time series of velocity changes over 20 station pairs). (a) Raw relative velocity changes

(in black) and average seasonal variations (thick gray curve) are overlaid. (b) Velocity variations after removing

the seasonal component. Periods of the Klyuchevskoy and Tolbachik eruptions are shown with green rectangles,

respectively. The vertical red dashed line indicates the onset of the second stage of the 2009-2010 Klychevskoy

eruption (Soubestre et al. 2017). (c) Zoom on one-month period including the beginning of the Tolbachik erup-

tion (green rectangle). The vertical red dashed line indicates the onset of the main eruption stage.

second stage and confirms that the large-scale magma migration occurred between the two stages of496

eruption.497

The level of seismic velocity changes also strongly varied during the 2012-2013 Tolbachik erup-498

tion. We observe, in particular, that the onset of the strong velocity drop does not coincide with the499

beginning of the eruption (Fig. 19c) but rather with the beginning of its main stage when the out-500

pouring of lava concentrated in a single vent where the main eruptive Naboko cone started to grow501

(Belousov et al. 2015). The later variations in seismic velocities are consistent with changes in tremor502

sources identified based on correlations of continuous seismic records (Shapiro et al. 2017b).503
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6 CONCLUSIONS504

To summarize, we classify the principal ideas of this work in three itemized sections, according to the505

methodology, the synthetic tests and the real data results.506

• We have proposed a generalized formulation for retrieving continuous time series of velocity507

changes avoiding the definition of an arbitrary reference CCF.508

– We measure seismic velocity changes between all possible pairs of daily CCFs applying the509

MWCS analysis.510

– The final time series of velocity changes is obtained by inversion, using a classical Bayesian511

linear least square formulation. In the inversion, the role of α and β, the regularization parameters,512

is essential.513

– After inverting, we sort STV and LTV. We retrieve LTV choosing a large β. We further com-514

pute STV subtracting the LTV from the raw relative velocity changes, obtained with a small β in515

the inversion.516

• To check the reliability of our method, we computed synthetic tests with the aim of estimating517

the expected reliability of velocity temporal changes.518

– To recover stable long-term periodic-type velocity variations produced by a seasonal-type519

trend, we use β = 1000 and consider different α, choosing lower values for low coh of the CCFs.520

We check the improvement associated with averaging over different receiver pairs even when the521

coh between daily cross-correlation functions is quite low.522

– We reconstruct short-term velocity fluctuations (sudden velocity drops) as an effect of a sud-523

den change in the structure, such as an earthquake or a volcanic eruption. We use β = 5 and α ≈ 0524

in the inversion. Averaging over different station pairs, the sudden velocity changes remains under-525

estimated, however, the SNR of the reconstructed velocity series improves and, therefore, allows a526

better estimate of the timing of the velocity drop.527

– We also test the ability of our method to retrieve short to medium-term velocity variations528

(rapid velocity drop and sudden recovery) due to the effect of a transient local source emission,529

such as a volcanic tremor. We use β = 5 and α ≈ 0 in the inversion. Our method produces530

artificial velocity drops in the situation of strong noise perturbations. In this cases, to retrieve531

proper velocity changes, we can (1) correct for the artificial baseline difference after inversion if532

the coherence level between CCFs is high or (2) average over sufficient station pairs when the533

coherence is low.534

• We test and check the suitability and advantage of this approach by applying our method to the535
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Klyuchevskoy volcanic group dataset of noise cross-correlations, interfered with strong and localized536

volcanic tremors and the lost of data.537

– We compute averaged time series of velocity changes considering, independently, two group538

of station pairs: 3 station pairs located in the vicinity of the Shiveluch volcano and 20 station pairs,539

the main group of stations, in the KVG area. The parameters used in the inversion are β = 5 and540

α = 100 for raw relative velocity changes (STV+LTV) and β = 1000 and α = 100 for LTV.541

– For both groups of station pairs (near Shiveluch and the one in the KVG area), the mean542

coherence level between CCFs is 0.41. The maximum peak-to-peak amplitude of the retrieved LTV543

and the whole velocity variations (STV+LTV) is about 0.02 %. This allows us to compare with the544

synthetics. Although short and long-term variations remain underestimated due to edge effects of545

the time series, we achieve stable long and short-term variations averaging over the main group of546

station pairs, 20 in total and the SNR increases. Therefore, we have a better estimate of the timing547

of the abrupt short-term velocity changes. On the other hand, during the occurrence of volcanic548

tremors we need to average over enough station pairs to ensure there are no artificial baselines,549

since the coherence level between CCFs obtained from real data is low, 0.41. To interpret velocity550

drops in these cases without ambiguity, it would be necessary to average over, at least, twice the551

number of station pairs used (20 receiver pairs).552

– STV and LTV cannot be separated in this particular case since long-term eruptions of Klyuchevskoy553

and Tolbachik are controlled by the fluctuations of the media mechanical properties and by envi-554

romental effects. After removing the seasonal trend, we observed three velocity decrease periods555

over 0.01 % related with the inflation-caused dilation of the shallow crustal layers. The first de-556

crease occurs at the end of the 2008-2009 Klyuchevskoy eruption, the second corresponds to the557

second stage of the 2009-2010 Klyuchevskoy eruption Soubestre et al. (2017) and the third coin-558

cides with the beginning of the main stage of the 2012-2013 Tolbachik eruption (Belousov et al.559

2015). The duration of these velocity decrease periods does not exactly coincide with the eruptive560

activity, probably because of the continuous and significant changes of the plumbing system in the561

Kamchatka volcanoes.562

We have established a general framework for this noise-based monitoring technique. Particular563

care is required to recover temporal velocity variations from CCFs where the noise field recordings564

are affected by transient tremor signals. In these cases, the processing to monitor active volcanoes565

is critical. Although, here we use continuous noise-based seismic velocity change observations to566

provide insights into volcanic unrest, this generalized formulation can be used as well to study crustal567

earthquake relaxations and the effects of fluid injections in the sub-surface in cases where seismicity568

interferes with the ambient seismic noise records.569
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