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SUMMARY5

We develop a new method to monitor and locate seismic velocity changes in the subsurface6

using seismic noise interferometry. Contrary to most ambient noise monitoring techniques, we7

use the ballistic Rayleigh waves computed from 30 days records on a dense nodal array lo-8

cated above the Groningen gas field (the Netherlands), instead of their coda waves. We infer9

the daily relative phase velocity dispersion changes as a function of frequency and propaga-10

tion distance with a cross-wavelet transform processing. Assuming a one-dimensional velocity11

change within the medium, the induced ballistic Rayleigh wave phase shift exhibits a linear12

trend as a function of the propagation distance. Measuring this trend for the fundamental mode13

and the first overtone of the Rayleigh waves for frequencies between 0.5 and 1.1 Hz enables14
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us to invert for shear-wave daily velocity changes in the first 1.5 km of the subsurface. The ob-15

served deep velocity changes (± 1.5%) are difficult to interpret given the environmental factors16

information available. Most of the observed shallow changes seem associated with effective17

pressure variations. We observe a reduction of shear-wave velocity (-0.2%) at the time of a18

large rain event accompanied by a strong decrease in atmospheric pressure loading, followed19

by a migration at depth of the velocity decrease. Combined with P-wave velocity changes ob-20

servations from a companion paper, we interpret the changes as caused by the diffusion of21

effective pressure variations at depth. As a new method, noise-based ballistic wave passive22

monitoring could be used on several dynamic (hydro-)geological targets and in particular, it23

could be used to estimate hydrological parameters such as the hydraulic conductivity and dif-24

fusivity.25

Key words: Seismic tomography; Seismic interferometry; Wave scattering and diffraction;26

Wave propagation; Surface waves and free oscillations27

1 INTRODUCTION28

Ambient seismic noise interferometry (e.g., Shapiro & Campillo 2004; Wapenaar et al. 2010)29

via Coda Wave Interferometry (CWI, e.g., Snieder et al. 2002; Sens-Schönfelder & Wegler 2006;30

Brenguier et al. 2008b) has become the most efficient way to probe continuous temporal changes31

of the elastic properties of the crust. It has successfully been applied to volcano monitoring during32

pre- and co-eruptive stages (Brenguier et al. 2008b; Mordret et al. 2010; Yukutake et al. 2016) or33

inter-eruptive periods (e.g., Sens-Schönfelder & Wegler 2006; Rivet et al. 2014; Donaldson et al.34

2017). It has also been used to monitor the response of the crust to large earthquakes (e.g., Wegler35

& Sens-Schönfelder 2007; Brenguier et al. 2008a; Minato et al. 2012; Brenguier et al. 2014) or36

slow-slip events (Rivet et al. 2011). More recently, it has contributed to the fast emergence of37

environmental seismology applications (Mainsant et al. 2012; Gassenmeier et al. 2014; Larose38

et al. 2015; Mordret et al. 2016; Lecocq et al. 2017; Clements & Denolle 2018; Mao et al. 2019a;39

? Corresponding author, mordret@mit.edu
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Fores et al. 2018) and passive seismic monitoring of civil engineering structures (Nakata & Snieder40

2013; Salvermoser et al. 2015; Planès et al. 2015; Mordret et al. 2017).41

Although very robust to detect small changes in a medium (Froment et al. 2010; Weaver et al.42

2011; Colombi et al. 2014), CWI lacks spatial resolution due to the inherent nature of coda waves.43

Statistical approaches can lead to the probability of a local change in a medium knowing the44

perturbation in the coda of a seismogram (Pacheco & Snieder 2005; Obermann et al. 2013) but the45

sensitivity kernels derived in these studies are smooth, dependent on the modal distribution of the46

waves forming the coda and on the statistical scattering properties of the medium which hamper a47

precise localization of the changes and proper estimate of their real amplitude.48

In this work and a companion paper (Brenguier et al. 2019) we propose to overcome these lim-49

itations by using a new complementary method for monitoring seismic velocity variations based50

on the ballistic waves of the noise cross-correlations, instead of their coda waves. The first paper51

(Brenguier et al. 2019) deals with body waves while this paper focuses on surface waves applica-52

tion. Using ballistic waves means that, contrarily to coda-waves, we have accurate models for their53

propagation and therefore we can project the observed temporal perturbations of seismic veloci-54

ties to specific regions at depth (Voisin et al. 2016, 2017). However, the clear limitation of using55

direct, ballistic waves is their strong sensitivity to noise source temporal variations (Colombi et al.56

2014) and the fact that they exhibit smaller time-shift than coda waves, for the same perturbation.57

We use advanced frequency–time analysis and a dense seismic network coupled with offset and58

azimuthal averaging to mitigate these issues, but one still needs to carefully assess the stability of59

noise sources for such type of analysis.60

Surface waves are the most easily retrieved phases in ambient noise correlations (Shapiro &61

Campillo 2004) because seismic noise sources are most often located at the surface and mainly62

generate surface waves. However, certainly because of the aforementioned drawbacks, only few63

attempts have been made to use direct surface waves from noise correlations to monitor the sub-64

surface (Durand et al. 2011; de Ridder et al. 2014; Mordret et al. 2014b; Toyokuni et al. 2018). In65

this paper we describe the basics of passive ballistic surface wave monitoring using dense arrays.66

We are able to measure temporal changes of apparent velocities from both fundamental mode and67
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Figure 1. Map of the array of 417 sensors used in this study.

first overtone Rayleigh waves, which allows us to discriminate between changes localized in the68

shallower part or the deeper part of the subsurface, in good agreement with the P-wave monitoring69

results (Brenguier et al. 2019).70

2 DATA71

We use a network of 417 nodal short period seismic stations (3-component, 5 Hz Geospace) de-72

ployed in the Groningen area of the Netherlands, above the Groningen gas field (Fig. 1). The array73

was deployed for 30 days in 2017 from February 11 (day 42) to March 12 (day 71) and laid out74

as a regular square grid with an aperture of about 8 km and a nominal inter-station distance of75

400 m. The original purpose of the array was to perform high-resolution ambient seismic noise76

tomography to characterize the near surface for seismic hazard assessment and ground motion77
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Figure 2. a) Full seismic section filtered between [0.6–1.1] Hz. The inset shows the phase velocity dis-

persion curves of the fundamental mode (blue) and the first overtone (red). b) FK diagram of the seismic

section. The FK filter windows to extract the fundamental mode and the first overtone are shown in red and

yellow, respectively. c) The FK-filtered fundamental mode band-pass filtered between [0.6–1.1]Hz. d) The

FK-filtered first overtone band-pass filtered between [0.4–1.0]Hz.

prediction (Chmiel et al. 2019). The gas reservoir is located at about 3 km depth in the Permian78

sandstones of the Rotliegend Group, it is 250 m thick and covers a 2000 km2 area. It is sealed by79

a Zechstein salt layer up to 1 km thick. Above the salt layer lays a ∼1 km thick Cretaceous Chalk80

formation capped with a 800 m thick Tertiary and Quaternary sediment cover, up to the surface81

(van Thienen-Visser & Breunese 2015). Bourne et al. (2018) show that the gas production in this82

field led to a 15 MPa average reservoir pore-pressure depletion since 1995 which is associated83

with seismicity rates exponentially increasing with time.84
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We follow Chmiel et al. (2019)’s procedure for the correlation computation. We average the85

causal and acausal sides of the correlations, then the symmetrized correlations are further stacked86

in 50 m inter-station distance bins, thanks to a continuous distribution of inter-station distances be-87

tween 400 m and 8 km, to enhance the signal to noise ratio, to mitigate the azimuthal variations of88

noise sources and to help to converge closer to the true Green’s function (Boué et al. 2013; Mordret89

et al. 2014a; Nakata et al. 2015). This procedure effectively approximates the propagating medium90

as a 1-dimensional medium. During the deployment, the main noise source in the considered fre-91

quency band comes from the direction of the North Sea, but significant energy arrival covers about92

180 degrees, from South-West to North-East (Spica et al. 2018; Brenguier et al. 2019).93

Finally, we construct one 30-days average seismic section which is used as the reference sec-94

tion and twenty-one 10-days moving average sections which are used as daily section for the mon-95

itoring. We use a causal stack where the section for day N is the stack of the data of day N with96

the 9 previous days. The resulting reference virtual seismic section, filtered between [0.6–1.1] Hz,97

is shown in Figure 2a). We can see the faster, higher amplitude and lower frequency first overtone98

travelling with a group velocity of about 450 m/s and the slower and less energetic fundamental99

mode travelling at a speed around 330 m/s. The FK spectrum of the section is shown in Figure 2b)100

and is used to pick the phase velocity dispersion curves of the two modes (Fig. 2a)). In the fol-101

lowing, we perform the monitoring measurements on each mode separately. To do so, we apply102

two FK-filters to each of the 22 sections (the reference and the 21 daily ones) as described in Fig-103

ure 2b-c-d). The FK-filtered sections are further windowed between travel-times corresponding to104

[250–380] m/s and [400–1000] m/s for the fundamental mode and the first overtone, respectively.105

We tested the effect of the FK-filters on the final velocity variation results: not using them slightly106

increases the uncertainties but does not change the overall results and interpretations.107

3 METHODS108

3.1 Phase-shift measurement with Cross-Wavelet transform109

Measuring the travel-time shift induced by a localized seismic velocity perturbation on a dispersive110

surface-wave requires a frequency–time representation where one is able to estimate the instan-111
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taneous phase of a seismogram in the frequency–time domain (Corciulo et al. 2012). Continuous112

wavelet transform (CWT) has been extensively used in Earth Science for more than two decades to113

analyse the frequency–time behaviour of geophysical transient signals (e.g., Kumar & Foufoula-114

Georgiou 1994; Pyrak-Nolte & Nolte 1995; Labat 2005) and has originally been developed to115

analyse active seismic traces in seismic exploration (Morlet et al. 1982b,a). This section describes116

the use of wavelet-transform for ballistic surface wave monitoring. A similar approach can be used117

for CWI applications and is the subject of a subsequent paper (Mao et al. 2019b).118

The CWT of a signal s(t) is defined as the correlation or inner product of s(t) with a particular119

set of functions ha,b(t) such as120

WT[s(t)](a, b) =

∫ ∞
−∞

s(t)h∗a,b(t)dt , (1)

where

ha,b(t) =
h[(t− b)/a]√

|a|
. (2)

In these expressions, a, b ∈ IR, with a 6= 0. The ∗ symbol denotes the complex conjugate. The121

elements of the wavelet basis ha,b(t) are created by dilating and translating the mother wavelet122

h(t) by the dilation parameters a (called scale and equivalent for frequency) and the translation123

parameters b. The pre-factor
√
|a| ensures norm-squared normalisation. Practically, we used the124

CWT function from the MATLAB2018a Wavelet Toolbox to build our algorithm.125

In the following analysis, we use the complex analytic Morlet wavelet (Morlet et al. 1982b,a;126

Teolis & Benedetto 1998) composed of a harmonic function windowed by a Gaussian filter. In the127

Fourier domain the Morlet wavelet is defined as:128

Ψ(aω) = π−1/4e−(aω−ω0)2/2H(aω) , (3)

where H is the Heaviside step function, a is the scale and ω0 the central frequency. Here, we use129

ω0 = 6 Hz as default value.130

The resulting Morlet CWT is a 2D complex function which has both amplitude and phase131

information and has an optimum resolution both in time and frequency with the smallest possible132
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Heisenberg uncertainty. It can be shown that the maximum of the CWT amplitude along the scale133

direction defines the group velocity dispersion curves of the transformed time-series (Pyrak-Nolte134

& Nolte 1995).135

To compare two dispersive time-series by estimating their common power and phase relation,136

we use the cross-wavelet transform (Grinsted et al. 2004) which can be seen as a frequency–time137

cross-correlation. Let r(t) be a reference seismic trace and c(t) the current seismic trace we want138

to compare with r(t). The cross-wavelet transform of r and c is139

XWT[r(t), c(t)](a, b) = WT[r(t)](a, b)WT∗[c(t)](a, b) = |A|ei∆φ , (4)

where |A| is the amplitude power of the cross-wavelet transform and its phase is given by the phase140

difference between WT[c(t)] and WT[r(t)] such as ∆φ = arg (WT[r(t)])− arg (WT[c(t)]).141

The amplitude power of the cross-wavelet transform shows where both time-series have com-142

mon high amplitudes (Fig. 3d). Another useful measure of the resemblance between the two wave-143

form in the frequency–time domain can be defined by the wavelet coherence (Fig. 3b):144

WCoh[r(t), c(t)](a, b) =
|S {a−1|XWT[r(t), c(t)](a, b)|2} |2

S {a−1|WT[r(t)](a, b)|2} S {a−1|WT[c(t)](a, b)|2}
, (5)

where S {·} is a 2D smoothing operator over the scales a and delays b. Here, we used a Gaussian145

smoothing window in the delays direction and a moving average (boxcar window) in the scales146

direction. The smoothing is necessary to avoid having a coherence of one for every samples. In147

traditional time-windowed Fourier transform methods, the smoothing is handled by defining an148

additional time-window length. The wavelet coherence can be seen as a local correlation coeffi-149

cient in the frequency–time domain and is bounded between [0 1]. Finally, the time-shift ∆t in the150

frequency–time domain (Fig. 3c) between the two waveforms can be computed by151

∆t(a, b) ≡ ∆t(f, U) =
∆φ

2πf
, (6)

where f is the frequency and U the group velocity obtained by U = D/t, with D the distance152

between the source and the receiver. However, the time-shift can only be reliably estimated where153



Ballistic Surface Wave Monitoring 9

Figure 3. a) Reference (blue) and current (orange) binned correlations at 9 km distance, FK-filtered around

the first overtone. The vertical black lines show the analysis window. b) Wavelet Coherence between the

traces in a). c) The time-shift between the two traces multiplied by the weight function shown in e). The

black contour shows where the weights are larger than 0.1. d) The normalised amplitude power of the cross-

wavelet transform: |A|. e) The weight function. f) The weighted-average frequency-dependent time-shift,

the errorbars show one standard deviation of the average.

the amplitudes of both reference and current traces are largely above the noise level, i.e., where154

|A| is large enough. Following Fichtner et al. (2008), we design a coherence weighting scheme155

(Fig. 3e) that allows us to accurately extract the time-shift between the two waveforms as a function156

of the frequency:157
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W(f, U) = (log(1 + |A|)/max
f

log(1 + |A|))2 if WCoh > 0.95 & |A|/max
f,U
|A| > 0.01, (7)

W(f, U) = 0 otherwise. (8)

We finally obtain the frequency-dependant time-shift δt(f) between the two waveforms by com-158

puting the weighted average of ∆t(f, U) by W(f, U) along the group velocity axis. We repeat159

this operation for every distance bins, every days and for both FK-filtered fundamental and first160

overtone.161

3.2 Relative phase velocity change estimation162

From the time-shifts measured at each frequency and each distance along the virtual seismic sec-163

tion, we can estimate the frequency-dependant relative phase velocity change δCm
i /C

m
0 for each164

day i = 1..21 (i = 0 stands for the average over the 30 days) and each considered phase m = 0, 1165

(for the fundamental mode and the first overtone, respectively) following the approach of Bren-166

guier et al. (2019). In this companion paper, Brenguier et al. (2019) showed that the relative ve-167

locity change can be computed as the (weighted) linear regression of the time-shifts δt along the168

offset x (Fig. 4) multiplied by the velocity of the considered phase:169

δCm
i

Cm
0

(f) = −Cm
0 (f)

∆δtmi (f, x)

∆x

∣∣∣∣x=xmax

x=xmin

, (9)

where ∆Y/∆x stands for the linear regression of Y along x and xmin and xmax are the offset170

bounds between which the regression is performed. We will develop more in the Results section171

on how to chose these bounds. The standard errors of the linear regression gives the uncertainty of172

the relative velocity change.173

3.3 Depth-dependent relative shear-wave velocity change174

Lesage et al. (2014) were the first to attempt a depth inversion of differential dispersion curves for175

relative shear-wave velocity changes. We use a similar approach here to resolve the velocity change176

at depth at our studied area. As shown by Haney & Tsai (2017) using a thin-layer finite-element177
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Figure 4. Daily time-shifts δtm(x) averaged over the frequencies for the fundamental mode (red dots) and

the first overtone (blue dots) and the linear regressions used to estimate the relative phase velocity variations

in black and green for the fundamental mode and the first overtone, respectively. The black boxes show the

distance ranges over which the regression is performed. The results for the first overtone have been shifted

vertically by 0.005 s to avoid clutter. For the day 71, we show the measurements along the whole offsets

range.

method approach, the relative change in Rayleigh wave phase velocity C(f) for any given mode,178

at different frequencies (Fig. 5), due to a relative change in shear-wave velocity β(z) at depth is179

given by:180

δC

C
(f) = K(f, z)

δβ

β
(z) , (10)

where K is a depth sensitivity kernel, f the frequency and z the depth. Equation 10 holds if one181

assumes that either (1) Poissons ratio and density are fixed or (2) P-wave velocity and density are182

fixed. In each case, the sensitivity kernel has to be adapted (see Haney & Tsai 2017, for details)183

and we modified Haney & Tsai (2017)’s code to output the corresponding K computed from an184

average velocity model of the area (Chmiel et al. 2019). This average model is in good agreement185

with local borehole measurements (Kruiver et al. 2017) and predicts properly the average phase186
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velocity dispersion curves for both the fundamental mode and the first overtone. In this work, we187

chose to fix the P-wave velocity and the density.188

The relative shear-wave velocity perturbation can therefore be retrieved using a simple weighted-189

damped least squares inversion (Haney & Tsai 2017). Following Haney & Tsai (2017), we define190

the data covariance matrix as a diagonal matrix with the relative phase velocity uncertainties on191

the diagonal (Cd = σdI) and the model covariance matrix as:192

Cm(i, j) = σ2
m exp (−|zi − zj|/λ) , (11)

where σm = γσ̄d is the model standard deviation (γ is a user-defined tuning factor and σ̄d is the193

average of the data uncertainties), zi and zj are the depths at the top of the ith and jth layers, and λ194

is a correlation length along depth. The parameters γ and λ are defined through a systematic grid-195

search of the data residual evolution with respect to γ and λ trial values, using a L-curve criterion196

(Hansen & OLeary 1993). The depth distribution of the shear-wave perturbations is obtained by197

solving the following system198

 C−1d K

C−1m

 δβ
β

=

 C−1d

0

 δC
C
.

4 RESULTS199

The fundamental mode is analysed in the [0.6 - 1.1] Hz frequency band and the first overtone in200

the [0.4 - 1.0] Hz frequency band, where most of their energy is concentrated (Fig. 2b). The funda-201

mental mode exhibit large amplitudes at frequencies lower than 0.5 Hz (Chmiel et al. 2019) but at202

these frequencies, the wavelengths become large compared to the size of the array which impedes203

the measurement of the time shift and reduces the distance range on which the linear regression204

can be performed. As shown in Figure 4, the time-shifts data do not exhibit a linear trend for the205

whole range of distances. At long distances, the δtmi (x) measurements strongly oscillate (starting206

around 6.5-7 km) because of the lower signal to noise ratio of the stacked correlations which are207

much less numerous for these ranges. At short distance, we also observe rapid oscillations of the208
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Figure 5. left) Daily, period-dependant relative phase velocity changes for the fundamental mode. right)

Daily, period-dependant relative phase velocity changes for the first overtone. Note the difference in ampli-

tude between the two modes. The black curves are obtained by averaging the time-shifts δtmi (f, x) over the

frequencies before performing the linear regression (shown in Fig.4).

time-shifts for both fundamental mode and overtone. However, the fundamental mode measure-209

ments (red dots in Fig. 4) seems to stabilize at shorter distance (∼2 km) than the overtone (∼4.5210

km). We hypothesize that this effect is a consequence of performing the time-shift measurements211

on waves in the near field where wave interference may occur. The dominant frequencies of 0.8212

Hz and 0.6 Hz give wavelengths on the order of ∼600 m and ∼1400 m for the fundamental mode213

and the first overtone, respectively. The measurements are therefore stabilizing around three wave-214

lengths for both phases, a distance at which the near-field effects become negligible. We chose to215

perform the linear regressions along the distances corresponding to three to seven wavelengths. In216

the case of the overtone, seven wavelengths correspond to a distance larger than 7 km, we there-217

fore restrict the maximum distance for this phase at 7 km. Extending the linear regression for the218

fundamental mode to 7 km would slightly change the estimated values of δC0
i /C

0 but has little219

effect on the final estimation of the depth and amplitude of the shear-velocity changes.220

Figure 5 shows the temporal variations of phase velocity for the two modes at different frequen-221

cies. Except for the three first days, the fundamental mode exhibit variations smaller than ±0.1%222

at all frequencies. In general, lower frequencies show larger velocity changes which suggests that223

the changes are happening deeper in the subsurface rather than shallower. This is confirmed by the224

shape of the depth sensitivity kernels for the fundamental mode (Fig. 6). In contrast, the overtone225
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Figure 6. Depth sensitivity kernels for relative perturbations in shear-wave velocity with respect to relative

perturbations in phase velocity for the fundamental mode (left) and the first overtone (middle). The right

panel shows the frequency-averaged kernels (fundamental mode in red, first overtone in yellow) and their

sum (in blue) showing the total extent of depth sensitivity when combing the two modes. The (normalized)

shear-wave velocity model used for the computation is shown by the black curves.

exhibits much larger temporal variations with amplitudes up to 0.6% at low frequency. For these226

frequencies lower than 0.5 Hz (above 2 s of period), the sensitivity of the overtone displays two227

maxima: a large amplitude one around 200 m depth and a lower amplitude one below 1000 m228

depth. The shallow sensitivity region overlaps with the sensitivity of the fundamental mode. The229

fact that the fundamental mode shows only small variations suggests that the large variations de-230

tected by the first overtone at low frequency are located deep in the subsurface.231

These observations are confirmed by the joint inversion of the differential phase dispersion232

curves (Fig. 7). We used γ = 100 and λ = 250m as smoothing and damping parameters. The233

median misfit reduction for the whole time period is 81%. The fit to the data is good for every day234

meaning that we manage to find a model of relative shear-wave velocity change at depth that is235

consistent with both fundamental mode and first overtone daily observations. From Figure 7, we236

can see that the overtone data at low frequency explain most of the variance of the model. The final237
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Figure 7. Daily differential phase velocity dispersion curves for the fundamental mode and the first overtone

with their uncertainties (blue and cyan curves, respectively). The fit to the data after inversion is shown

by the inverted dispersion curves in red and magenta for the fundamental mode and the first overtone,

respectively. The daily misfit value as well as the misfit reduction from δC/C = 0 are shown in each panel.

time-lapse results (Fig. 8) indeed show that the largest shear-wave variations (reaching ± 1.5%)238

are located below 800 m in the faster layer of the Chalk Group formation, while smaller variations239

are observed in the shallower North Sea Group sediments (Fig. 9 Kruiver et al. 2017; Chmiel240

et al. 2019). The decrease of the amplitude below 1600 m is mostly due to the disappearance of241

the sensitivity of the first overtone at these depths and we cannot rule out large velocity changes242

deeper in the subsurface.243

Velocity variations in the near-surface are shown in Figure 9 with a different color scale to244

highlight the finer details. The shallow time-lapse results show variations on the order of ± 0.2%245

in the near surface (∼50 m depth) with a large decrease of velocity between day 51 and day 55246

followed by a slow recovery until the end of the studied period. The velocity decrease propagates247

deeper and deeper at depth along the 20 days of record with an apparent vertical velocity of about248

10 m/d.249
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Figure 8. Depth-dependent relative shear-wave changes obtained by jointly inverting the frequency-

dependent relative phase velocity variations of the fundamental mode and the first overtone. The average

velocity change between 1000 m and 1500 m is shown by the plain black curve. Most of the changes happen

in the Chalk layer below 1000 m depth. The average Vs model of the area is shown in dotted black curve

for reference with the scale denoted by the dotted arrows.

5 DISCUSSION AND CONCLUSION250

Ballistic wave travel-time from noise correlations are strongly sensitive to the noise sources distri-251

bution and its azimuthal variations during the monitoring period. For the same dataset, Brenguier252

et al. (2019) checked that the azimuthal variations of the noise could not induce travel-time un-253

certainties larger than 0.5%. Moreover, the stacking procedure that we used is partly an azimuthal254

stacking and therefore helps to reduce the noise sources influence on the phase-shift measure-255

ments. The large velocity change that we observe below 1000 m cannot be explained by noise256

sources biases alone. The amplitudes of the shallow variations are less strong and therefore could257

be contaminated by potential sources effects. However, the depth migration of the velocity reduc-258

tion cannot be caused by noise sources variability.259

Noise sources static spatial distribution inhomogeneity also biases the amplitudes and phases260

of both fundamental mode and first overtone; with a stronger effect on the first overtone (Kimman261

& Trampert 2010). While this static effect has no influence on the monitoring measurements,262
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Figure 9. Near-surface depth-dependent relative shear-wave changes obtained by jointly inverting the

frequency-dependent relative phase velocity variations of the fundamental mode and the first overtone.

The velocity of 10 m/d, fitting the move-out of the velocity decrease is shown by the dotted line. The at-

mospheric pressure near the studied site is shown by the thick black line for the period of the study. The

red contours correspond to effective pressure decrease, the blue contours correspond to effective-pressure

increase.

because we are interested in relative changes, it may still induces an error on the inverted results.263

The depth sensitivity kernels that we are using for the inversion (Fig. 6) assume true fundamental264

and first overtone Rayleigh wave. Kimman & Trampert (2010) showed that the relative errors on265

the first overtone can be up to few percent (less for the fundamental mode), meaning that the266

kernels we use are off by a similar amount. This results in uncertainties on the depth location267

and amplitude of the changes in the shallow part on the order of few meters and about 0.02%,268

respectively.269

To asses the sensitivity and the contribution of each dataset on the final result we perform a270

set of tests by inverting separately the fundamental mode and the first overtone dispersion curves271

(Fig. 10). In addition to these tests, we perform a second set of inversions by forcing the velocity272

variations to be located only in the first 500 m of the subsurface. To do so, we add to the model273

covariance matrix a damping of the velocity variations increasing exponentially with depth. The274

parameter of the exponential decay is chosen so that the velocity changes vanish bellow 500 m275

depth. For each of the eight tests, the misfit reduction, indicating the quality of the fit to the data276
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and the amount of data explained by the model is shown in each panel of Figure 10. The individual277

daily fits to the data are shown in Supplementary Material Figures S1 to S8. A first observation is278

that the results obtained in Figure 9 and in Figure 8 in a lesser extent can only be found by inverting279

jointly the fundamental mode and the first overtone data. Secondly, although the first overtone has280

shallow sensitivity at low frequency (Fig. 6), changes bellow 800 m depth are required to properly281

fit the low frequency data. Changes alone above 500 m cannot fit the low frequency part of the282

overtone dispersion curve. The high frequencies (above 0.6 Hz) of the overtone mostly constrain283

changes in the first 800 m of the subsurface. If only the low frequency part of the overtone data284

is taken into account, the deep velocity changes are smeared between 300 m and 2 km depth. It285

is only the combination of the full bandwidth of the fundamental mode and the first overtone that286

localizes the large velocity changes in the Chalk layer, below 800 m depth.287

Observing large velocity variations in the Chalk layer and smaller variations in the Tertiary288

and Quaternary sediments is in good agreement with the observations made with ballistic P-wave289

on the same dataset (Brenguier et al. 2019). On one hand, the P-wave refracted at the top of the290

Chalk layer exhibits small variations during the first four days then its speed increases by ∼1%291

on days 55-56 before stagnating or slightly decreasing during the rest of the analysed period. On292

the other hand, the direct P-wave, which is sampling the first 200 m of the subsurface, shows a293

small decrease of velocity of about -0.25% during the first 12 days, then a 0.1% recovery. The294

same pattern is observed with S-wave in the near-surface. It has to be noted that the reference used295

in the P-wave study and the current work are different. Therefore, only the variations of velocity296

changes and their relative amplitudes can be compared. In the Chalk layer, the anti-correlation297

between the S-wave and the P-wave velocity change, with similar amplitudes, could suggest a sat-298

uration effect (Fores et al. 2018). However, in the Netherlands it is most probable that the ground299

is fully saturated at these depths, ruling out this interpretation. Changes originating from deeper300

in the subsurface might be possible, but we do not have any other independent information from301

the exploitation of the gas field to confirm or infirm the deep nature of the observed changes in the302

Chalk layer. Tidal-induced strain variations can induce seismic velocity changes. However, such303

changes have been shown to be small and have mainly diurnal and semi-diurnal effects (Reasen-304
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Figure 10. Sensitivity tests. Inversion of a single mode, with and without constrain, for different frequency

bands. The median misfit reduction over the 20 days of the study is shown at the bottom of the panels. A

misfit reduction below 70% indicates a poor fit to the data. Note the different color scale for panels c) and

e). The corresponding individual daily fits are shown in Fig. S1 to S8 of the Supplementary Material.
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berg & Aki 1974; Yamamura et al. 2003; Mao et al. 2019a). Our observations do not exhibit such305

a periodicity, neither in the deep part of our model nor in the near-surface. Longer periods (around306

15 days) exist in the oceanic loading signal but we would expect the loading-induced strain to307

affect the whole column of sediment and more particularly the less consolidated ones in the near-308

surface, which is not what we observe. Another hypothesis is that the low frequency measurements309

for the first overtone are biased by near-field effects which would produce an over-estimation of310

the amplitude of velocity variations. However, the fact that the refracted P-wave (measured in the311

far field) senses large changes indicates that the observed deep variations may be real.312

One of the main factor that can influence the seismic velocities in a poroelastic medium is313

variations of effective pressure. These variations can come from two sources in a environment such314

as the one studied here: normal stress variations and pore pressure variations. The normal stress315

variations can be induced by atmospheric pressure variations, while the pore pressure variations316

can be induced by rainfalls. Large variations of shear velocity of few percent have already been317

observed after strong rain events (e.g., Sens-Schönfelder & Wegler 2006; Miao et al. 2018; Viens318

et al. 2018; James et al. 2019) even though the amount of decrease depends on the initial state319

of the soil. During the monitoring period a rainfall event happened during days 51 to 54 with320

40 mm of water (16 mm alone on day 54) following a 2 weeks period without rain. This strong321

rain event induces an increase in pore pressure in the subsurface on the order of 10-100 Pa which322

diffuses at depth with time. Atmospheric loading variations varying around ± 2 kPa (Fig. 9) are323

accompanying the rain falls (KNMI 2019). We use the model of Roeloffs (1988), extended by324

Talwani et al. (2007) to model the diffusion of effective pressure variations at depth, given loading325

variations at the surface from the rain and the atmospheric pressure. The excess pressure P (t, r)326

at time t and depth r is given by:327

Pi(t, r) =
n∑
i

δpi erfc

[
r√

4c(n− i)δt

]
, (12)

where δpi is the relative load variation for the day i, c is the hydraulic diffusivity, n the number328

of days from the beginning of the record and up to time t, δt the time increment and erfc is329

the complementary error function. The hydraulic diffusivity is a free parameter and we chose330
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c = 0.02m2/s in order to fit the move-out of the shear-wave velocity decrease (Fig. 9). The values331

obtained for the hydraulic diffusivity (2 ·10−2m2/s) and conductivity (10m/d) are consistent with332

the geology of the quaternary deposits in the subsurface (TNO 2019). Moreover, a variation in333

effective pressure is consistent with the discrepancy in velocity variations amplitude between Vp334

and Vs, Vp being less sensitive to effective pressure changes than Vs in unconsolidated sediments335

(e.g. Zimmer et al. 2002).336

The maximum change in pore-pressure is about 1 kPa near the surface and decays at depth and337

in time to about 0.4 kPa at the end of the monitoring period at about 200 m depth. (Fig. 9). Kruiver338

et al. (2017) propose a relationship between the shear velocity (β) and the confining stress (σ0) of339

the form340

β = β0

(
σ0

P0

)γ
, (13)

where β0 is the shear-wave velocity at the surface, P0 is the atmospheric pressure and γ is an341

exponent depending on the geology. Given the local variability in the parameters 180m/s < β0 <342

270m/s and 0.1 < γ < 0.43 (Kruiver et al. 2017), we can estimate the sensitivity of β to changes343

in effective pressure Pe, 8 · 10−5 < dβ/dPe < 5 · 10−4 and the range of expected dβ/β with344

dβ

β
=

dβ

dPe

dPe
β

. (14)

Taking β = 350 m/s at 50 m depth, an effective pressure of 300 kPa (assuming a soil density of345

1600 kg/m3) and a variation of effective pressure of 1 kPa, we obtain values of dβ/β ranging from346

0.02% to 0.15%. This indicate that our results are in good agreement with the upper ranges of β0347

and γ.348

One of the main limitation of this new passive monitoring approach is the need for dense349

seismic arrays with a relatively large aperture to be able to perform a robust linear regression of350

the time-shifts along the offsets. Although such dense arrays are more and more common (e.g.,351

Mordret et al. 2014b; Nakata et al. 2015; Ben-Zion et al. 2015), one would ideally like to perform352

the monitoring measurements on signals from a single pair of stations. One could therefore take353
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advantage of sparse, but permanent or long-term seismic networks, the same way they are used for354

CWI. This will lead to purely passive 4D seismic tomography studies, which will be the logical355

next step from the present analysis. It can be done because we can always measure the time-356

shift between 2 non-synchronous correlations from the same station pair using Equation 6. The357

methodology to measure this time-shift is described in detail by (Mao et al. 2019b). The relative358

(phase) velocity variation can then be estimated with359

δv

v0

= −v0
δt

D
. (15)

Here, v0 is the phase velocity of the considered (ballistic) wave and D corresponds to the inter-360

station distance. However, without the averaging scheme presented in this paper, the ballistic waves361

can be strongly sensitive to variations in the seismic noise sources positions and properties which362

can mask the changes of interest in the subsurface.363

We present in this study a novel approach to monitor the seismic velocity temporal changes364

using ambient noise correlations. Instead of measuring delays in the coda part of single pair of365

stations seismograms, we evaluate the time-shift of the ballistic Rayleigh waves, retrieved from366

a dense seismic network, as a function of the propagation distance, to get the relative veloc-367

ity changes. Using a wavelet-transform processing, we are able to extract frequency-dependent368

time-shifts for different modes. This enables us to invert the corresponding differential dispersion369

curves into 1D depth-dependent relative shear-wave velocity variation profiles. The information370

from two different Rayleigh wave modes helps to constrain the location of the changes at depth.371

The observed shallow temporal velocity changes, reaching ±0.2%, are caused by a decrease of372

effective pressure diffusing in the ground following heavy rainfalls. This method, generalized to373

any ballistic waves (Brenguier et al. 2019), paves the way to high temporal and spatial resolution374

monitoring studies and make passive time-lapse tomography of dynamic geological targets, such375

as volcano magma chambers, active tectonic faults or industrially exploited reservoirs, possible.376
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Figure S1. Unconstrained inversion: daily differential phase velocity dispersion curves for the fundamental

mode (blue curve, the first overtone curve in cyan is shown for reference). The fit to the data after inversion

is shown by the inverted dispersion curves in red. The daily misfit value as well as the misfit reduction from

δC/C = 0 are shown in each panel.



Figure S2. Constrained inversion: daily differential phase velocity dispersion curves for the fundamental

mode (blue curve, the first overtone curve in cyan is shown for reference). The fit to the data after inversion

is shown by the inverted dispersion curves in red. The daily misfit value as well as the misfit reduction from

δC/C = 0 are shown in each panel.



Figure S3. Unconstrained inversion: daily differential phase velocity dispersion curves for the full frequency

band first overtone (cyan curve, the fundamental mode curve in blue is shown for reference). The fit to the

data after inversion is shown by the inverted dispersion curves in magenta. The daily misfit value as well as

the misfit reduction from δC/C = 0 are shown in each panel.



Figure S4. Constrained inversion: daily differential phase velocity dispersion curves for the full frequency

band first overtone (cyan curve, the fundamental mode curve in blue is shown for reference). The fit to the

data after inversion is shown by the inverted dispersion curves in magenta. The daily misfit value as well as

the misfit reduction from δC/C = 0 are shown in each panel.



Figure S5. Unconstrained inversion: daily differential phase velocity dispersion curves for the first overtone

for frequencies > 0.6 Hz (cyan curve, the fundamental mode curve in blue is shown for reference). The fit

to the data after inversion is shown by the inverted dispersion curves in magenta. The daily misfit value as

well as the misfit reduction from δC/C = 0 are shown in each panel.



Figure S6. Constrained inversion: daily differential phase velocity dispersion curves for the first overtone

for frequencies > 0.6 Hz (cyan curve, the fundamental mode curve in blue is shown for reference). The fit

to the data after inversion is shown by the inverted dispersion curves in magenta. The daily misfit value as

well as the misfit reduction from δC/C = 0 are shown in each panel.



Figure S7. Unconstrained inversion: daily differential phase velocity dispersion curves for the first overtone

for frequencies < 0.6 Hz (cyan curve, the fundamental mode curve in blue is shown for reference). The fit

to the data after inversion is shown by the inverted dispersion curves in magenta. The daily misfit value as

well as the misfit reduction from δC/C = 0 are shown in each panel.



Figure S8. Constrained inversion: daily differential phase velocity dispersion curves for the first overtone

for frequencies < 0.6 Hz (cyan curve, the fundamental mode curve in blue is shown for reference). The fit

to the data after inversion is shown by the inverted dispersion curves in magenta. The daily misfit value as

well as the misfit reduction from δC/C = 0 are shown in each panel.


