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A MULTI-RATE ITERATIVE COUPLING SCHEME FOR SIMULATING
DYNAMIC RUPTURES AND SEISMIC WAVES GENERATION IN THE

PRESTRESSED EARTH

RUICHAO YE ∗, KUNDAN KUMAR † , MAARTEN V. DE HOOP ‡ , AND MICHEL CAMPILLO §

Abstract. We present a novel method to simulate the dynamic evolution of spontaneous ruptures governed by
rate- and state-dependent friction laws and the interaction with seismic waves in a prestressed elastically deforming
body. We propose a multi-rate iterative coupling scheme based on the variational form of the elastic-gravitational
equations, and discretize employing a discontinuous Galerkin method, with nonlinear interior boundary conditions
being weakly imposed across the fault surface as numerical fluxes. We introduce necessary interface jump penalty
terms as well as an artificial viscous regularization, with the conditions for penalty and viscosity coefficients given
based on an energy estimate and a convergence analysis. In the multi-rate scheme, an implicit-explicit Euler scheme
in time is invoked, and the time step for the evolution of friction is chosen significantly finer than that for wave
propagation and scattering. This is facilitated by the iterative scheme through the underlying decoupling where the
linear, elastic wave equation plays the role of a Schur-complement to the friction model. A nonlinearly constrained
optimization problem localized to each element on the rupture surface is then formulated and solved using the Gauss-
Newton method. We test our algorithm on several benchmark examples and illustrate the generality of our method
for realistic rupture simulations.

1. Introduction. The interaction of ruptures with seismic waves is of great interest in many
areas of geophysical research and energy production pertaining to the study of natural earthquake
source mechanisms, hydraulic fracturing and induced seismicity (e.g. [41, 57, 15, 35]). As a matter of
fact, the nucleation and propagation of ruptures vary distinctively both with friction laws (e.g. [12,
11, 50, 5, 34, 58]) and rupture geometries (e.g. [46, 30, 38, 59]). Numerical simulations of the rupture
processes governed by elastic wave equation coupled with dynamic friction laws are challenging due
to the low-regularity of solution space [39, 29, 66]. The nonlinear feedback of slip-rate into the friction
coefficient [48, 63] makes the coupled system even more ill-conditioned. Nonetheless, various types of
numerical methods have been used for such simulations, including the boundary integral (BI) method
(e.g. [25, 37]) which is based on layer potentials derived from fundamental solutions of elastic waves
and restricts the rupture model to planar geometry and homogeneous material parameters on each
side of the fault. Other numerical approaches have been designed for more general and realistic
problems, allowing flexibility in the geometry of rupture surfaces and heterogeneity in material
properties. We mention the finite difference (FD) method, with carefully designed curvilinear grids
capturing the surface topography and rupture geometry (e.g. [56, 69, 22, 64]), that has been widely
used. An external weak representation of boundary conditions properly describing the coupling with
friction laws is required. Commonly used methods in this category are summation by parts (SBP)
difference operators (e.g. [33]), and hybridizing with numerical schemes with inherent boundary
integrations (e.g. [42]).

However, the finite element (FE) method accommodates fully unstructured meshes with local
refinements, allowing much more flexibility in characterizing the complex geometry of rupture sur-
faces. It relies on a weak formulation for the elastic wave equation as well as boundary conditions
where coupling with dynamic friction is imposed (e.g. [36, 28, 1]. Traditional FE methods use linear
basis functions and shared nodal points, which result in non-diagonal mass matrices and require
techniques like mass-lumping for efficient solutions; these, however, may lead to nonphysical os-
cillation phenomena. The spectral element (SE) method addresses this problem by using tensor
products of orthogonal polynomial basis functions. While sacrificing some of the freedom by choos-
ing only hexahedral meshes, the SE method results in a diagonal mass matrix that can be trivially
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inverted, and provides high polynomial order accuracy in wavefield simulations (e.g. [24]). Both FE
and SE methods require node splitting locally on the rupture surface that allow for displacement
discontinuity (e.g. [31, 63]).

It seems more natural to solve problems with discontinuities, such as rupture dynamic problems,
by using methods that completely split the domain into elements. Such methods are well known as
the finite volume (FV) method (e.g. [8]) and the discontinuous Galerkin (DG) method (e.g. [20, 61]),
in which the nodes across the interface of two adjacent elements are distinct, and both the continuous
and jumping boundary conditions are weakly imposed via numerical fluxes. There are multiple
choices for the numerical flux, including the central flux (e.g. [55]), which is energy conservative but
has drawback of generating spurious oscillations. An upwind flux is obtained as the solution to
the Riemann problem on the interface, which takes the friction law and multi-physics coupling into
account in a concise and self-consistent manner (e.g. [19, 43, 67, 62, 68]). Among other types of
numerical fluxes are penalty-based schemes (e.g. [49, 17]), which avoid the difficulty of diagonalizing
the system with anisotropic materials that come with heterogeneity.

Our method of solving the coupled system of elastic wave equation and rate- and state-dependent
friction law on a fault is based on our previous work on the DG method with modified penalty flux
[65]. The novelty lies in three aspects. First, we avoid the usage of impedance, or the reliance on
the Riemann solutions of any kind. Instead, we directly impose the distinct parts of the nonlinear
friction law, the slip rate and the friction force, into the variational form as a slip boundary condition
in a weak sense. The stability of this method is guaranteed by penalty terms as well as a viscosity
coefficient, which is proportional to the time step that can be chosen small. Meanwhile, we consider
the full Euler-Lagrange equations, which take into account the impact of the prestress and the initial
gravitational potential on the field of motion. We invoke the so-called Cowling approximation in
which the perturbation of gravitational potential induced by particle motion is ignored. However, the
extension to include this perturbation, that is, transient gravity perturbations, is straightforwardly
obtained by augmenting our system of equations with Poisson’s equation (see e.g. [66]).

We prove convergence of our scheme based on a mixed strain-velocity formulation, for both
continuous and discretized variational forms, in A and B, respectively. To deal with the nonlinear
ordinary differential equation (ODE) for the friction state, which evolves much faster than particle
motions in wave propagation and scattering, we utilize a multi-rate iterative coupling scheme. Such
a scheme was developed for solving problems with different but coupled physical processes using
different time steps. A relevant method is local time stepping (LTS), which is sometimes also called
a multi-rate scheme (e.g. multi-rate Runge-kutta [21, 26]), and is usually focusing on obtaining an
accurate numerical solution to a partial differential equation (PDE) using adaptive time steps based
on local spatial refinements. One example of implementing a multi-rate scheme is Biot’s model
(e.g. [3]) coupling flow and geomechanics, where multiple finer time steps are taken for the stiff part
of the flow within one coarse time step in the equation for elastic deformation. In a similar manner,
in our system, we use coarse time steps for the elastic wave equation defined on a three-dimensional
domain. Each coarse step is evenly divided into finer sub-steps, with which the state ODE defined
on the fault surface is solved. The coupling of these two physical processes forms a nonlinear implicit
system: the linear elastic-wave part takes the role of a Schur complement to the friction model that
contains the state ODE and the friction law. By using the iterative coupling scheme, we rewrite
solving the system as a nonlinearly constrained optimizaton problem defined elementwise on the
rupture surface, and apply the Gauss-Newton method, where the gradient and Hessian matrix are
formed and factorized locally (see C). The overall algorithm greatly reduces the computation time
of the solution to the large implicit nonlinear problem and, in fact, yields linear complexity.

While the focus of our paper is on spontaneous ruptures driven by prestress, we mention the
relevance of our work to fracture problems, as these also involve slip boundary conditions. Like the
rate- and state-dependent friction laws, fracture models include a feedback from slip to boundary
tractions, but further allow normal jumps on the particle velocity across the fracturing boundary. A
well-adopted law describing the fracture model is the linear slip (LS) boundary condition (e.g. [51,
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47])



κ1

κ2

κ3


 [[v

]]
= τ̇ , κ1, κ2, κ3 > 0,

where
[[
v
]]

and τ are the velocity jump and boundary tractions, respectively (see Section 2 for
definitions), and “ ˙ ” denotes time-derivative. As we can see in the definition of nonlinear functions
F and G in (2.10) and (2.11) in Section 2, by taking κ1 →∞ and κ2 = κ3 = κ > 0, the model turns
into a simplified version of a rate- and state-dependent friction model, with F(σ, s, ψ) = ψ and
G(s, ψ) = κs, which is also known as a linear slip-strengthening friction model. In the case where κ
is significantly negative, slip-weakening comes into place, simple explicit algorithms can hardly give
converging solutions, and nonlinear iterations are usually required (e.g. [45, 22]).

2. The nonlinear boundary value problem in a weak form. We consider a 3-dimensional
bounded domain Ω ⊂ R3, which is representative of the earth with fully (anisotropic) elastic ma-
terial. (We ignore anelastic effects.) We further assume that Ω is a disjoint union of Lipschitz

subdomains Ω =
⋃k0

k=1 Ωk, with interior boundaries given by

Σ =
⋃

1≤k<k′≤I
∂Ωk ∩ ∂Ωk′ \ ∂Ω.

We denote by Σc the non-slip solid–solid interfaces, and by Σf the slipping rupture surface. We
choose n on Σ ∪ ∂Ω as the unit normal vector of interior and exterior boundaries, which satisfies
n ∈ L∞(Σ∪ ∂Ω)3, and label the two sides across Σ by “ -” and “ +”. We denote the difference and
average of any scalar or vector quantity v across Σ respectively by

[[
v
]]

:= v+ − v− and
{{
v
}}

:= 1
2

(
v+ + v−

)
.

We use the subscript notation “(�)‖” for the tangential component with regards to n, such that

v‖ := (I − nTn) · v = v − (n · v)n,

where I is the 3× 3 identity matrix.

2.1. The prestressed state. In the system of equations, we account for the reference gravi-
tational potential, φ0, solving

(2.1) ∆Φ0 = 4πGρ0,

where ρ0 is the initial density prior to the nucleation, and G stands for the gravitational constant.
ρ0 is assumed uniformly bounded in Ω and away from zero, that is,

0 < Cρ0 ≤
∥∥ρ0
∥∥
L∞(Ω)

≤ C?ρ0 .

By omitting rotation of the earth, we obtain the prestress tensor T 0 that satisfies the mechanical
equilibrium equation,

(2.2) ∇ · T 0 = ρ0∇Φ0 = ρ0g0,

where g0 := ∇Φ0 is the gravitational acceleration. We expect that Φ0 ∈ W 2,∞ everywhere in R3

(by regularizing ρ0 if necessary), which means that the gradient of gravitational acceleration as well
as the divergence of prestress are bounded everywhere, that is,
(2.3)∥∥∇g0

∥∥
L∞(R3)

=
∥∥∇∇Φ0

∥∥
L∞(R3)

≤ CΦ0 , and
∥∥∇·T 0

∥∥
L∞(R3)

≤
∥∥ρ0
∥∥
L∞(R3)

∥∥∇Φ0
∥∥
L∞(R3)

≤ C?ρ0CΦ0 .
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symbols physical meaning reference equation

ρ0 initial density (2.1)

Φ0 initial gravitational potential (2.1)

T 0 prestress tensor (2.2)

g0 gravitational acceleration (2.2)

u particle displacement (2.4)

v particle velocity (2.4)

E strain tensor (2.4)

C isentropic stiffness tensor (2.5)

ΛT
0

elastic tensor (2.5)

TPK1 first Piola-Kirchhoff stress tensor (2.6)

s slip velocity on rupture surface (2.7)

s slip-rate on rupture surface (2.7)

ns instantaneous (Eulerian) normal direction (2.8)

T s (Eulerian) Cauchy stress (2.8)

τ s instantaneous (Eulerian) traction on rupture surface (2.8)

τ f friction force on rupture surface (2.9)

Table 2.1: List of symbols.

We invoke the Cowling approximation, that is, ignore the perturbation of gravitational potential
generated by mass redistribution. Before the nucleation of a rupture, the system is in a steady
state with force equilibrium and zero particle displacement and velocity. The spontaneous rupture
then occurs as the material fails at some locations of a pre-existing known fault plane (Σf), and
the rupture spreads catastrophically to adjacent regions, which is also called the “propagation” of
rupture (e.g. [14, p. 187]). The consideration of a time evolving Σf is a delicate issue that is outside
the scope of this paper.

We denote by u the particle displacement, and by

(2.4) v := u̇ and E := ∇u

the particle velocity and strain tensor, respectively. We write ΛT
0

for the elastic tensor which
depends on T 0 and the in situ isentropic stiffness tensor C,

(2.5) ΛT
0

ijkl = Cijkl + 1
2

(
T 0
ijδkl + T 0

klδij + T 0
ikδjl − T 0

jlδik − T 0
jkδil − T 0

ilδjk
)

such that TPK1 = ΛT
0

: E stands for the first Piola-Kirchhoff stress perturbation. In other words,

(2.6) TPK1 = C : E + 1
2

(
T 0Tr(E) + I(T 0 : E) + T 0E − (T 0E)T − (ET 0)T −ET 0

)
.

2.2. Dynamic boundary conditions. We define the slip velocity and its magnitude, the
slip-rate, by

(2.7) s :=
[[
v‖
]]

= v+
‖ − v−‖ , s := |s |.
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The particle displacement and the Cauchy stress on Σf satisfy the non-opening slip boundary con-
ditions [14, (2.80) and (2.81)],

(2.8)
[[
ns · u

]]
= 0,

[[
ns · T s

]]
= 0, on Σf .

We denote by τ s = ns · T s the total traction in the Eulerian representation. The force balancing
on the rupture surface requires that the tangential component of τ s equates the friction force, that
is,
(
ns · T s

)
‖ = τ f , the direction of which is opposite to the slip velocity, that is (e.g. Day et al.

(2005) [16, (4)], Moczo et al. (2014) [40, p. 60]),

(2.9) τf s− s τ f = 0,

where τf := |τ f | signifies the magnitude of friction force. We focus on the Dieterich-Ruina friction
law discussed in Rice et al. [48] depending on compressive stress, slip-rate and state variable,

(2.10) τf = F(σ, s, ψ),

in which ψ describes the maturity of rupture, and satisfies the ordinary differential relation

(2.11) ψ̇ + G(s, ψ) = 0.

We make the following assumptions regarding the rate- and state-dependent friction law (see also
[66, Section 2]),

0 < CF,σ ≤
∂F(σ, s, ψ)

∂σ
≤ C?F,σ,

0 < CF,ψ ≤
∂F(σ, s, ψ)

∂ψ
≤ C?F,ψ, 0 < CF,s ≤

∂F(σ, s, ψ)

∂s
≤ C?F,s,

0 ≤ CG,ψ ≤
∂G(s, ψ)

∂ψ
≤ C?G,ψ, and

∣∣∣∣
∂G(s, ψ)

∂s

∣∣∣∣ ≤ C?G,s,

for all σ ∈ R+, s, ψ ∈ [0,∞).

(2.12)

The dynamic boundary condition for the first Piola-Kirchoff stress can be derived from (2.8) and
yields to first-order approximation (e.g. [14, p. 68], [10, p. 47])

(2.13)
[[
n · TPK1 −∇Σ · (u (n · T 0))

]]
= 0.

[[
n · u

]]
= 0 on Σf ,

where ∇Σ

:= ∇ − n∂n is the surface gradient. Following the same procedure, one can also derive
that

(2.14) τ s ≈n · TPK1 + n · T 0 −∇Σ · (u (n · T 0)).

We also write the dynamic boundary conditions on Σc, the solid-solid interfaces, with standard
continuity conditions for the traction and the particle velocity (e.g. [14, (2.79) and (3.65)])

(2.15)
[[
n · TPK1

]]
= 0,

[[
u
]]

= 0, on Σc,

and based on the continuity of prestress
[[
n · T 0

]]
= 0, one has

(2.16)
[[
n · (C : E)

]]
= 0, on Σc.

We assume that the rupture remains compressive, or, in other words, the compressive normal stress
σ is positive throughout time. Therefore, σ = −n · T s · n if the trace of T s is positive in tension.
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2.3. Energy spaces. We denote by L2(Ω) the space of square integrable functions on the
Lipschitz composite domain Ω defined in Section 2. We define the Sobolev space

H :=

{
v ∈ L2(Ω)

∣∣∣∣
k0∑

k=1

∥∥∇v
∥∥2

L2(Ωk)
<∞

}
,

with the norm

∥∥v
∥∥
H :=

(
k0∑

k=1

∥∥v
∥∥2

H1(Ωk)

) 1
2

.

With the assumption that the material parameters belong to L∞(Ω), and that the deviatoric part

of T 0 is small enough such that ΛT
0

is coercive (see [18, 66]), we define the following weighted
inner products,

(
v,w

)
L2(Ω;ρ0)

:=

k0∑

k=1

∫

Ωk

(v ·w)ρ0 dΩ,

(
E,H

)
L2(Ω;ΛT0

)
:=

k0∑

k=1

∫

Ωk

H : (ΛT
0

: E) dΩ,

(2.17)

with corresponding weighted norms that have the following equivalences,

(2.18)
Cρ0

∥∥u
∥∥2

L2(Ω)
≤

∥∥u
∥∥2

L2(Ω;ρ0)
≤ C?ρ0

∥∥u
∥∥2

L2(Ω)
,

CΛ

∥∥E
∥∥2

L2(Ω)
≤

∥∥E
∥∥2

L2(Ω;ΛT0
)
≤ C?Λ

∥∥E
∥∥2

L2(Ω)
.

We introduce the space for the weak solution as

V1 =

{
u ∈ L∞

(
[0, T ];H

)
∣∣∣∣∣
u̇ ∈ L2

(
[0, T ];H

)
∩ L∞

(
[0, T ];L2(Ω)

)
,

ü ∈ L2
(
[0, T ];H′

)
}
,

V2 =

{
E ∈ L∞

(
[0, T ];L2(Ω)

) ∣∣∣ Ė ∈ L2
(
[0, T ];L2(Ω)

)}
,

V3 =

{
ψ ∈ L∞

(
[0, T ];L2(Σf)

) ∣∣∣ ψ̇ ∈ L2
(
[0, T ];L2(Σf)

)}
.

(2.19)

In the above, H′ is the dual space of H. We let Pp be the space of polynomials of degree lower
than or equal to p. Based on the Weierstrass approximation theorem,

⋃∞
p=1 Pp is dense in L2. For

the Lipschitz composite domain Ω =
⋃I
k=1 Ωk, we define space Pp such that

Pp(Ω) :=
{
v ∈ L2(Ω)

∣∣∣ v|Ωk
∈ Pp(Ωk), for k = 1, 2, · · · , I

}
.

In other words, Pp(Ω) is the space of piecewise smooth functions which are polynomials of degree
at most p within each Lipschitz subdomain of Ω. We furthermore denote V p1 := V1 ∩ Pp(Ω),
V p2 := V2 ∩ Pp(Ω) and V p3 := V3 ∩ Pp(Ω).

Following Arnold et al. [7], one can define a linear continuous map (a lifting operator) rf : V1 →
Pp(Ω) such that

(2.20)

∫

Ω

rf(v) : H dΩ =

∫

Σf

[[
n · v

]] {{
n ·H · n

}}
dΣ, ∀H ∈ Pp(Ω).

We use the operator rf in composing the penalty-based weak form in the following section.
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2.4. Weak form of the coupled system. In a companion paper [66], we present and analyze
the variational form of the system coupling the elastic-gravitational system of equations with rupture
dynamics. Here, we introduce the mixed strain-velocity variational form by introducing the strain
tensor E, the symmetrized gradient of particle displacement, as an unknown that allows us to
compute the stress in a more direct way. We recall the strong form of particle motion in the
Cowling approximation as

(2.21) ρ0
(
ü+ u · (∇g0)

)
−∇ · TPK1 = 0.

The first order hyperbolic system yielding (2.21) as well as the equations on the interior boundaries
in (2.9)-(2.14) are rewritten weakly as follows.

Problem 1. Find (u,E, ψ) ∈ V1 × V2 × V3 such that

∫

Ω

ρ0
(
ü+ u · (∇∇Φ0)

)
·w dΩ +

∫

Ω

(
ΛT

0

: E
)

: ∇w dΩ

+ γ

∫

Ω

(
(Ė :∇w) + (u̇ ·w)

)
dΩ + αf

∫

Ω

rf

(
u+ u̇

)
: rf

(
w
)

dΩ

+

∫

Σf

τ f ·
[[
w‖
]]

dΣ−
∫

Σf

σ
[[
n ·w

]]
dΣ−

∫

Σf

[[
τ 2 ·w

]]
dΣ

=

∫

Σf

(
n · (T 0 + T δ)

)
·
[[
w
]]

dΣ,

(2.22a)

∫

Ω

Ė : H dΩ +

∫

Ω

u̇ · (∇ ·H) dΩ +

∫

Σf

{{
u̇
}}
·
[[
n ·H

]]
dΣ +

∫

Σf

s ·
{{
n ·H

}}
dΣ = 0,

(2.22b)

∫

Σf

ψ̇ ϕ dΣ +

∫

Σf

G(s, ψ)ϕ dΣ = 0,

(2.22c)

with

s =
[[
u̇‖
]]
, s :=|s |,(2.23a)

τ 2 +∇Σ ·
(
u
(
n · T 0

))
=0,(2.23b)

σ + n ·
(
n ·
(
T 0 + T δ +

{{
ΛT

0

: E
}})

+
{{
τ 2

}})
=0,(2.23c)

F(σ, s, ψ)s− sτ f =0,(2.23d)

holds for all (w,H, ϕ) ∈ V p1 × V p2 × V p3 .

The boxed terms in (2.22a) indicate a viscosity regularization term and a boundary penalty term,
with the viscosity coefficient denoted by γ and the penalty coefficient by αf , both being positive
constants. The above formulation assumes that Ω is a sufficiently large open set such that the
boundary integration term on ∂Ω vanishes. Nevertheless, including such a term (e.g. a traction-free
boundary, see Section 5) brings no issue in both analysis and numerical implementations. We give
the precise criteria for γ and αf ensuring the well-posedness of this coupled weak formulation in A.
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3. The discontinuous Galerkin method with implicit time discretization. We parti-
tion the domain Ω into tetrahedral finite elements, Ω =

⋃
Ωe, such that the unstructured tetrahedral

mesh is consistent with the geometry, that is, Σ ⊂ ⋃ ∂Ωe. We distinguish the facets attached to
the rupture plane with slip boundary conditions by Σe

f , and thus Σf =
⋃

Σe
f . All other facets of the

interior elements are denoted by Σe
c. We set

V p1h =

{
u ∈ V1

∣∣∣ ui
∣∣
Ωe ∈ Pp

(
Ωe
)
, i ∈ {1, 2, 3}

}
,

V p2h =

{
E ∈ V2

∣∣∣ Eij
∣∣
Ωe ∈ Pp

(
Ωe
)
, i, j ∈ {1, 2, 3}

}
,

V p3h =

{
ψ ∈ V3

∣∣∣ ψ
∣∣
Σe

f

∈ Pp
(
Σe

f

)}
.

(3.1)

To simplify the analysis, we assume that the elastic parameters are piecewise constant, that is,

ρ0
h,
(
ΛT

0

h

)
ijkl

,
(
T 0
h

)
ij
∈
{
ϕ ∈ L∞(Ω)

∣∣∣ ϕ|Ωe ∈ P0

(
Ωe
)}
, i, j, k, l ∈ {1, 2, 3}

and that

Φ0
h ∈

{
Φ ∈W 2,∞(R3)

∣∣∣Φ|Ωe ∈ P2

(
Ωe
)}

such that Kh := ∇h∇hΦ0
h is piecewise constant, where ∇h is the gradient of polynomials within

Ωe. Instead of using universal constants αf and γ, we implement elementwise coefficients αe
f and

γe, which satisfy the conditions stated by Theorem B.1 in B. A constant αe
c > 0 is also introduced

as a penalty coefficient on continuous boundary conditions that enforce the coercivity of the DG
formulation (see details in Ye et al. (2016) [65]). The semi-discretized DG formulation is therefore
obtained as follows

Problem 2. Find (uh,Eh, ψh) ∈ V p1h × V
p
2h × V

p
3h such that

∑

Ωe

∫

Ωe

((
ρ0
h

(
üh + uh ·Kh

)
+ γeu̇h

)
·wh +

((
ΛT

0

h : Eh + γeĖh

)
: ∇wh

))
dΩ

+
∑

Σe
f

∫

Σe
f

((
τ f h − σhn

)
·
[[
wh

]]
−
[[
τ 2h ·wh

]]
+ αe

f

[[
n · (uh + u̇h)

]] [[
n ·wh

]])
dΣ

+
∑

Σe
c

∫

Σe
c

({{
n · (ΛT 0

h : Eh)
}}

+ αe
c

[[
u̇h
]])
·
[[
wh

]]
dΣ =

∑

Σe
f

∫

Σe
f

(
n · (T 0

h + T δh)
)
·
[[
wh

]]
dΣ,

(3.2a)

∑

Ωe

∫

Ωe

(
Ėh : Hh + u̇h · (∇ ·Hh)

)
dΩ +

∑

Σe
f

∫

Σe
f

({{
u̇h
}}
·
[[
n ·Hh

]]
+ sh ·

{{
n ·Hh

}})
dΣ

+
∑

Σe
c

∫

Σe
c

({{
u̇h
}}

+ αe
c

[[
n · (ΛT 0

h : Eh)
]])
·
[[
n ·Hh

]]
dΣ = 0,

(3.2b)

∫

Σe
f

ψ̇hϕh dΣ +

∫

Σe
f

G(sh, ψh)ϕh dΣ = 0,

(3.2c)

8







τ 2h +∇Σ · (uh (n · T 0
h)) = 0,

σh + n ·
(
n ·
(
T 0
h + T δh +

{{
ΛT

0

h : Eh

}})
+
{{
τ 2h

}})
= 0,

sh =
[[
u̇h ‖

]]
, sh := |sh |,

shF
(
σh, sh, ψh

)
− shτ f h = 0,

on Σe
f .

(3.2d)

for all test functions (Hh,wh, ϕh) ∈ V p1h × V
p
2h × V

p
3h.

We use the particle velocity vh = u̇h, and discretize the time interval with a uniform time step
∆t = T

NT
, and write tn = n∆t . The time discretization is indicated by the superscript (n). We

introduce

V̂ p1h =

{
u ∈ H

∣∣∣ ui
∣∣
Ωe ∈ Pp

(
Ωe
)
, i ∈ {1, 2, 3}

}
,

V̂ p2h =

{
E ∈ L2(Ω)

∣∣∣ Eij
∣∣
Ωe ∈ Pp

(
Ωe
)
, i, j ∈ {1, 2, 3}

}
,

V̂ p3h =

{
ψ ∈ L2(Σf)

∣∣∣ ψ
∣∣
Σe

f

∈ Pp
(
Σe

f

)}
,

(3.3)

as the solution space for the time-discretized problem. We then rewrite Problem 2 as a discretized
coupling system with backward Euler finite differencing in time

Problem 3. Given (u
(n−1)
h ,E

(n−1)
h , ψ

(n−1)
h ) ∈ V̂ p1h × V̂

p
2h × V̂

p
3h, find (u

(n)
h ,v

(n)
h ,E

(n)
h , ψ

(n)
h ) ∈

V̂ p1h × V̂
p
1h × V̂

p
2h × V̂

p
3h, such that

∑

Ωe

∫

Ωe

(
ρ0
h

(
1

∆t
v

(n)
h + u

(n)
h ·Kh

)
+ γev

(n)
h

)
·wh dΩ +

∑

Ωe

∫

Ωe

(
ΛT

0

h : E
(n)
h +

γe

∆t
E

(n)
h

)
: ∇wh dΩ

+
∑

Σe
f

∫

Σe
f

((
τ

(n)
f h − σ

(n)
h n

)
·
[[
wh

]]
−
[[
τ

(n)
2h ·wh

]])
dΣ +

∑

Σe
f

αe
f

∫

Σe
f

[[
n · (u(n)

h + v
(n)
h )

]] [[
n ·wh

]]
dΣ

+
∑

Σe
c

∫

Σe
c

({{
n · (ΛT 0

h : E
(n)
h )
}}

+ αe
c

[[
v

(n)
h

]])
·
[[
wh

]]
dΣ

=
1

∆t

∑

Ωe

∫

Ωe

(
ρ0
hv

(n−1)
h ·wh + γeE

(n−1)
h : ∇wh

)
dΩ +

∑

Σe
f

∫

Σe
f

(
n ·
(
T 0
h + T

δ (n)
h

))
·
[[
wh

]]
dΣ,

(3.4a)

∑

Ωe

∫

Ωe

( 1

∆t
E

(n)
h : Hh + v

(n)
h · (∇ ·Hh)

)
dΩ +

∑

Σe
f

∫

Σe
f

({{
v

(n)
h

}}
·
[[
n ·Hh

]]
+ s

(n)
h ·

{{
n ·Hh

}})
dΣ

+
∑

Σe
c

∫

Σe
c

({{
v

(n)
h

}}
+ αe

c

[[
n · (ΛT 0

h : E
(n)
h )

]])
·
[[
n ·Hh

]]
dΣ =

1

∆t

∑

Ωe

∫

Ωe

E
(n−1)
h : Hh dΩ,

(3.4b)

∫

Σe
f

ψ
(n)
h ϕh dΣ + ∆t

∫

Σe
f

G(s
(n)
h , ψ

(n)
h )ϕh dΣ =

∫

Σe
f

ψ
(n−1)
h ϕh dΣ,

(3.4c)
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with

τ
(n)
2h +∇Σ · (u(n)

h (n · T 0
h)) = 0,(3.5a)

σ
(n)
h + n ·

(
n ·

{{
ΛT

0

h : E
(n)
h

}}
+
{{
τ

(n)
2h

}})
= − n ·

(
T 0
h + T

δ (n)
h

)
· n,(3.5b)

u(n) −∆tv(n) =u(n−1),(3.5c)

s
(n)
h −

[[
v

(n)
h ‖

]]
= 0, s

(n)
h =

∣∣ s(n)
h

∣∣,(3.5d)

s
(n)
h F

(
σ

(n)
h , s

(n)
h , ψ

(n)
h

)
− s(n)

h τ
(n)
f h = 0,(3.5e)

for all test functions (Hh,wh, ϕh) ∈ V̂ p1h × V̂
p
2h × V̂

p
3h.

Remark 1. We choose an implicit Euler discretization rather than a higher-order scheme for
the coupled system due to the fact that the solution of the time-continuous Problem 1 has limited
regularity in time, as is apparent in the solution space (cf. (2.19)). In particular, the particle velocity,
v, is only once differentiable in the weak sense. A detailed proof justifying the solution space can be
found in our companion paper [66]. Numerical examples in Section 5 illustrate that even with the
highest refinements considered in both space and time, some oscillations remain in the solutions.

The coupling system described by Problem 3 can be solved by a general nonlinear optimization
approach such as Newton’s method. This approach is computationally expensive, however, because
of the factorization of global Hessian matrices. We propose a computationally efficient iterative
scheme as an alternative in the next section.

4. Iterative coupling and multi-rate time scheme. In order to obtain an accurate solution
with affordable effort, we derive an alternative approach using a fixed-point iteration while separating
the state ODE from the elastic wave equation, and conducting domain decomposition (e.g. [9, Section
6.1]) to separate the variables on Σe

f from elsewhere.

We rewrite (3.4a,b) by moving the surface integration terms on Σe
c to the right-hand-side, and

construct a sequence of linear-nonlinear coupling problems for each time step [tn−1, tn], which follows
the iteration for k = 1, 2, · · · , with v(n,k) representing the value at the kth iteration of a variable v
at time t = tn. Then, we seek the solution of the following

Problem 4. Given (u
(n−1)
h ,E

(n−1)
h , ψ

(n−1)
h )∈ V̂ p1h× V̂

p
2h× V̂

p
3h, and (v

(n,k−1)
h ,E

(n,k−1)
h )∈ V̂ p1h×

10



V̂ p2h, find (u
(n,k)
h ,v

(n,k)
h ,E

(n,k)
h , ψ

(n,k)
h ) ∈ V̂ p1h × V̂

p
1h × V̂

p
2h×V̂

p
3h, such that

∑

Ωe

∫

Ωe

(
ρ0
h

(
1

∆t
v

(n,k)
h + u

(n,k)
h ·Kh

)
+ γev

(n)
h

)
·wh dΩ +

∑

Ωe

∫

Ωe

(
ΛT

0

h : E
(n,k)
h +

γe

∆t
E

(n,k)
h

)
: ∇wh dΩ

+
∑

Σe
f

∫

Σe
f

((
τ

(n,k)
f h − σ(n,k)

h n
)
·
[[
wh

]]
−
[[
τ

(n,k)
2h ·wh

]])
dΣ

+
∑

Σe
f

αe
f

∫

Σe
f

( [[
n ·
(
u

(n,k)
h + v

(n,k)
h

) ]] [[
n ·wh

]])
dΣ

=
1

∆t

∑

Ωe

∫

Ωe

(
ρ0
hv

(n−1)
h ·wh + γeE

(n−1)
h : ∇wh

)
dΩ

−
∑

Σe
c

∫

Σe
c

({{
n · (ΛT 0

h : E
(n,k−1)
h )

}}
+ αe

c

[[
v

(n,k−1)
h

]])
·
[[
wh

]]
dΣ

+
∑

Σe
f

∫

Σe
f

(
n · (T 0

h + T
δ (n)
h )

)
·
[[
wh

]]
dΣ,

(4.1a)

∑

Ωe

∫

Ωe

( 1

∆t
E

(n,k)
h : Hh + v

(n,k)
h · (∇ ·Hh)

)
dΩ +

∑

Σe
f

∫

Σe
f

({{
v

(n,k)
h

}}
·
[[
n ·Hh

]]
+ s

(n,k)
h ·

{{
n ·Hh

}})
dΣ

=
1

∆t

∑

Ωe

∫

Ωe

E
(n−1)
h : Hh dΩ−

∑

Σe
c

∫

Σe
c

({{
v

(n,k−1)
h

}}
+ αe

c

[[
n · (ΛT 0

h : E
(n,k−1)
h )

]])
·
[[
n ·Hh

]]
dΣ

,

(4.1b)

∫

Σe
f

ψ
(n,k)
h ϕh dΣ + ∆t

∫

Σe
f

G(s
(n,k)
h , ψ

(n,k)
h )ϕh dΣ =

∫

Σe
f

ψ
(n−1)
h ϕh dΣ,

(4.1c)

with

τ
(n,k)
2h +∇Σ ·

(
u

(n,k)
h

(
n · T 0

h

))
= 0, σ

(n,k)
h + n ·

(
n ·

{{
ΛT

0

h : E
(n,k)
h

}}
+
{{
τ

(n,k)
2h

}})
= −n ·

(
T 0
h + T

δ (n)
h

)
· n,

u
(n,k)
h −∆tv

(n,k)
h = u

(n−1)
h , s

(n,k)
h −

[[
v

(n,k)
h ‖

]]
= 0, s

(n,k)
h =

∣∣ s(n,k)
h

∣∣,

(4.2a)

s
(n,k)
h F

(
σ

(n,k)
h , s

(n,k)
h , ψ

(n,k)
h

)
− s(n,k)

h τ
(n,k)
f h = 0,

(4.2b)

for all test functions (Hh,wh, ϕh) ∈ V̂ p1h × V̂
p
2h × V̂

p
3h,

For the first iteration k = 1 the initial value of variables are obtained from the previous time
step by

(4.3) v
(t,0)
h = v

(n−1)
h , u

(t,0)
h = u

(n−1)
h , E

(t,0)
h = E

(n−1)
h , ψ

(t,0)
h = ψ

(n−1)
h .

We show the contraction of this iterative algorithm in B with criteria for γe, αe
f , αe

c and ∆t precisely
given in Theorem B.1.

Due to the fact that the evolution of rupture state is a significantly faster physical process
than the wave propagation and scattering during fault propagation, we use a multi-rate scheme,
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which is based on the same backward Euler time integration method but with finer substeps. In
particular, as an alternative to (4.1c), we use N substeps within each time step ∆t , which generates
the multi-rate scheme by

∫

Σe
f

ψ
(n,k)
h ϕh dΣ +

∆t

N

N∑

i=1

∫

Σe
f

θ
(n),i
h ϕh dΣ =

∫

Σe
f

ψ
(n−1)
h ϕh dΣ,(4.4a)

θ
(n),i
h = −G


 s

(n−1)
h + i

N (s
(n,k)
h − s(n−1)

h ) , ψ
(n−1)
h +

∆t

N

i∑

j=1

θ
(n),j
h


 .(4.4b)

We solve the coupled nonlinear problem (4.1a-f) by defining a constrained optimization problem, in
which the objective function,

(4.5) L :=
1

2

∥∥∥∥
s

(n,k)
h

s
(n,k)
h

F
(
σ

(n,k)
h , s

(n,k)
h , ψ

(n,k)
h

)
− τ (n,k)

f h

∥∥∥∥
2

,

follows from (4.2b) upon normalization, with linear constraints (4.1a,b) and (4.2a), and nonlinear
constraint (4.1c). Compared with the original, implicitly discretized problem, the iterative problem
is localized to each element, where the Hessian matrices become block-diagonal. Details of the
numerical algorithm solving this problem using the Gauss-Newton method are provided in C.

5. Computational experiments. Existing results demonstrate the complex features in the
nucleation of ruptures, especially with dissimilar materials (e.g. [6, 13]) and non-planar faults with
geometries such as corners or branches (e.g. [46, 30, 38]). In both cases, slip-pulse responses may
apear in the simulations. Ill-posedness without regularization has been apparent for a wide range
of material contrasts (for example, in [13]), that is, the numerical solution does not converge under
mesh refinements. In this section, we carry out computational experiments with our algorithm
including regularization by artificial viscosity, which yields convergent results. To benchmark with
existing results, we impose the identical assumption that the effects of the initial gravitational
potential and prestress on the elastic wave propagation are ignored (“non-prestressed”) although

prestress is still accounted for in the boundary source term. In other words, ΛT
0

ijkl ≡ Cijkl and
τ 2 ≡ 0 in Subsections 5.1-5.5. We discuss the effects of static self-gravitation and prestress on the
solution in Subsection 5.6.

5.1. Planar fault with homogeneous material. We verify our numerical algorithm by
testing it on benchmark problem “TPV102” designed by the SCEC/USGS Spontaneous Rupture
Code Verification Project (SRCVP) [27], which has been used in recent dynamic rupture studies
(e.g. [22]). The model is of size [-18km , 18km] × [-18km , 0km] × [-12km , 12km], where the depth
is along the x2-axis, and x2 = 0 represents the earth’s surface at which a traction-free boundary
condition is applied. The planar strike-slip rupture is located on x3 = 0, on which the friction
parameters are set to be slip-weakening within the central portion [-15km , 15km] × [-15km , 0km],
with a smooth transition into a slip-strengthening condition at positions close to the boundary of
the model. The nonlinear dependency of friction magnitude upon normal stress, slip rate and state
variable is, here, given by

F(σ, s, ψ) = a σ arcsinh

(
s

2s0
exp

(f0 + b ln(s0ψ/L)

a

))
,

while the state ODE is given by

G(s, ψ) = −1 +
s

L
ψ.

The material parameters and components of the prestress tensor are shown in Table 5.1, where the
coefficient a as well as the initial value of the state variable are assigned by a function depending
on position, and satisfy the quasi-static assumptions.
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Vp Vs ρ ψini

6.0km/s 3.464km/s 2.67g/cm3 1.606× 109∼13s

a b L s0

0.008 ∼ 0.016 0.012 2cm 1µm/s

f0 sc (T 0)13 (T 0)33

0.6 10−6µm/s 75MPa −120MPa

Table 5.1: Material parameters, rupture coefficients and prestress in the homogeneous-elastic planar
rupture model TPV102. The components of T 0 not listed take the value 0. The quantity sc is an
aseismic (creeping) velocity that keeps s away from 0.

The nucleation of rupture takes place with a time-variant perturbation in stress, T δ, in a ball-shaped
region centered at (0.0km,-7.5km,0.0km) with radius r0 =3km, following the scalar function

T δ13(r, t) = T δ31(r, t) = τ δ g(r)h(t− 0),

g(r) =

{
exp

(
r2

r2−r2
0

)
if r < r0

0 if r ≥ r0

, h(t) =

{
exp

(
(t−1)2

t(t−2)

)
if 0 < t < 1

1 if t ≥ 1

where r is the distance of a point in the model to the hypocenter, and τ δ = 25MPa.
We extend the model to [-20km , 20km] × [-20km , 0km] × [-12km , 12km], with extra layers

for absorbing boundaries, and discretize the computational domain using a fully unstructured tetra-
hedral mesh with 1,912,556 elements generated with DistMesh [44] and Tetgen [54]. The rupture
plane is properly aligned by subdomain interfaces, and the triangular facets on the fault have a
mean area of 0.015km2, as is shown in Figure 1. In the numerical simulations we use polynomial
orders p = 1, p = 2 and p = 3. The viscosity coefficient is assigned elementwise, which takes a
constant value of 1.0× 10−7GPa·s within the elements attached to the rupture plane, and 0 in the
remaining ones. The time steps used for p = 1, 2, 3 are 0.064, 0.032 and 0.016ms, respectively, and
each step is divided evenly into 16 substeps (see (4.4ab)) to solve the state ODE. We conducted
a domain decomposition and ran the simulation on a distributed memory machine using 256 cores.
We show the snapshots at t=4.5, 5.5 and 6.5 s for the p = 2 simulation, with the three components
of particle velocity in the volume listed in Figure 2. Figure 3 shows the rupture contour. The
scattering of black dots is due to hard thresholding of the slip-rate at 1mm/s, which illustrates the
oscillatory behavior of the solution. The rupture propagation, and the time variations of friction
force, normal stress, as well as state variable are also shown in Figure 4.

We benchmark our numerical result with the ones using a spectral element (SE) method ([32])
and a finite element (FE) method (PyLith [2]), by comparing the seismograms of stations located
on the fault plane as well as the earth’s surface, as is shown in Figures 5 and 6, respectively. Clearly,
all the physical quantities obtained from the DG simulations match the reference data produced
by existing software within apt tolerance, even with a coarser mesh compared with the ones used
by FE or SE (both using a semi-regular mesh with a size of 0.1km, and the SE modeling using
p = 5). The numerical results obtained by the SE method and our DG method with p ≥ 2 show
very good agreement. In general, numerical results generated by lower-order schemes (FE, DG with
p = 1) show slightly slower propagation speeds of rupture. This effect can be intuitively related to
the intrinsic dissipation of the numerical methods, which affects the solution in a similar manner
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Fig. 1: Visualization of “TPV102” model with unstructured tetrahedral mesh,

as artificial viscosity (see also discussions in Subsection 5.5). For higher-order schemes with smaller
numerical dissipation and artificial viscosity, and correspondingly smaller time steps required by
stability conditions, the numerical solutions approach one with relatively fast rupture propagation
speed, which is consistent with the physics (see Figures 5 and 6).

5.2. Convergence test on a homogeneous planar fault. In the absence of a closed-form
solution for the rate- and state-dependent friction laws in dimension 3, we show the convergence of
our DG algorithm with refinements in space and time discretizations to a reference solution. We
consider a planar fault in a homogeneous surrounding medium. We reduce the size of the “TPV102”
model to a rectangular box of size [-6km, 6km] × [-12km, 0km] × [-6km, 6km], and keep the free
surface on the top of the box at x2 = 0. Absorbing layers (1.8km in thickness) are placed on the
remaining sides of the box. We generate a set of semi-regular tetrahedral meshes that are gradually
refined when getting closer to the rupture plane, such that the elements attached to the rupture
plane are uniform in size. Their identical inradius is considered to be the mesh size in Figure 8,
illustrating the convergence. The elastic parameters of the material and components of the prestress
tensor are identical to those shown in Table 5.1, where coefficient “a” as well as the initial value
of the state variable are assigned such that the rupture gets strengthened when approaching the
absorbing boundaries, in the same manner as in “TPV102”.

In Figure 7, we show one of the meshes and rupture parameters used in this convergence test.
To make the problem sufficiently regular for the convergence test, we choose the viscosity coefficient
equal to γ = 2.0 × 10−5GPa·s, which is larger than the one in the “TPV102” test; this has little
impact on the propagation of rupture (see also Section 5.5). For the convergence test with spatial
hp-refinements, we use a uniform sufficiently small time step of ∆t = 0.02ms without multi-rate, for
the tests on 6 different mesh sizes and 1 − 4 polynomial orders. We estimate the numerical error
by analyzing the slip curves recorded at 25 on-fault receivers (Figure 7). The numerical results
obtained from the finest mesh with 4th order polynomial basis are considered as the reference, and
the errors for the other mesh-size and polynomial orders are computed as the sum of L2 norms
of the differences over all 25 receivers. The curve plotted in Figure 8(a) shows convergence rates
of approximately p + 1 for polynomial orders p = 1 and 2, which are consistent with the optimal
rates of the DG method. However, we cannot obtain a higher convergence rate even with increasing
order due to the limited regularity of the solution to the coupled problem. Meanwhile, despite
the fact that no theoretical convergence rate in time can be obtained (the particle velocity is up
to first order weakly differentiable in time), we nevertheless obtain numerical convergence for this
particular example, with fixed mesh size h = 12.0m and p = 2 polynomial basis. The errors are

14



t = 4.5s t=5.5s t=6.5s

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2: Snapshots of particle velocities for “TPV102” model at t = 4.5, 5.5, 6.5 s with (a, b, c)
horizontal component, (d, e, f) vertical component, (g, h, i) normal component, computed by DG
method with polynomial order 2.

computed based on the finest time step ∆t = 0.02ms and highest multi-rate (evenly subdividing ∆t
into 64 steps), which is shown in Figure 8(b). The convergence in time is close to first order, and
the multi-rate scheme can reduce the numerical error with roughly the same rate.

5.3. Planar fault with a bi-material. The presence of a bi-material rupture interface breaks
the symmetry of stress across the fault surface. The strongest coupling at the rupture tip brings
significant impact on the propagation of rupture front, regardless of specific properties of friction
law [52, 4, 53]. To show the capability of our algorithm to simulate a bi-material dynamic rupture
problem, we modify the strong contrast bi-material model “TPV6” designed by SCEC/USGS
SRCVP, by replacing the linear slip-weakening friction law with the rate- and state-dependent
friction law given in Section 5.1. The material parameters are listed in Table 5.2. The size of the
model is [-18km , 18km] × [-18km , 0km] × [-10km , 10km]. The location of the rupture and the
free surface, as well as the space-time dependency of stress perturbation T δ are the same as for the
“TPV102” model in Section 5.1. For the sake of computational efficiency, we discretize the model
using a quasi-regular tetrahedral mesh with 1,058,400 elements, which is also locally refined, and
the fault plane is decomposed into uniform triangles with an area of 1.125× 10−2 km2, as is shown
in Figure 9. We also construct a finer mesh with 1,617,408 elements, and on the fault plane the
uniform triangles with an area of 7.812× 10−3 km2.

In the numerical simulation we use polynomial orders p = 1 and p = 2, and compute the
wavefields until t = 15.0s. We assign elementwise a constant viscosity coefficient, equal to 2.0 ×
10−4GPa·s in the elements attached to the rupture plane, and 0 in the remaining ones. We use time
steps of 0.05ms and 0.025ms, respectively, for the coarser mesh with p = 1 and p = 2, and 0.032ms
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Fig. 3: Rupture contour plot (showing the propagation time when slip-rate exceeds 1mm/s) of the
“TPV102” model, with interval step of 0.5 s. Balls in the figure are indicating the location of
stations whose seismograms are plotted in Figure 5.

for the finer mesh with p = 1. For the state ODE we use a multi-rate scheme with 16 substeps. We
visualize the numerical result of the p = 2 simulation in Figures 10-12. Figure 10 shows snapshots
at t = 5.0, 6.0 and 7.0s, with the three components of particle velocity in the volume listed in
(a)-(i). Figure 11 shows the rupture contour. Compared with Figure 3, the scattering of black dots
stands out on the slower propagating side, which illustrates the much more oscillatory behavior
of the bi-material case than the homogeneous case. Spatial hp-refinements mitigate this (reducing
the magnitude while increasing the frequency of oscillation, see Figures 13-14 for example), while
further time refinement has no observable effect.

The slip rate, friction force, normal stress as well as state variable as functions of time are
shown in Figure 12. In these figures, we observe the asymmetric propagation speed of the rupture,
which is consistent with other results in the study of bi-material models. We show a comparison
of seismograms generated by different mesh sizes and polynomial orders, for deep on-fault stations
in Figure 13, for shallow on-fault stations in Figure 14 where we note the interaction with the
free surface, and for on-ground stations in Figure 15. These demonstrate the convergence of our
algorithm with hp-refinement. The effect of refinement is much more pronounced on the slower
propagating side. Furthermore, the difference among seismograms is much more significant than
this difference in the homogeneous test example. This observation can be closely related to the
nonlinear coupling with normal stress varying in time.

5.4. A non-planar fault with homogeneous material. A realistic fault commonly has
complex geometries, with bending, a step-over, and branching. Here, we consider two step-over
faults with an offset of 1.5 km, connected by a third fault, forming dihedral angles of 166◦. The
material parameters are chosen to be almost the same as in the “TPV102” model, except for the
components of the prestress tensor, and are listed in Table 5.3; the state variable is computed based
on the quasi-static assumption. The size of the model is [-20km , 20km] × [-20km , 0km] × [-
12km , 12km]. The space-time dependency of stress perturbation, T δ, is mostly the same as in the
“TPV102” model in Section 5.1, except that the hypocenter is placed at (-9.0km, -7.5km, 0.0km).

We discretize the model using a fully unstructured, and sufficiently refined, tetrahedral mesh
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t=4.5s t=5.5s t=6.5s

(a)

(b)

(c)

(d)

Fig. 4: Visualization on the rupture plane of “TPV102” model with (a) the slip rate with unit of
m/s, (b) the magnitude of friction force with unit of GPa, (c) the compressive normal stress with
unit of GPa, (d) the state variable (“age” of rupture) with unit of second, at time t = 5.5, 6.5, 7.5
s.

Vp1 Vs1 ρ1 Vp2 Vs2

3.750km/s 2.165km/s 2.225g/cm3 6.0km/s 3.464km/s

ρ2 ψini a b L

2.67g/cm3 1.606× 109∼13s 0.008 ∼ 0.016 0.012 2cm

s0 f0 sc (T 0)13 (T 0)33

1µm/s 0.6 10−6µm/s 75MPa −120MPa

Table 5.2: Material parameters, rupture coefficients and prestress in the modified bi-material model
with planar rupture. The components of T 0 not listed take the value 0. The quantity sc is an
aseismic (creeping) velocity that keeps s away from 0.
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(a)

(b)

Fig. 5: Benchmark of the iterative coupling, DG method for polynomial orders 1, 2 and 3, denoted
respectively by “DG(P1)”, “DG(P2)” and “DG(P3)” in the legend, against the spectral element
(SE) method and the finite element (FE) method on “TPV102” with on-fault stations located at
(a) [0.0 , −3.0 , 0.0]km, and (b) [12.0 , −12.0 , 0.0]km (see also Figure 3), showing the horizontal slip
rate v1, horizontal shear stress τ1, vertical slip rate v3 and state-variable ψ.
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(a) (b)

Fig. 6: Benchmark of the iterative coupling DG method for polynomial orders 1, 2, and 3, denoted
respectively by “DG(P1)”, “DG(P2)” and “DG(P3)” in the legend, with the spectral element (SE)
method and the finite element (FE) method on TPV102 with on-ground stations located at (a)
[0.0 , 0.0 , 9.0] km and (b) [12.0 , 0.0 , 6.0] km, showing the horizontal velocity v1, normal velocity
v2, and vertical velocity v3.

Fig. 7: The semi-regular tetrahedral mesh for one of the convergence test models. The color map
shows the spatial distribution of parameter “a” on the rupture plane, and the green dots represent
the locations of 25 on-fault receivers based on which the numerical errors are computed.
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(a) (b)

Fig. 8: (a) Numerical errors based on each mesh size h and polynomial order p, relative to the
numerical result with h = 9.57m and p = 4, with a linear regression fit showing the approximate
convergence rate. (b) Numerical errors based on each time step ∆t and multi-rate substeps, relative
to the numerical result with ∆t = 0.02ms and multi-rate = 64, with a linear regression fit showing
the approximate convergence rate.

Fig. 9: Visualization of modified “TPV6” model in a quasi-regular tetrahedral mesh locally refined
around the rupture with local mesh size h = 30m.

consisting of 2,101,840 elements, while the rupture surfaces are discretized with 52,340 triangles,
with varying sizes based on the material parameters (see Figure 16). In the numerical simulation
we use polynomial order 1. We choose the viscosity coefficient elementwise, taking a constant value
of 4.0 × 10−7GPa·s in the elements attached to the rupture plane, and 0 in the remaining ones.
We use a time step of 0.032ms and a multi-rate scheme with 16 substeps. We show snapshots at
t = 4.0 ∼ 11.0s of the simulation, with the 3 components of particle velocity in the volume listed
in Figure 18-20. The propagation of rupture, and the time varying friction force, normal stress as
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t = 5.0s t=6.0s t=7.0s

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10: Visualization of particle velocities in the modified “TPV6” model at t = 5.0, 6.0, 7.0 s with
(a, b, c) horizontal component, (d, e, f) vertical component, (g, h, i) normal component, computed
by DG method with polynomial order 2 and h = 30m.

well as state variable are shown in Figures 17, 21 and 22. We also show seismograms at on-fault
stations located at different depths, −3.0,−7.5,−12.0km, in Figure 23. The numerical simulation
reveals that the propagation of rupture is affected by scattering due to the geometry. In particular,
the propagation speed reduces when it goes through a kink (Figure 17), which behavior is consistent
with a theoretical analysis (Madariaga et al. [38]). The variation of compressive normal stress is
significant around the corners of the rupture surface, as illustrated in Figure 22(a) and Figure 23(b).
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Fig. 11: Rupture contour plot of the modified “TPV6” model, with interval step of 0.5 s. Balls in
the figure are indicating the location of stations whose seismograms are plotted in Figure 13 and
Figure 14.

Vp Vs ρ sc

6.0km/s 3.464km/s 2.67g/cm3 10−6µm/s

a b L s0

0.008 ∼ 0.016 0.012 2cm 1µm/s

f0 (T 0)11 (T 0)13 (T 0)33

0.6 −255MPa 75MPa −120MPa

Table 5.3: Material parameters, rupture coefficients and prestress in the homogeneous-elastic
stepping-over rupture model. The components of T 0 not listed take the value 0. The quantity
sc is an aseismic (creeping) velocity that keeps s away from 0.
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t=5.0s t=6.0s t=7.0s

(a)

(b)

(c)

(d)

Fig. 12: Visualization on the rupture plane of modified “TPV6” model with (a) the slip rate with
unit of m/s, (b) the magnitude of friction force with unit of GPa, (c) the compressive normal stress
with unit of GPa, (d) the state variable (“age” of rupture) with unit of second, at time t = 5.0, 6.0,
8.0 s, computed by DG method with polynomial order 2 and h = 30m.
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(a)

(b)

Fig. 13: Comparison of seismograms at on–fault stations located at (a) [−12.0 , −12.0 , 0.0] km, and
(b) [12.0 , −12.0 , 0.0] km of the modified “TPV6” model (see also Figure 11) with variant mesh
size and polynomial order, showing the horizontal and vertical slip rate v1 and v3, horizontal and
vertical shear stress τ1 and τ3, compressive normal stress σ and state-variable ψ.
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(a)

(b)

Fig. 14: Comparison of seismograms at on–fault stations located at (a) [−12.0 , −3.0 , 0.0] km, and
(b) [12.0 , −3.0 , 0.0] km of the modified “TPV6” model (see also Figure 11) with variant mesh size
and polynomial order, showing the horizontal and vertical slip rate v1 and v3, horizontal and vertical
shear stress τ1 and τ3, compressive normal stress σ and state-variable ψ.

25



(a) (b)

Fig. 15: Comparison of seismograms at on–ground stations located at (a) [12.0 , 0.0 , 6.0] km, and
(b) [−12.0 , 0.0 , −6.0] km of the modified “TPV6” model with variant mesh size and polynomial
order, showing the horizontal velocity v1, normal velocity v2, and vertical velocity v3.

Fig. 16: Visualization of stepping-over fault model with unstructured tetrahedral mesh.
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Fig. 17: Rupture contour plot of the stepping-over fault model, with interval step of 0.5 s. Balls in
the figure are indicating the location of stations whose seismograms are plotted in Figure 23.
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5.5. The impact of artificial viscosity on rupture propagation. In Theorem A.1 (A)
and Theorem B.1 (B), we give lower bounds for the viscosity coefficient guaranteeing stability. The
general impact of viscosity on the evolution of rupture dynamics are outside the scope of this paper.
Nevertheless, we show an example demonstrating the importance of choosing an appropriate value
of viscosity coefficient that is sufficiently large for stability, but small enough to preserve the physical
properties of the original problem.

We consider the non-planar rupture problem described in Section 5.4, and choose a set of
relative;y large viscosity coefficients, 2.0×10−5, 4.0×10−5 and 4.0×1.0−4GPa·s, within the elements
attached to the rupture surface, and 0 in the rest ones. The time step used in all four tests is 0.032ms.

We show snapshots of the slip rate at t = 6.0s, when the rupture propagates across the first
corner, for different values of viscosity coefficient in Figure 24. The comparison of rupture contour
is shown in Figure 25. As a general observation from the numerical simulations, the propagation
speed of rupture decreases with increasing viscosity. The impact of viscosity can be significant for
a rupture surface with non-planar geometry, and result in a distinct propagation pattern. With
increasing viscosity the propagation speed of slip is reduced (the left column of Figure 24), while
the variation of normal stress coincides with the slip propagation along the kinks (the right column
of Figure 24). Energy analysis [46, Section 2.1.1] provides hints for the impact of viscosity on the
interaction between normal stress perturbation and rupture propagation.

5.6. The impact of static self-gravitation and prestress on rupture propagation.
Here, we show the impact of static self-gravitation and prestress on the rupture propagation in
the planar fault example “TPV102”. We consider a plane fault residing in the crust of a spherical
reference model (PREM), see [23]). The top of the rupture plane intersect with the surface of earth.
We assume that the initial gravitational potential is generated by the reference density of PREM,
and the prestress is given in Table 5.1. We employ the Cowling approximation, which ignores
the perturbation of gravitational potential. Otherwise, we use the model, and mesh with p = 2,
described in Section 5.1.

In Figure 26, we show the difference of rupture contours obtained from the numerical simulations
based on the non-prestressed assumption and the one that accounts for the initial gravitational
potential and prestress. We also compare the seismograms of stations located on the fault plane in
Figure 27. With the presence of prestress, the relation between the stress tensor and the particle
displacement is altered at each fixed location, based on the Piola transform between Eulerian and
Lagrangian coordinates, which contributes the most to the difference in propagation speed of rupture
on a planar fault. The strike-slip rupture has nearly horizontal particle motion, and the impact of
the static gravitity field to the dynamic process is minor. The normal stress is hardly impacted as
well which is partly due to orientation of the fault plane. The dynamic effects of self-gravitation
upon nucleation are not included in this example, and will be considered in future work.

6. Discussion. We introduce a novel multi-rate iterative scheme coupling the elastic wave
equation with rupture dynamics based on rate- and state-dependent friction laws on faults. We use
discontinuous Galerkin method, with a modified penalty flux, in which the friction law is integrated
in the weak form of particle motion as numerical flux. The time scale for rupture dynamics is sig-
nificantly different from that for elastic wave propagation and scattering. In our splitting approach,
we take several finer implicit time steps for the state ODE within each coarse time step for wave
propagation and scattering. As the analysis shows, this splitting is a contraction in natural norms.
We have tested our numerical approach and algorithm on several spontaneous rupture problems. We
have also shown convergence results with polynomial refinement, and benchmarks against commonly
used algorithms.
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University. K. Kumar acknowledges Toppforsk, Norwegian Research Council project 250223. M. V.
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(a)

(b)

(c)

Fig. 23: Seismograms at on–fault stations located at horizontal location x1 = −12.0 ∼ 12.0km and
depth x2 = −3.0,−7.5,−12.0km of the modified step-over model (see also Figure 17), showing (a)
the amplitude of slip rate s, (b) the increment of compressive normal stress ∆σ = σ + (n · T 0 · n),
and (c) the incremental amplitude of shear stress ∆τ =

∣∣τ f − (n ·T 0)‖
∣∣. Red plots are seismograms

on the intermediate plane between two kinks.
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γ = 4.0× 10−7GPa·s

γ = 2.0× 10−5GPa·s

γ = 4.0× 10−5GPa·s

γ = 1.0× 10−4GPa·s

Fig. 24: Visualization of slip rate (left column) and normal compressive stress (right column) at the
rupture surface of the stepping-over fault model at time t = 6.0s with different viscosity coefficients.
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Fig. 25: Comparison of rupture contour of the stepping-over fault model with different values of the
viscosity coefficient: γ = 4.0× 10−7GPa·s (black), 2.0× 10−5GPa·s (blue), 4.0× 10−5GPa·s (green),
1.0× 10−4GPa·s (red). Contours are plotted from 1.0 to 7.0 s with the interval of 1.0 s.

Fig. 26: Comparison of rupture contours of “TPV102” model by numerical simulations with/without
consideration of the initial gravitational potential and prestress. Interval step is 0.5 s.
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Appendix A. A priori estimate for solutions of the coupled system.
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(a)

(b)

Fig. 27: Comparison of seismograms generated by numerical simulating the planar fault rupturing
with and without the consideration of the impacts of static self-gravitation and prestress. The
on–fault stations are located at (a) [0.0 , 3.0 , 0.0] km, and (b) [12.0 , 12.0 , 0.0] km, showing the
magnitude of slip rate s, compressive normal stress σ and magnitude of tangential stress τ (equals
to the friction force τf),

Here, we show the stability estimate of the spatially discretized and time continuous problem
described by Problem 1 in Section 2.4 in the finite-dimensional subspace V p1 × V p2 × V p3 .

Theorem A.1. If (u,E,Ψ) ∈ V p1 × V p2 × V p3 solves the coupled problem (2.22a)–(2.23d), and
if γ and αf satisfy

γ > 0 and αf ≥ max
( CΛ

2
, γ
)
,(A.1)
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then
(A.2)∥∥u̇
∥∥2

L∞([0,T ];L2(Ω))
+
∥∥u
∥∥2

L∞([0,T ];H)
+
∥∥rf(u)

∥∥2

L∞([0,T ];L2(Ω))
+
∥∥E
∥∥2

L∞([0,T ];L2(Ω))
+
∥∥ψ
∥∥2

L∞([0,T ];L2(Σf ))

+
∥∥u̇
∥∥2

L2([0,T ];H)
+
∥∥rf(u̇)

∥∥2

L2([0,T ];L2(Ω))
+
∥∥Ė
∥∥2

L2([0,T ];L2(Ω))
≤ C.

Proof. We substitute (2.23a) into (2.22b) and integrate by parts, so that

(A.3)

∫

Ω

(
Ė −∇u̇+ rf(u̇)

)
: H dΩ = 0.

By substituting H = Ė +∇u̇+ rf

(
u̇
)

in (A.3), we obtain, with Young’s inequality,

(A.4)
∥∥∇u̇

∥∥2

L2(Ω)
=
∥∥Ė + rf

(
u̇
)∥∥2

L2(Ω)
≤ (1 + δ1)

∥∥Ė
∥∥2

L2(Ω)
+ (1 + δ−1

1 )
∥∥rf(u̇)

∥∥2

L2(Ω)
.

By substituting H = Ė −∇u̇− rf

(
u̇
)

in (A.3), we obtain

(A.5) −
∫

Ω

(∇u̇) : Ė dΩ +
1

2

(∥∥∇u̇
∥∥2

L2(Ω)
+
∥∥Ė
∥∥2

L2(Ω)
−
∥∥rf(u̇)

∥∥2

L2(Ω)

)
= 0.

We integrate (A.3) over time with initial conditions E|t=0 = 0 and u|t=0 = 0, which yields

(A.6)

∫

Ω

(
E −∇u+ rf(u)

)
: H dΩ = 0,

and with H = E +∇u+ rf

(
u
)
, yields

(A.7)
∥∥∇u

∥∥2

L2(Ω)
≤ (1 + δ2)

∥∥E
∥∥2

L2(Ω)
+ (1 + δ−1

2 )
∥∥rf(u)

∥∥2

L2(Ω)
.

We let w = u̇, ϕ = ψ and H = ΛT
0

: E in (2.22a), (2.22c) and (A.3), and notice that n ·
[[
u̇
]]

= 0.
The summation (2.22a)+(2.22c)+(A.3)+(A.5) yields

1

2

d

dt

(∥∥u̇
∥∥2

L2(Ω;ρ0)
+

∫

Ω

u · (∇∇Φ0) · udΩ +
∥∥E
∥∥2

L2(Ω;ΛT0
)

+ αf

∥∥rf(u)
∥∥2

L2(Ω)
+
∥∥ψ
∥∥2

L2(Σf )

)

+
γ

2

(∥∥∇u̇
∥∥2

L2(Ω)
+
∥∥Ė
∥∥2

L2(Ω)
+ 2
∥∥u̇
∥∥2

L2(Ω)

)
+ (αf −

γ

2
)
∥∥rf(u̇)

∥∥2

L2(Ω)

= −
∫

Σf

(
τ f −

{{
τ 2

}}
− n · (T 0 + T δ)

)
· sdΣ +

∫

Σf

[[
τ 2

]]
·
{{
u̇
}}

dΣ−
∫

Σf

G(s, ψ)ψ dΣ.

(A.8)

With Young’s inequality,

(A.9) −
∫

Ω

u·(∇∇Φ0)·u̇ dΩ ≤ CΦ0

∫

Ω

u·u̇ dΩ ≤ −CΦ0

2

d

dt

∥∥u
∥∥2

L2(Ω)
+CΦ0

(∥∥u̇
∥∥2

L2(Ω)
+
∥∥u
∥∥2

L2(Ω)

)
.

We mention some results from [66, Section 4.2],

∫

Ω

( {{
τ 2

}}
· s+

[[
τ 2

]]
·
{{
u̇
}})

dΩ ≤ C ′I

(
1

2δ3

∥∥u
∥∥2

H +
δ3
2

∥∥u̇
∥∥2

H

)
,(A.10)

−
∫

Σf

G(s, ψ)ψ dΣ ≤ CG0
+

(
C?G,s
2δ4
− CG,ψ

)∥∥ψ
∥∥2

L2(Σf )
+
C?G,sδ4

2

∥∥ s
∥∥2

L2(Σf )
,(A.11)
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where the constant CG0 depends on the initial value, G(s|t=0, ψt=0). With Young’s inequality,

(A.12)

∫

Σf

n ·
(
T 0 + T δ

)
· sdΣ ≤ 1

δ 4

∥∥n ·
(
T 0 + T δ

)∥∥2

L2(Σf )
+ δ4

∥∥ s
∥∥2

L2(Σf )
.

With (2.9) implying τ f · s = τf s > 0, we let
(

1 +
C?
G,s
2

)
δ4 =

(∫
Σf
τfsdΣ

)/∥∥ s
∥∥2

L2(Σf )
≥ CF,s,

therefore,

−
∫

Σf

(
τ f − n · (T 0 + T δ)

)
· sdΣ−

∫

Σf

G(s, ψ)ψ dΣ

≤ C +
1

δ 4

∥∥n · (T 0 + T δ)
∥∥2

L2(Σf )
+

(
C?G,s
2δ4
− CG,ψ

)∥∥ψ
∥∥2

L2(Σf )

+ δ4

(
1 +

C?G,s
2

)∥∥s
∥∥2

L2(Σf )
−
∫

Σf

τfsdΣ

≤ C +

(
C?G,s(2 + C?G,s)

4CF,s
− CG,ψ

)∥∥ψ
∥∥2

L2(Σf )
+

2 + C?G,s
2CF,s

∥∥n · (T 0 + T δ)
∥∥2

L2(Σf )
.

(A.13)

We substitute (A.4), (A.7) and (A.9) into (A.8) and let δ1 = δ2 = 1, use the results in (A.10)–
(A.13) with δ3 = γ

2C′I
in (A.10), and integrate over time [0, t] for t ≤ T to find the energy estimate

1

2

(
Cρ0

∥∥u̇
∥∥2

L2(Ω)
+ Cφ0

∥∥u
∥∥2

L2(Ω)
+
CΛ

2

∥∥E
∥∥2

L2(Ω)
+
CΛ

4

∥∥∇u
∥∥2

L2(Ω)
+

(
αf −

CΛ

2

)∥∥rf(u)
∥∥2

L2(Ω)
+
∥∥ψ
∥∥2

L2(Σf )

)

+

∫ t

0

(γ
2

∥∥Ė
∥∥2

L2(Ω)
+
γ

4

∥∥u̇
∥∥2

H + (αf − γ)
∥∥rf(u̇)

∥∥2

L2(Ω)

)
dτ

≤
∫ t

0

(
CG0

+
2 + C?G,s
2CF,s

∥∥n · (T 0 + T δ)
∥∥2

L2(Σf )
+
C ′I

2

γ

∥∥u
∥∥2

H

+Cφ0

(∥∥u̇
∥∥2

L2(Ω)
+
∥∥u
∥∥2

L2(Ω)

)
+

(
C?G,s(2 + C?G,s)

4CF,s
− CG,ψ

)∥∥ψ
∥∥2

L2(Σf )

)
dτ.

(A.14)

We assume (A.1) holds, and based on Gronwall’s lemma,
(A.15)∥∥u̇
∥∥2

L2(Ω)
+
∥∥u
∥∥2

H +
∥∥E
∥∥2

L2(Ω)
+
∥∥rf(u)

∥∥2

L2(Ω)
+
∥∥ψ
∥∥2

L2(Σf )

+
∥∥Ė
∥∥2

L2([0,t];L2(Ω))
+
∥∥u̇
∥∥2

L2([0,t];H)
+
∥∥rf(u̇)

∥∥2

L2([0,t];L2(Ω))
≤ C exp

(∥∥n · (T 0 + T δ)
∥∥2

L2([0,t],L2(Σf ))

)
.

Since (A.15) is satisfied at any time t ∈ [0, T ], (A.2) holds.

Remark 2. In the above estimate, we use strict positivity of γ. As Problem 1 yields a reg-
ularization of the original problem, we will limit coefficient γ to be sufficiently small, so that the
regularized problem approaches the original one. In practice, it is sufficient to have strictly positive
γ only in the vicinity of the rupture region (see Section 5).

Appendix B. Stability of the iterative coupling.
We prove that the iterative coupling described in Section 4 is a contraction under certain

constraints on model coefficients, in parallel with the stability result for the second-order formulation
of motion in Ye, et al. (2019)[66, Section 6]. In contrast to the reference, we show this contraction
for the numerical scheme presented here, in particular, based on a mixed strain-velocity formulation
using the DG spatial discretization. For simplicity, we take the same time step for the wave equation
and the state ODE, that is, a single-rate scheme. The proof is obtained along the lines of the
reference.
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Theorem B.1. The iterative coupling scheme (4.1a)–(4.1c) is a contraction within each time
step in the sense that

∑

Ωe

(
C1

∥∥εkv
∥∥2

L2(Ωe)
+ C2

∥∥∇εkv
∥∥2

L2(Ωe)
+ C3

∥∥εkE
∥∥2

L2(Ωe)

)
+ C4

∑

Σe
f

∥∥εkψ
∥∥2

L2(Σe
f )

< λ
(
C1

∥∥εk−1
v

∥∥2

L2(Ωe)
+ C3

∥∥εk−1
E

∥∥2

L2(Ωe)

)
,

(B.1)

where

εkv := v
(n,k)
h − v(n,k−1)

h , εkE := E
(n,k)
h −E(n,k−1)

h , εkψ := ψ
(n,k)
h − ψ(n,k−1)

h ,

and with C1 , C2 , C3 , C4 > 0 and λ ∈ (0, 1) some constants, if γe, αe
f , αe

c and ∆t satisfy
(B.2)

1

∆t
>

C? 2
F,ψ

2CF,s
+

C? 2
G,s

2CF,s
− CG,ψ,

γe

∆t
> max


2
(
C?F,σ(CI + C ′I) + C ′I

)
,

∆t (C?Λ)
2

2λh
− CΛ +

√√√√
(

∆t (C?Λ)
2

2λh
− CΛ

)2

− (C?Λ)
2


 ,

αe
c <

λh

2(1 + λ)Cp

(
Cρ0

∆t
−∆t Cφ0 +

γe

2
− 2CpC

?
r

h

)
,

αe
f > C?r

(
4(∆t + 1)h

∆t (C?Λ)
2

(
CΛ +

γe

2∆t

)
− 4(∆t + 1)h

2λh
− 4(∆t + 1)h

2γe

)−1

.

Proof. The proof here assumes a fixed single-rate time step ∆t and a fixed mesh size h. We
define

εkτ2
:= τ

(n,k)
2h − τ (n,k−1)

2h , εkτ f
:= τ

(n,k)
f h − τ (n,k−1)

f h , εks := s
(n,k)
h − s(n,k−1)

h ,

εkσ := σ
(n,k)
h − σ(n,k−1)

h , εkF := F
(
σ

(n,k)
h , s

(n,k)
h , ψ

(n,k)
h

)
−F

(
σ

(n,k−1)
h , s

(n,k−1)
h , ψ

(n,k−1)
h

)
,

εkG := G
(
s

(n,k)
h , ψ

(n,k)
h

)
− G

(
s

(n,k−1)
h , ψ

(n,k−1)
h

)
, εks := |s(n,k)

h | − |s(n,k−1)
h |.

We eliminate u
(n,k)
h by u

(n,k)
h −∆tv

(n,k)
h = u

(n−1)
h in (4.2a), and subtract iteration k from iteration

k − 1 of (4.1a–d) to obtain the error estimate:

∑

Ωe

∫

Ωe

((
ρ0
h

(
1

∆t
εkv + ∆t εkv ·Kh

)
+ γeεkv

)
·wh +

(
ΛT

0

h : εkE +
γe

∆t
εkE

)
: ∇wh

)
dΩ

+
∑

Σe
f

∫

Σe
f

((
εkτ f
− εkσn

)
·
[[
wh

]]
−
[[
εkτ2
·wh

]]
+ (∆t + 1)αe

f

[[
n · εkv

]] [[
n ·wh

]])
dΣ

= −
∑

Σe
c

∫

Σe
c

({{
n · (ΛT 0

h : εk−1
E )

}}
+ αe

c

[[
εk−1
v

]])
·
[[
wh

]]
dΣ

(B.3a)

∑

Ωe

∫

Ωe

(
1

∆t
εkE : Hh dΩ + εkv ·

(
∇ ·Hh

))
dΩ +

∑

Σe
f

∫

Σe
f

( {{
εkv
}}
·
[[
n ·Hh

]]
+ εks ·

{{
n ·Hh

}})
dΣ

= −
∑

Σe
c

∫

Σe
c

({{
εk−1
v

}}
+ αe

c

[[
n · (ΛT 0

h : εk−1
E )

]])
·
[[
n ·Hh

]]
dΣ

(B.3b)
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Integrating (B.3b) by parts yields

(B.4)

∑

Ωe

∫

Ωe

(
1

∆t
εkE −∇εkv

)
: Hh dΩ−

∑

Σe
f

∫

Σe
f

[[
n · εkv

]] {{
n ·Hh · n

}}
dΣ

=
∑

Σe
c

∫

Σe
c

{{
εkv − εk−1

v

}} [[
n ·Hh

]]
dΣ +

∑

Σe
c

∫

Σe
c

[[
εkv
]] {{

n ·Hh

}}
dΣ

−
∑

Σe
c

∫

Σe
c

αe
c

[[
n · (ΛT 0

h : εk−1
E )

]] [[
n ·Hh

]]
dΣ

We define linear continuous maps (“lifting operators”, see Arnold et al. (2002) [7]), re
f : L2(Σe

f )→
V̂ p2h, re

1 : L2(Σe
c)→ V̂ p2h, and re

2 : L2(Σe
c)→ V̂ p2h, with V̂ p2h defined in (3.3), such that

∫

Ωe±
re

f (v) : Hh dΩ =

∫

Σe
f

v
{{
n ·Hh · n

}}
dΣ, for Σe

f = Ωe+ ∩ Ωe− ,

∫

Ωe±
re

1(v) : Hh dΩ =

∫

Σe
c

v ·
{{
n ·Hh

}}
dΣ, for Σe

c = Ωe+ ∩ Ωe− .

∫

Ωe±
re

2(v) : Hh dΩ =

∫

Σe
c

v ·
[[
n ·Hh

]]
dΣ, for Σe

c = Ωe+ ∩ Ωe− .

(B.5)

It is suggested in Arnold et al. (2002) [7] that there exist constants Cr , C
?
r > 0 such that

(B.6)

Crh
−1
∥∥v
∥∥2

L2(Σe
f )
≤

∥∥re
f (v)

∥∥2

L2(Ωe± )
≤ C?rh

−1
∥∥v
∥∥2

L2(Σe
f )
,

Crh
−1
∥∥v
∥∥2

L2(Σe
c)
≤

∥∥re
1(v)

∥∥2

L2(Ωe± )
≤ C?rh

−1
∥∥v
∥∥2

L2(Σe
c)
,

Crh
−1
∥∥v
∥∥2

L2(Σe
c)
≤

∥∥re
2(v)

∥∥2

L2(Ωe± )
≤ C?rh

−1
∥∥v
∥∥2

L2(Σe
c)
,

and in Warburton and Hesthaven (2003) [60] that there exist a constant Cp > 0 such that

(B.7)
∥∥v
∥∥2

L2(∂Ωe)
≤ Cph−1

∥∥v
∥∥2

L2(Ωe)
,

if Ωe is a tetrahedral element, and Cp = O(p2) with polynomial order p. Based on (B.4) and (B.5),
(B.8)∫

Ωe

(
1

∆t
εkE −∇εkv + re

f

( [[
n · εkv

]])

− re
1

( [[
εkv
]])
− re

2

({{
εkv − εk−1

v

}})
+ αe

cr
e
2

( [[
n ·
(
ΛT

0

h : εk−1
E

) ]]))
: Hh dΩ = 0,

and by takingH = − 1
∆t ε

k
E+∇εkv+re

f

( [[
n · εkv

]])
−re

1

( [[
εkv
]])
−re

2

({{
εkv − εk−1

v

}})
+αe

cr
e
2

( [[
n ·
(
ΛT

0

h : εk−1
E

) ]])

in (B.8), we obtain
(B.9)
∑

Ωe

∫

Ωe

εkE : ∇εkv dΩ =
1

2

(
∆t
∑

Ωe

∥∥∇εkv
∥∥2

L2(Ωe)
+

1

∆t

∑

Ωe

∥∥εkE
∥∥2

L2(Ωe)

)

+
∆t

2

∫

Ωe

(
re

f

( [[
n · εkv

]])
− re

1

( [[
εkv
]])
− re

2

({{
εkv − εk−1

v

}})
+ αe

cr
e
2

( [[
n ·
(
ΛT

0

h : εk−1
E

) ]]))2

dΩ
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Similar to (A.8), we let wh = εkv in (B.3a) and Hh = ΛT
0

h : εkE in (B.4), and summarize (B.3a) and
(B.4) to obtain

∑

Ωe

(
1

∆t

∥∥εkv
∥∥2

L2(Ωe;ρ0
h)

+ ∆t

∫

Ωe

εkv ·Kh · εkv dΩ + γe
∥∥εkv
∥∥2

L2(Ωe)
+

1

∆t

∥∥εkE
∥∥2

L2(Ωe;ΛT0

h )

)

+
∑

Ωe

γe

∆t

∫

Ωe

(
εkE : ∇εkv

)
dΩ +

∑

Σe
f

αe
f (∆t + 1)

∥∥ [[n · εkv
]]∥∥2

L2(Σe
f )

+
∑

Σe
f

∫

Σe
f

(
εkτ f
· εks −

{{
εkτ2

}}
· εks −

[[
εkτ2

]]
·
{{
εkv
}})

dΣ

= −
∑

Σe
c

∫

Σe
c

αe
c

[[
εk−1
v

]]
·
[[
εkv
]]

dΣ−
∑

Σe
c

∫

Σe
c

αe
c

[[
n · (ΛT 0

h : εk−1
E )

]]
·
[[
n · (ΛT 0

h : εkE)
]]

dΣ

+
∑

Σe
c

∫

Σe
c

{{
εkv − εk−1

v

}} [[
n · (ΛT 0

h : εkE)
]]

dΣ +
∑

Σe
c

∫

Σe
c

[[
εkv
]] {{

n ·
(
ΛT

0

h : (εkE − εk−1
E )

)}}
dΣ

(B.10)

Substituting (B.5) and (B.9) into (B.10), and after some algebraic deductions,

∑

Ωe

(
1

∆t

∥∥εkv
∥∥2

L2(Ωe;ρ0
h)

+ ∆t

∫

Ωe

εkv ·Kh · εkv dΩ + γe
∥∥εkv
∥∥2

L2(Ωe)
+

1

∆t

∥∥εkE
∥∥2

L2(Ωe;ΛT0

h )

+
γe

2

∥∥∇εkv
∥∥2

L2(Ωe)
+

γe

2∆t 2

∥∥εkE
∥∥2

L2(Ωe)
− 1

2γe

∥∥ΛT 0

h : εkE
∥∥2

L2(Ωe)

+
γe

2

∥∥∥re
f

( [[
n · εkv

]])
− re

1

( [[
εkv
]])
− re

2

({{
εkv − εk−1

v

}})
+ αe

cr
e
2

( [[
n ·
(
ΛT

0

: εk−1
E

) ]])
+

1

γe

(
ΛT

0

h : εkE
)∥∥∥

2

L2(Ωe)

)

+
∑

Σe
f

αe
f (∆t + 1)

∥∥ [[n · εkv
]]∥∥2

L2(Σe
f )

+
∑

Σe
f

∫

Σe
f

(
εkτ f
· εks −

{{
εkτ2

}}
· εks −

[[
εkτ2

]]
·
{{
εkv
}})

dΣ

= −
∑

Σe
c

∫

Σe
c

αe
c

[[
εk−1
v

]]
·
[[
εkv
]]

dΣ−
∑

Ωe

∫

Ωe

re
1

( [[
εkv
]])

:
(
ΛT

0

h : εk−1
E

)
dΩ

+
∑

Ωe

∫

Ωe

re
f

( [[
n · εkv

]])
:
(
ΛT

0

h : εkE

)
dΩ.

(B.11)

Based on (2.18), (B.6) and (B.7), and using Young’s inequality, then (B.11) yields

∑

Ωe

((
Cρ0

∆t
−∆t CΦ0 + γe

)∥∥εkv
∥∥2

L2(Ωe)
+
γe

2

∥∥∇εkv
∥∥2

L2(Ωe)
+

(
CΛ

∆t
+

γe

2∆t 2

)∥∥εkE
∥∥2

L2(Ωe)
− 1

2γe

∥∥ΛT 0

h : εkE
∥∥2

L2(Ωe)

+
γe

2

∥∥∥re
f

( [[
n · εkv

]])
− re

1

( [[
εkv
]])
− re

2

({{
εkv − εk−1

v

}})
+ αe

cr
e
2

( [[
n ·
(
ΛT

0

: εk−1
E

) ]])
+

1

γe

(
ΛT

0

h : εkE
)∥∥∥

2

L2(Ωe)

)

+
∑

Σe
f

αe
f (∆t + 1)

∥∥ [[n · εkv
]]∥∥2

L2(Σe
f )

+
∑

Σe
f

∫

Σe
f

(
εkτ f
· εks −

{{
εkτ2

}}
· εks −

[[
εkτ2

]]
·
{{
εkv
}})

dΣ

≤
∑

Ωe

4Cph
−1

(
αe

c

2δ4

∥∥εk−1
v

∥∥2

L2(Ωe)
+
αe

cδ4 + C?r δ5
2

∥∥εkv
∥∥2

L2(Ωe)

)
+
∑

Σe
f

C?r
2δ6h

∥∥ [[n · εkv
]]∥∥2

L2(Σe
f )

+
∑

Ωe

(
1

2δ5h

∥∥∥ΛT
0

h : εk−1
E

∥∥∥
2

L2(Ωe)
+
δ6
2

∥∥∥ΛT
0

h : εkE

∥∥∥
2

L2(Ωe)

)

(B.12)
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We also subtract (3.4c) from (4.1c) at step k, and let ϕ = εkψ, such that

(B.13)
1

∆t

∥∥εkψ
∥∥2

L2(Σe
f )

= −
∫

Σe
f

εkG ε
k
ψ dΣ.

Following the same procedure as [66, Section 6], we get

−
∫

Ωe

εkτ f
· εks dΩ ≤ −CF,s

∥∥εks
∥∥2

L2(Σe
f )

+ C?F,σ∆t (CI + C ′I)
∥∥εkv
∥∥2

H1(Ωe)
+ C?F,ψ

(
1

2δ7

∥∥εkψ
∥∥2

L2(Σe
f )

+
δ7
2

∥∥εks
∥∥2

L2(Σe
f )

)
,

∫

Ωe

( {{
εkτ2

}}
· εks +

[[
εkτ2

]]
·
{{
εkv
}})

dΩ ≤ ∆t C ′I
∥∥εkv
∥∥2

H1(Ωe)
,

−
∫

Σe
f

εkG ε
k
ψ dΣ ≤ C?G,s

(
1

2δ8

∥∥εkψ
∥∥2

L2(Σe
f )

+
δ8
2

∥∥εks
∥∥2

L2(Σe
f )

)
− CG,ψ

∥∥εkψ
∥∥2

L2(Σe
f )
.

(B.14)

We let δ4 = δ5 = 1, δ6 =
C?

r

2αe
f (∆t+1)h , and C?F,ψδ7 = C?G,sδ8 = CF,s, and substitute (B.13) and

(B.14) into (B.12), such that

∑

Ωe




(
Cρ0

∆t
−∆t Cφ0 + γe −∆t

(
C?F,σ(CI + C ′I) + C ′I

)
− 2Cpα

e
c + 2CpC

?
r

h

)∥∥εkv
∥∥2

L2(Ωe)

+

(
γe

2
−∆t

(
C?F,σ(CI + C ′I) + C ′I

))∥∥∇εkv
∥∥2

L2(Ωe)
+

(
CΛ

∆t
+

γe

2∆t 2 − (C?Λ)
2

(
1

2γe
+

C?r
4αe

f (∆t + 1)h

))∥∥εkE
∥∥2

L2(Ωe)




+
∑

Σe
f

(
1

∆t
+ CG,ψ −

C? 2
F,ψ

2CF,s
−

C? 2
G,s

2CF,s

)
∥∥εkψ
∥∥2

L2(Σe
f )
.

≤
∑

Ωe

(
2Cpα

e
c

h

∥∥εk−1
v

∥∥2

L2(Ωe)
+

(C?Λ)
2

2h

∥∥∥εk−1
E

∥∥∥
2

L2(Ωe)

)

(B.15)

Clearly, (B.15) is a contraction shown in (B.1) if the criteria described in (B.2) hold.

Remark 3. Our proof above assumes a fixed single-rate time step ∆t and mesh size h, and the
constants C1 – C4 in Theorem B.1 depend on the initial gravitational potential, prestress tensor,
elastic material parameters, fault geometry as well as ∆t and h. The value of γe can be chosen
proportional to ∆t (given that ∆t << 1 and is proportional to h), which can be sufficiently small
to make the regularized, spatially and temporally discretized problem asymptotically approach the
original one with pure elasticity. Moreover, γe can be assigned elementwise, as already mentioned
in Remark 2. In particular, it only requires that γe takes strictly positive value within elements that
are attached to the rupture surface.

Appendix C. The reduced problem of nonlinear friction with Newton’s method.
In this appendix we obtain a matrix representation of the iterative scheme described by Problem

4. We consider a tetrahedral mesh with K finite elements, and its interior surface mesh with K̃f

triangular elements that represents the fault. We also assume that each tetrahedral element Ωe is
connected to no more than one rupture facet Σe

f . The implementation of the numerical scheme takes
four steps: first, we rewrite the discretized wave equations in Problem 4 into a matrix form; second,
we use projection matrices (Pe and P̃e

f which are defined later) to reduce the problem to each
rupture facet and its two adjacent tetrahedral elements; third, we conduct Gauss elimination and
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obtain the linear constraints between slip-velocity and friction force governed by the wave equation;
finally, we obtain the matrix form of minimization problem (4.5), and write precisely the gradient
and Hessian matrix.

Matrix form of discretized wave equation. We give the notation for unknown vectors
corresponding with the unknown variables in Problem 4 below:

variables on Ω or Σf (vh)j (Eh)ij (uh)j (sh)j (τ f h)j σh ψh

local vectors on Ωe Ve
j Ee

ij Ue
j

local vectors on Σe Ṽe
j S̃e

j T̃ e
j Ñ e Ψ̃ e

global vectors Vj Eij Uj

We use the notation “ �̃ ” to represent quantities on the surface elements Σe. The local vectors

on each element Ωe are obtained by the expansion based on 3-D Lagrange polynomials {ϕe
n(x)}Np

n=1

supported on Ωe, for example,

(C.1) vj(x)
∣∣
x∈Ωe =

Np∑

n=1

ve
jnϕ

e
n(x), Ve

j :=
[
{vjn}Np

n=1

]T
,

and likewise, the local vectors on Σe are obtained by the expansion based on 2-D Lagrange polyno-

mials {ϕ̃e
n(x)}Ñp

n=1 supported on Σe, for example,

(C.2) vj(x)
∣∣
x∈Σe =

Ñp∑

n=1

ṽe
jnϕ̃

e
n(x), Ṽe

j :=
[
{ṽjn}Ñp

n=1

]T
.

We define the global mass matrix, MKNp×KNp
, whose diagonal blocks are local mass matrices

with dimension Np ×Np, that is,

Me
mn :=

∫

Ωe

ϕe
mϕ

e
n dΩ, m, n ∈ {1, 2, · · · , Np}.

Similarly, the local surface mass matrices, M̃e
Ñp×Ñp

, are defined by

M̃e
mn :=

∫

Σe

ϕ̃e
mϕ̃

e
n dΩ, m, n ∈ {1, 2, · · · , Ñp}.

We introduce the block diagonal derivative matrices, Dj , with the same dimension as M. Their
diagonal blocks De

j are defined such that De
jVe
i yields the expansion

(C.3)
∂vi
∂xj

(x) =
∑

e

Np∑

n=1

(
De
jVe
i

)
n
ϕe
n(x), x ∈ Ω.

We then define the matrices Pe
Np×KNp

and P̃e
f Ñp× K̃fNp

, whose entries take the value 0 or 1. Pe

projects global vectors to local vectors in each Ωe on the negative side of Σ with regard to n, such
as Ve

j = PeVj , and P̃e
f projects global vectors to local vectors on the negative side of Σe

f , such as

Ṽe
j = P̃e

f Vj . We employ the notation “ � ”, which denotes quantities on the positive side of each Σe.
By the assumption that each tetrahedral element is connected to no more than one rupture facet,
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it is clear that for all matrices Ξ that have the same block-diagonal structure as the global mass
matrixM (for example, Dj and any diagonal matrices with dimension KNp × KNp), the following
holds true:

(C.4) PeΞP̃e
f

T
= PeΞP̃e

f

T
= 0.

A global vector and its corresponding local vectors in Ωe and Σe
f satisfy

Ṽe
j = P̃e

f Vj = P̃e
f PeTVe

j , Ṽe
j = P̃e

f Vj = P̃e
f PeTVe

j .

We also define the matrix P̃e
c to represent the trace operation, which generates the regular numerial

flux on continuous solid-solid interfaces. For example, 1
2

(
P̃e

c + P̃e
c

)
Vj represents the central flux

{{
vj
}}

. We assume that the elastic parameters and prestress are piecewise constant, and define

Q̃e
ij that represents the additional surface term generated by the dynamically slipping boundary

condition (see (2.13)), such that

Q̃e
ijUe

j = nmP̃e
f PeT(De

j − njnlDe
l

)
Pe(T 0

mi Uj), i, j, l,m ∈ {1, 2, 3},

where n = [n1, n2, n3]T is the normal vector of facet Σe
f . We let Γ = diag

(
{γe}Ωe⊂Ω

)
be a diagonal

matrix with dimension KNp × KNp. Below, we rewrite the equation of motion (4.1a) in matrix
form, where W corresponds to the test function wh,
(C.5)

1

∆t
WT
i Mρ0 V(n,k)

i +WT
i MΦ0

ijU (n,k)
j +WT

i MΓV(n,k)
i +WT

i DTjMΛT
0

jilmE(n,k)
lm +

1

∆t
WT
i DTjMΓE(n,k)

ji

+WT
i

∑

Σe
f

((
P̃e

f − P̃e
f

)T

M̃e
(
T̃ e
i − niÑ e

)
+ P̃e

f

TM̃eQ̃e
ijUe (n,k)

j − P̃e
f

TM̃eQ̃e
ijUe (n,k)

j

)

+WT
i


∑

Σe
f

αe
fninj

(
P̃e

f − P̃e
f

)T

M̃e
(
P̃e

f − P̃e
f

)


(
V(n,k)
j + U (n,k)

j

)

=WT
i


∑

Σe
f

nj

(
P̃e

c − P̃e
c

)T

M̃eP̃e
c



(
T 0
ij + T

δ (t)
ij

)
+

1

∆t

(
WT
i Mρ0 V(n−1)

i +WT
i DTjMΓE(n−1)

ji

)

− 1
2WT

i


∑

Σe
c

nj

(
P̃e

c − P̃e
c

)T

M̃e
(
P̃e

c + P̃e
c

)

ΛT

0

jilmE(n,k−1)
lm

−WT
i


∑

Σe
c

αe
c

(
P̃e

c − P̃e
c

)T

M̃e
(
P̃e

c − P̃e
c

)

V(n,k−1)

i

:=
1

∆t
WT
i MV

(n,k)
i .

In the above, all terms containing 1/∆t corresponds to the time derivative ones in (3.2a). We
also highlight that all the terms regarding the source term, the variables from the previous time
step (denoted by “( � )(n−1)”) and those from the previous iteration of current time step (denoted by

“( � )(n,k−1)”) are moved to the right-hand-side and involved in a simplified notation, V
(n,k)
i . We also

rewrite the strain-velocity relation, (4.1b), in a similar manner, using test function H corresponding
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to Hh,

(C.6)

1

∆t
HT
ijME(n,k)

ij +HT
ijDTi MV(n,k)

j + 1
2HT

ij


∑

Σe
f

ni

(
P̃e − P̃e

)T

M̃e
(
P̃e + P̃e

)

V(n,k)

j

+ 1
2HT

ij


∑

Σe
f

ni

(
P̃e + P̃e

)T

M̃eS̃e (n,k)
j




=
1

∆t
HT
ijME(n−1)

ij − 1
2HT

ij


∑

Σe
c

ni

(
P̃e − P̃e

)T

M̃e
(
P̃e + P̃e

)

V(n,k−1)

j

−HT
ij


∑

Σe
c

αe
cninp

(
P̃e − P̃e

)T

M̃e
(
P̃e − P̃e

)

ΛT

0

pjlmE(n,k−1)
lm

:=
1

∆t
HT
ijME

(n,k)
ij ,

and the right-hand-side involving “( � )(n−1)” and “( � )(n,k−1)” terms are involved in the simplified

notation E
(n,k)
ij .

Projection onto rupture surface. Based on (C.5) and (C.6), the solid-solid inter-connections
between elements are involved in the right-hand-sides, which can be computed using a standard
time-domain DG scheme. The left-hand-sides, which are part of the implicit nonlinear problem,
only involve local matrix-vector production within each element and interactions across rupture
facets. To localize the scheme to each rupture facet and its adjacent pair of elements, we let
WT
i M = ∆tPe and HT

ijΛ
T 0e
jilmM = ∆tPe in (C.5) and (C.6), and apply (C.4), which gives

(
ρ0 e + ∆t γe

)
Ve (n,k)
i + ∆tΦ0 e

ij Ue (n,k)
j +De

j

(
∆tΛT

0e
jilm + γeδjlδim

)
Ee (n,k)
lm −∆tJ eT̃ e

i + ∆t niJ eÑ e

−∆tJ eQ̃e
ijUe (n,k)

j −∆t αe
fninjJ e

(
L̃e
(
Ve (n,k)
j + Ue (n,k)

j

)
− L̃e

(
Ve (n,k)
j + Ue (n,k)

j

))
= V

e (n,k)
i ,

(C.7a)

Ee (n,k)
ij + ∆tDe

iVe (n,k)
j − ∆t

2
niJ e

(
L̃eVe (n,k)

j + L̃eVe (n,k)
j − S̃e (n,k)

j

)
= E

e (n,k)
ij ,

(C.7b)

with

De
:= PeM−1DTM, J e := PeM−1P̃e

TM̃e, L̃e := P̃ePeT, L̃e := P̃ePeT,

V
e (n,k)
i := PeV

(n,k)
i , and E

e (n,k)
ij := PeE

(n,k)
ij .

We get similar equations on the other side of the rupture surface by applying WT
i M = ∆tPe and
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HT
ijΛ

T 0e
jilmM = ∆tPe to (C.5) and (C.6), such that

(
ρ0 + γ∆t

)
Ṽe (n,k)
i + ∆tΦ0 e

ij Ue (n,k)
j +De

j

(
∆tΛT

0e
jilm + γδjlδim

)
Ee (n,k)
lm + ∆tJ eT̃ e

i −∆t niJ eÑ e

+ ∆tJ eQ̃e
ijUe (n,k)

j + ∆t αe
fninjJ e

(
L̃e
(
Ve (n,k)
j + Ue (n,k)

j

)
− L̃e

(
Ve (n,k)
j + Ue (n,k)

j

))
= V

e (n,k)
i ,

(C.8a)

Ẽe (n,k)
ij + ∆tDe

iVe (n,k)
j +

∆t

2
niJ e

(
L̃eVe (n,k)

j + L̃eVe (n,k)
j + S̃e (n,k)

j

)
= E

e (n,k)
ij ,

(C.8b)

with

De
:= PeM−1DTM, J e := PeM−1P̃e

TM̃ ,V
e (n,k)
i := PeV

(n,k)
i , and E

e (n,k)
ij := PeE

(n,k)
ij .

We also rewrite (4.2a), which contains only local operations, in terms of local vectors,

Ñ e (n,k) +
ninj

2

(
L̃eΛT

0e
ijlmEe (n,k)

lm + L̃eΛT
0e

ijlmEe (n,k)
lm

)
− ni

2

(
Q̃e
ijUe (n,k)

j + Q̃e
ijUe (n,k)

j

)
= Ñe (n) ,

(C.9a)

Ue (n,k)
i −∆tVe (n,k)

i = Ue (n−1)
i , Ue (n,k)

i −∆tVe (n,k)
i = Ue (n−1)

i ,

(C.9b)

S̃e (n,k)
i = (δij − ninj)

(
L̃eVe (n,k)

j − L̃eVe (n,k)
j

)
.

(C.9c)

In (C.9a), Ñe (n) := −ninjP̃e
f

(
T 0
ij + T

δ (n)
ij

)
is the backgound normal-stress applied to the rupture

facet at time t = n∆t . We find that (C.7ab), (C.8ab) and (C.9a–c) form a system of equations with
unknown vectors based on each rupture facet and the pair of its adjacent finite elements.

Linear constraint from wave equation. The minization problem (4.5) considers function of
slip-velocity and friction force. Therefore we want to reduce (C.9a–c) to a simplified linear relation
between these two specific variables. However, before we apply Gauss-elimination, we notice that
the system (C.9a–c) is not full-rank, because S̃e

i and T̃ e
i have vanishing normal components. We

choose unit vectors r = [r1, r2, r3]T and t = [t1, t2, t3]T such that [n, r, t] forms an orthonormal
matrix. We then denote by K = [r, t]T the matrix that projects vector quantities to the tangential
plane. We find that (C.7ab), (C.8ab) and (C.9a–c) form the following linear system,

(C.10) AY =

[
A11 A12

A21 A22

] [
Y1

Y2

]
=

[
Z1

Z2

]

where

Y1 =
[ U U E E V V ]T

, Y2 =
[
Ŝ Ñ T̂

]T
,

Z1 =
[
U U E E V V

]T
, Z2 =

[
0 Ñ

]T
.
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In the above, the vectors are defined as

U :=
[
Ue (n,k)

1 ,Ue (n,k)
2 ,Ue (n,k)

3

]T
, V :=

[
Ve (n,k)

1 ,Ve (n,k)
2 ,Ve (n,k)

3

]T
, Ñ := Ñ e (n,k),

E :=
[
Ee (n,k)

11 , Ee (n,k)
21 , Ee (n,k)

31 , Ee (n,k)
12 , Ee (n,k)

22 , Ee (n,k)
32 , Ee (n,k)

13 , Ee (n,k)
23 , Ee (n,k)

33

]T
,

Ŝ :=
[
Ŝe (n,k)

1 , Ŝe (n,k)
2

]T
= K

[
S̃e (n,k)

1 , S̃e (n,k)
2 , S̃e (n,k)

3

]T
,

T̂ :=
[
T̂ e (n,k)

1 , T̂ e (n,k)
2

]T
= K

[
T̃ e (n,k)

1 , T̃ e (n,k)
2 , T̃ e (n,k)

3

]T
,

U :=
[
Ue (n−1)

1 ,Ue (n−1)
2 ,Ue (n−1)

3

]T
, V :=

[
V

e (n,k)
1 ,V

e (n,k)
2 ,V

e (n,k)
3

]T
, Ñ = Ñe (n),

E :=
[
E

e (n,k)
11 ,E

e (n,k)
21 ,E

e (n,k)
31 ,E

e (n,k)
12 ,E

e (n,k)
22 ,E

e (n,k)
32 ,E

e (n,k)
13 ,E

e (n,k)
23 ,E

e (n,k)
33

]T
.

We explicitly write matrix A as follows,

A =




I3Np
−∆tI3Np

I3Np −∆tI3Np

I9Np ∆tD† − ∆t

2
RTJ L̃ −∆t

2
RTJ L̃ ∆t

2
RTJ K̃T

I9Np

∆t

2
RTJ L̃ ∆tD† +

∆t

2
RTJ L̃ ∆t

2
RTJ K̃T

∆tΦ − ∆tJ Q̃
+ ∆t αe

fBTBJ L̃
−∆t αe

fBTBJ L̃ ∆tDΛ + γD (ρ0 e + γ∆t )I3Np

+ ∆t αe
fBTBJ L̃

−∆t αe
fBTBJ L̃ ∆tJ B̃T −∆tJ K̃T

−∆t αe
fBTBJ L̃ ∆tΦ + ∆tJ Q̃

+ ∆t αe
fBTBJ L̃

∆tDΛ + γD −∆t αe
fBTBJ L̃

(ρ0 e + γ∆t )I3Np

+ ∆t αe
fBTBJ L̃

−∆tJ B̃T
∆tJ K̃T

K̃L̃ −K̃L̃ I
2Ñp

−1

2
B̃Q̃ −1

2
B̃Q̃ 1

2
B̃L̃RΛ

1

2
B̃L̃RΛ I

Ñp




:=




A11 A12

A21 A22



.

1

.
In the representation of matrix A, the double lines divide blocks Aij with i, j ∈ {1, 2}, and as men-
tioned before, quantities with and without “ � ” stand for the ones obtained from the “+” and “−”
sides of the rupture facet, respectively. IN stands for the N × N identity matrix, and the dense
blocks B, B̃, R, K̃, J , L̃, D, D† and Q are given by

B =



n1INp

n2INp

n3INp




T

, B̃ =



n1IÑp

n2IÑp

n3IÑp




T

, R =




B . .
. B .
. . B


 , K̃ =



r1IÑp

t1IÑp

r2IÑp
t2IÑp

r3IÑp
t3IÑp




T

,

J =



J e . .
. J e .
. . J e


 , L̃ =



L̃e . .

. L̃e .

. . L̃e


 ;

D =



D . .
. D .
. . D


 , with D =

[
De

1 D
e

2 D
e

3

]
; D† =



D† . .
. D† .
. . D†


 , with D† =




De

1

De

2

De

3


 ;

(Q)ij = Q̃e
ij , i, j ∈ {1, 2, 3}.

The 2 × 2 structure of A illustrates the composition of the coupled problem: A11 represents the
wave equation with time discretization, A12 gives numerically the trace operation that maps particle
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velocity in the bulk volume to the slip velocity that resides on the rupture surface, A21 considers
the force equilibrium on the dynamically slipping boundary, and A22 simply contains an identity
matrix that brings friction force and normal stress perturbation into the system.

We conduct Gauss elimination on (C.10), which yields

(C.11)
(A22 −A21A−1

11 A12

)Y2 = Z2 −A21A−1
11 Z1.

We let

(C.12) A22 −A21A−1
11 A12 =: A =

[
A1

∣∣∣A2

]
,

with
(A1

)
3Ñp×2Ñp

and
(A2

)
3Ñp×3Ñp

submatrices of A, and let

(C.13) A := −A−1

2 A1.

Then (C.11) becomes

(C.14)
[Ñ , T̂ ]T = AŜ + A−1

2

(Z2 −A21A−1
11 Z1

)
.

Solution algorithm to the minimization problem. We take the derivative of (4.4ab),
which yields

dψ(n,k) =
∆t

N

N∑

i=1

dθi , dθi = −∂G
∂s

(
s(n),i, ψ(n),i

)
i
N ds− ∂G

∂ψ

(
s(n),i, ψ(n),i

)∆t

N

i∑

j=1

dθj ,

with s(n),i = s(n−1) + i
N (s(n,k) − s(n−1)), ψ(n),i = ψ(n−1) +

∆t

N

i∑

j=1

θj .

(C.15)

With a given nonlinear function F in (2.10), we formulate a minimization problem as described in
(4.5),

Ŝ = arg minL(Ŝ), with L =
1

2

∥∥∥∥∥
Ŝ
|Ŝ|
F
(Ñ , Ŝ, Ψ̃)− T̂

∥∥∥∥∥

2

.(C.16)

This minimization problem is constrained by (C.10) and (C.15). We obtain an explicit expression
for the gradient,
(C.17)

Gj :=
∂L

∂Ŝj
=

2∑

l=1

(
Ŝl
|Ŝ|
F − T̂l

)(
δlj
F
|Ŝ|

+
ŜlŜj
|Ŝ|3

((
∂F
∂s

+
∂F
∂ψ

dψ

ds

)
|Ŝ| − F

)
+
Ŝl
|Ŝ|

∂F
∂σ
A0j −Alj

)
,

and the Gauss-Newton Hessian

Hij :=
∂2L

∂Ŝi∂Ŝj
≈

2∑

l=1



(
δli
F
|Ŝ|

+
ŜlŜi
|Ŝ|3

((
∂F
∂s

+
∂F
∂ψ

dψ

ds

)
|Ŝ| − F

)
+
Ŝl
|Ŝ|

∂F
∂σ
A0i −Ali

)T

·

(
δlj
F
|Ŝ|

+
ŜlŜj
|Ŝ|3

((
∂F
∂s

+
∂F
∂ψ

dψ

ds

)
|Ŝ| − F

)
+
Ŝl
|Ŝ|

∂F
∂σ
A0j −Alj

))
.

(C.18)

In the above, each Aij (i ∈ {0, 1, 2}, j ∈ {1, 2}) is an Ñp × Ñp block of matrix A, and dψ
ds is

evaluated using (C.15).
We finally summarize the algorithm of solving the overall problem in Algorithm 1.
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Algorithm 1 multi-rate iterative solution for spontaneous rupture problem

1: initiate rupture geometry and materials
2: form matrix A in (C.10)

3: compute matrix A following (C.12) and A following (C.13)
4: for time steps t = t0 +m∆t , m = 1, 2, 3, · · · do
5: if T 0 is perturbed then

6: update matrix A and recompute matrices A and A
7: end if
8: compute Z1 and Z2 for (C.14)

9: obtain initial guess of Ŝ from the previous time step
10: for coupling iteration k = 1, 2, 3, · · · do
11: recompute Z2 for (C.14)
12: for Newton’s iteration i = 1, 2, · · · do
13: compute T̂ and Ñ following (C.14)

14: update rupture state variable Ψ̃ following (4.4)
15: if L ≤ ε then
16: convergence and exit the loop
17: end if
18: form gradient and Hessian matrices following (C.17) and (C.18)

19: update slip velocity via Ŝ(i)
= Ŝ(i−1) − H−1G

20: end for
21: update the wavefield by Y1 = A−1

11

(Z1 −A12Y2

)
following (C.10)

22: end for
23: end for
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