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Crystal-field (CF) effects on the rare-earth (RE) ions in ferrimagnetic intermetallics NdCo5 and TbCo5 are
evaluated using an ab initio density functional + dynamical mean-field theory approach in conjunction with
a quasiatomic approximation for on-site electronic correlations on the localized 4 f shell. The study reveals
an important role of the high-order sectoral harmonic component of the CF in the magnetism of RECo5

intermetallics. An unexpectedly large value is computed in both systems for the corresponding crystal-field
parameter (CFP) A6

6〈r6〉, far beyond what one would expect from only electrostatic contributions. It allows
solving the enigma of the nonsaturation of zero-temperature Nd magnetic moments in NdCo5 along its easy axis
in the Co exchange field. This unsaturated state had been previously found out from magnetization distribution
probed by polarised neutron elastic scattering but had so far remained theoretically unexplained. The easy plane
magnetic anisotropy of Nd in NdCo5 is strongly enhanced by the large value of A6

6〈r6〉. Counterintuitively, the
polar dependence of anisotropy energy within the easy plane remains rather small. The easy plane magnetic
anisotropy of Nd is reinforced up to high temperatures, which is explained through J-mixing effects. The
calculated ab initio anisotropy constants of NdCo5 and their temperature dependence are in quantitative
agreement with experiment. Unlike NdCo5, the A6

6〈r6〉 CFP has negligible effects on the Tb magnetism in TbCo5

suggesting that its impact on the RE magnetism is ion-specific across the RECo5 series. The origin of its large
value is the hybridization of RE and Co states in a hexagonally coordinated local environment of the RE ion in
RECo5 intermetallics.

DOI: 10.1103/PhysRevB.101.214433

I. INTRODUCTION

Magnetic properties of transition-metal (TM)–rare-earth
(RE) intermetallics are determined by a subtle interplay be-
tween metallic TM d electrons and ionic RE f electrons.
Among those apt at giving rise to permanent magnets [1–3]
the TM constituent is a late 3d TM, such as Fe or Co,
providing a large magnetization and a high Curie temper-
ature that can reach 1000 K. The RE magnetism in these
intermetallics is essentially induced by an exchange field
due to the TM ferromagnetic order. The direct exchange
coupling between the RE 4 f magnetic moments is com-
paratively much weaker [4–6] and can be neglected. The
magnetic anisotropy qualifying such magnets as hard arises,
on the other hand, dominantly from the RE sublattice, espe-
cially at low and intermediate temperatures. It stems from
the strong spin-orbit (SO) coupling at the 4 f shell transfer-
ring to magnetism the anisotropy of crystal-field (CF). The
magnitude of this RE single-ion anisotropy (SIA) is thus
determined by the CF acting on the 4 f shell and its interplay
with the TM-induced exchange field Bex of a comparable
magnitude.

The so-called two-sublattice model shortly outlined above
is believed to be relevant to the RECo5[1], RE2Co17,
and RE2Fe14B [2,7] material families, which comprise key

*Deceased.

modern high-performance magnets. Among the quantities de-
termining the RE SIA in these materials, i. e. the TM magneti-
zation, TM-RE exchange coupling and CF [8], the latter is par-
ticularly hard to assess both experimentally and theoretically.
In particular, extracting CF parameters (CFPs) from high-
field magnetization measurements (see, e.g., Refs. [9–14])
is subject to significant uncertainties, as the total magne-
tization and macroscopical anisotropy constants measured
in such experiments should be subsequently separated into
the RE and TM contributions on the basis of a particular
microscopical two-sublattice model. In the analysis of such
experiments it is usual to include only low-rank CFPs and
to restrict the consideration to the ground-state (GS) RE
multiplet [10,15,16]. The parameter-free ab initio prediction
of RE CFPs is a notoriously difficult problem, mainly due to
inability of the conventional density functional theory (DFT)
to correctly account for the physics of localized 4 f shells. The
standard DFT-based approach, extensively applied to RE-TM
intermetallics[17–23], is to treat RE 4 f s as an “open-core”
shell, meaning that their hybridization with other valence
states is completely neglected. The validity of this “open-
core” approximation for the CF in real TM-RE intermetallics
is usually hard to assess from magnetization measurements
due to the above-mentioned uncertainties in extracting RE
CFPs. Inelastic neutron scattering (INS) measurements can
also be employed to determine the TM-RE exchange cou-
pling Bex, see, e.g., Brooks et al. [24], and the CF splitting
[25]. This powerful experimental probe is, however, also not

2469-9950/2020/101(21)/214433(15) 214433-1 ©2020 American Physical Society

https://orcid.org/0000-0003-4003-3539
https://orcid.org/0000-0002-9308-1860
https://orcid.org/0000-0003-1917-8768
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.214433&domain=pdf&date_stamp=2020-06-19
https://doi.org/10.1103/PhysRevB.101.214433


L. V. POUROVSKII et al. PHYSICAL REVIEW B 101, 214433 (2020)

TABLE I. Crystal-field parameters (CFPs, in degrees Kelvin) and exchange field Bex (in tesla) of NdCo5 reported in previous theoretical
and experimental works compared to the present one. The coefficient α in the wave function �Nd

REF, Eq. (11), and corresponding ground-state
(GS) magnetic moment (in μB) calculated from given CFPs and Bex are listed in the last two columns. Ab initio works are marked by ∗. The
measured value of α and the corresponding GS moment are given in the last line.

A0
2〈r2〉 A0

4〈r4〉 A0
6〈r6〉 A6

6〈r6〉 Bex α |MGSM
Nd |

Radwansky [16] −210 - - - 151 1.0 3.26
Zhao et al. [10] −510 0 7 143 558 1.0 3.27
Zhang et al. [13]a −397 −0.9 13.1 816 203 0.91 3.02

−482 −0.9 13.1 816 393 0.97 3.19
Novak∗ [19]b −288 −44.7 11.3 573 150 0.87 2.93

−288 −44.7 11.3 573 450 0.96 3.18
Patrick and Staunton∗ [55] −415 −26 5.4 146 252 1.0 3.27
This work∗ −285 −33 36 1134 292 0.84 2.84
Experiment [30] 0.83 2.82

aZhang et al.[13] report two sets of values for the CFPs and Bex.
bNovak [19] does not report Bex, we thus employ two values representing the bounds of its generally accepted range.

free from uncertainties, particularly in the case of a low
RE-site symmetry or/and in the presence of an exchange
field [25].

The RECo5 family represents a suitable testbed for theoret-
ical approaches to CF effects in TM-RE intermetallics. This
family crystallizes in a simple hexagonal structure with a sin-
gle RE site. The magnetic behavior of RECo5 exhibits a rich
variety along the series: SmCo5 features a very strong uniaxial
anisotropy being the first widely used RE-based permanent
magnet [1]. On the other hand, with RE = Nd, Tb, and Dy
the low-temperature magnetic anisotropy of RECo5 is of an
easy-plane type. When the temperature is increased these in-
termetallics undergo a spin reorientation transition which tips
up the magnetization axis towards the hexagonal axis �c [8,10].
This transition in NdCo5 has recently attracted renewed atten-
tion due to a large associated rotating magnetocaloric effect
[26,27].

The RECo5 family has been extensively studied experi-
mentally for over 50 years. In particular, besides macroscopic
magnetization measurements using magnetometers, measure-
ments of microscopic magnetization distribution by polarized-
neutron scattering (PNS) [28] were carried out on single
crystals for SmCo5 [29] and NdCo5 [30]. These measurements
allow unambiguously separating out the RE and TM contri-
butions to the magnetization. Alameda et al. [30] thus found
out that in NdCo5 the Nd GS moment is reduced by about
20% compared to the saturation value of 3.27 μB. This was
puzzling since a full saturation was expected at low temper-
atures as predicted by explicit calculations carried out using
values within acceptable ranges for Bex and the “20” zonal
low-rank A0

2〈r2〉 CFP [30]. The reduced Nd moment observed
by Ref. [30] remains unexplained for almost 40 years, with
previously reported CF schemes not able to account for it (see
Table I).

Recently Delange et al. [31] introduced a new approach
to evaluating the CF. This methodology is based on the
DFT+dynamical mean-field theory (DFT+DMFT) in con-
junction with the simple quasiatomic Hubbard-I [32] treat-
ment of RE 4 f shells and employs an averaging scheme to re-
move the unphysical contribution [33] of DFT self-interaction
error into the CF. Delange et al. successfully applied this

methodology to SmCo5 quantitatively reproducing the Sm 4 f
CF GS measured by the PNS [29] as well as the overall CF
splitting in this intermetallic.

In the present work, we apply this method to determine the
CFPs and Bex in two easy-plane RECo5 compounds, NdCo5

and TbCo5, evaluating their GS 4 f magnetic moments as well
as RE SIA constants and their temperature dependence. Our
crucial finding is that the sectoral “66” high-rank A6

6〈r6〉 CFP,
often neglected in previous analyses, takes exceptionally large
values in RECo5. In NdCo5 this CFP is shown to freeze the GS
magnetic moment below its fully saturated value thus explain-
ing the result of Alameda et al. [30]. The same CFP strongly
enhances the easy plane magnetic anisotropy of NdCo5, con-
tradicting the erroneous belief according to which a “66” CFP
would influence solely the polar magnetic anisotropy but not
the energy difference between easy axis and easy plane. Even
at elevated temperatures the easy plane anisotropy of NdCo5

is significantly enhanced by the “66” CFP. This behavior is
unexpected within the standard single-multiplet framework
(see, e.g., Ref. [8] for a review) and shown to stem from J-
mixing effects. Our resulting anisotropy constants for NdCo5

and their temperature dependence are in excellent agreement
with experiment. Our analysis shows that the large “66”
CFP originates in the hybridization mixing between 4 f and
conduction states. It is expected to be rather universal along
the RECo5 series. This is confirmed with TbCo5, for which
we also obtain a large value of “66” CFP though significantly
reduced compared to NdCo5. However, the impact of this “66”
CFP on the TbCo5 GS magnetism and magnetic anisotropy
is found to be very weak, suggesting that this impact is
element-sensitive.

The paper is organized as follows. In Sec. II, we review
the methodology used for the electronic structure calculations,
establish the notation for the 4 f single-ion Hamiltonian and
crystal-field parameters and recall the method for computing,
from ionic states, the RE contribution to the magnetization
distribution as probed by PNS. Our results are presented in
Sec. III, first on NdCo5 then, more briefly, on TbCo5. The
origin of the large “66” CFP in RECo5 is analyzed in Sec. IV.
We list the calculated RE CF 4 f wave functions and CFPs for
NdCo5 and TbCo5 in Appendix.
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II. METHOD

A. Electronic structure and crystal field calculations

For electronic structure calculations of the RECo5 inter-
metallics, we employed the self-consistent in charge density
DFT+DMFT method of Refs. [34,35]. It combines a full-
potential linearized augmented planewave (FP-LAPW) band
structure approach [36] and the DMFT implementation pro-
vided by the library ”TRIQS” [37,38].

Calculations were carried out using the experimental
hexagonal structure isotypic of CaCu5 belonging to the space
group P6/mmm, with the lattice parameters a = 5.00 Å, c =
3.98 Å for NdCo5 and a = 4.95 Å, c = 3.98 Å for TbCo5,
and for the magnetically ordered phase. We employed the
local-spin density approximation to described the ordered
Co magnetism. The spin-orbit coupling was included within
the standard second-variation procedure as implemented in
Ref. [36], which is expected to be sufficient for the valence
electronic states of RE ions. The RE 4 f shell was described
within DMFT using the quasiatomic Hubbard-I [32] approx-
imation for the DMFT quantum impurity problem. Hereafter
our ab initio appoach is abbreviated as DFT+HubI.

Wannier orbitals ωmσ representing RE 4 f states (where m
and σ are magnetic and spin quantum numbers, respectively)
were constructed from the Kohn-Sham (KS) bands enclosed
in a chosen energy window W; this window must enclose at
least 4 f -like bands. In NdCo5, similarly to previously studied
[31] SmCo5 and light-RE Fe “1-12” systems, the RE 4 f bands
are pinned at the KS Fermi level EKS

EF , and we thus employed,
unless noted otherwise, the same choice, Ws = [−2 : 2] eV
relative to EKS

EF , as in Ref. [31]. Test calculations using yet
more narrow energy window ([−1 : 1] eV) produced similar
results to those obtained with Ws. In contrast, with a wide-
range energy window including all valence bands the RE 4 f
ground state and CFPs are drastically modified, owing to the
fact that the hybridization contribution to CFPs is in this case
neglected by DFT+HubI, see the discussion in Sec. IV on the
choice of RE 4 f orbitals in DFT+HubI calculations. In the
case of TbCo5, the 4 f KS bands shift significantly below the
KS Fermi level in the course of DFT+HubI self-consistent
calculations. Therefore, in that case, we employed the same
window range of 4 eV, but centered at the center-weight of the
KS 4 f band, see Sec. IV.

Within the Hubbard-I approximation the DMFT impurity
problem is reduced [39] to diagonalization of the Hamiltonian
for a single 4 f shell:

Ĥat = Ĥ1el + ĤU =
∑

mm′σσ ′
εσσ ′

mm′ f †
mσ fm′σ ′ + ĤU , (1)

where fmσ ( f †
mσ ) is the creation (annihilation) operator for the

RE 4 f orbital mσ and ĤU is the on-site Coulomb repulsion.
The one-electron level-position matrix ε̂ reads [40]

ε̂ = −μ + 〈ĤKS〉 f f − �DC, (2)

where μ is the chemical potential, 〈ĤKS〉 f f =∑
k∈BZ P̂kHk

KSP̂†
k is the Kohn-Sham Hamiltonian projected to

the basis of 4 f Wannier orbitals ωmσ and summed over the
Brillouin zone, P̂k is the corresponding projector between the
KS and Wannier spaces [34,38], �DC is the double counting
correction term. The 4 f level positions ε̂ are thus defined,
apart from a constant shift, by the KS bands projected into

the Wannier subspace, with 4 f -like KS bands providing the
largest contribution into this projection. The spontaneous spin
polarization of the Co sublattice within LSDA induces a spin
polarization of those 4 f -like bands, leading to an exchange
splitting of the level positions ε̂.

The on-site Coulomb repulsion vertex ĤU is specified for
an f shell by the Slater parameters F0, F2, F4, F6. Under the
usual approximation of fixing the ratios F2/F4 and F2/F6 to
the values obtained experimentally [41] or in Hartree-Fock
calculations for the corresponding free ions [42], the vertex
is determined by the two parameters, U = F 0 and the Hund’s
rule coupling JH . We employed F2/F4 = 1.5 and F2/F6 =
2.02. The values of 6.0 and 7.0 eV were used for the parameter
U of Nd and Tb, respectively, to take into account its expected
increase along the RE series. We employed JH = 0.85 eV
for Nd, in agreement with Ref. [31], the value 0.95 eV for
JH of Tb was chosen in accordance with Ref. [41]. CFPs
calculated with our approach have been shown [31] to be
weakly dependent on both U and JH .

In the DMFT cycle with the Hubbard-I impurity solver, the
occupancy of 4 f ”quantum impurity” is evaluated for finite
temperature from the eigenvalues and eigenvectors of the
quasiatomic Hamiltonian (1). In the present case of strongly
localized 4 f shell and for the range of temperatures that is
physically reasonable for solids, the resulting occupancy is,
for all practical purposes, exactly equal to the nominal atomic
one for the Nd and Tb 4 f shells, 3 and 8, respectively.

These self-consistent DFT+HubI calculations were car-
ried out employing the self-interaction-suppressed scheme of
Ref. [31]. Namely, we averaged the Boltzmann weights of the
eigenstates of Ĥat belonging to the atomic GS multiplet (4I9/2

and 7F6 for Nd and Tb, respectively). With all atomic states
within the ground-state multiplet having the same occupancy1

one obtains a spherically symmetric 4 f shell, similarly to
a free RE atom. This procedure eliminates the unphysical
contribution of the LDA self-interaction (SI) error to the CF
splitting, since the SI contribution to ε̂ becomes orbitally
independent in the case of a spherically symmetric charge
density. The same procedure also removes the spin polariza-
tion of the 4 f shell and, hence, its contribution to the LSDA
exchange-correlation potential. The exchange field Bex on the
4 f shell is in this case solely due to the magnetization density
of Co sublattice. We thus neglect the contribution to Bex due
to the 4 f -4 f intersite exchange; this contribution, as men-
tioned in the introduction, is expected to be small in RECo5

compounds. The double-counting correction �DC was hence
calculated in the non-spin-polarized fully localized limit [43]
using the atomic occupancies [40] of the Nd or Tb 4 f shell.

The CFPs are extracted from the converged one-electron
level-position matrix ε̂ by fitting it to the form expected for
the corresponding RE ion embedded in a given crystalline
environment:

ε̂ = Ê0 + λ
∑

i

ŝi l̂i + Ĥex + Ĥext + Ĥcf , (3)

1The Boltzmann weights for other states of the same occupancy are
negligible under the condition of temperature T being much smaller
than the intermultiplet splitting; this condition is satisfied for the 4 f
shells of Nd and Tb for temperatures in the relevant range of several
hundreds Kelvins.
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where the terms on the RHS stand successively for the uni-
form shift, the spin orbit coupling, the TM-RE exchange
coupling, the Zeeman coupling Ĥext = −μ0Hext · M of the
RE moment M with an externally applied magnetic field Hext

and the CF one-electron Hamiltonian. The TM-RE exchange
coupling reads

Ĥex = 2μBBexn · Ŝ f , (4)

where the value of Bex acting on the RE 4 f -shell spin Ŝ f is
determined by the RE-TM exchange coupling strength and
the TM-sublattice magnetization, which is directed along n.
Generally, the RE-TM exchange coupling may involve also
higher rank RE moments [44] (octupoles, etc.). However, the
calculated ab initio 4 f level positions (2) were well fitted by
Eq. (3), with the average error on diagonal matrix elements
not exceeding 1 meV. The magnitude of exchange splitting
corresponding to the typical value of Bex ∼ 300 T in RECo5

is about 35 meV, meaning that the high-rank contributions
neglected in (4) are relatively small.

The RE site in the RECo5 crystal structure has the point-
group symmetry 6/mmm, for which the CF contribution Ĥcf

to the one-electron level positions (3) reads

Ĥcf = L0
2 T̂ 0

2 + L0
4 T̂ 0

4 + L0
6 T̂ 0

6 + L6
6 T̂ 6

6 , (5)

by selecting as principal axis the hexagonal axis �c ([001]),
which is then the quantization axis of the 4 f electronic
states. The T̂ q

k are the Hermitian Wybourne’s tensor operators,
related to the standard Wybourne’s spherical tensor operators
[45] Ĉq

k as T̂ 0
k = Ĉ0

k and T̂ ±|q|
k = √±1[Ĉ−|q|

k ± (−1)|q|Ĉ|q|
k ].

The Lq
k are the CFPs in the Wybourne’s convention.

The CF Hamiltonian of RECo5 intermetallics in the litera-
ture is often presented in the popular Stevens form:

ĤSt
cf = αJA0

2〈r2〉Ô0
2 + βJA0

4〈r4〉Ô0
4 (6)

+ γJ
[
A0

6〈r6〉Ô0
6 + A6

6〈r6〉Ô6
6

]
,

where the Ôq
k are the Stevens operators [46] acting on many-

electron 4 f wave functions within the atomic GS multiplet,
for example,

Ô0
2 = 3Ĵz − J (J + 1), Ô6

6 = 1
2 (Ĵ6

+ + Ĵ6
−), · · · (7)

αJ , βJ , and γJ are the Stevens factors �k for k = 2, 4, and 6,
respectively, for a given value of the total angular momentum
J . Aq

k〈rq〉 are the CFPs in the Stevens convention, related to
the Wybourne notation by Aq

k〈rq〉 = λkqLq
k , with the prefactors

λkq tabulated elsewhere [47,48]. We shall use the Stevens
convention for our calculated CFPs to ease comparison with
the literature.

The self-consistent DFT+HubI calculations were con-
verged to less than 1% with respect to the values of CFPs,

which were obtained by fitting of ab initio level positions ε̂

to the form (3). We also performed DFT+HubI calculations
choosing the binary axis �a ([100]) as principal axis. In this set-
ting, the unit cell is orthorhombic with the lattice parameters c,√

3a and a in terms of the original hexagonal cell parameters.
All Aq

k〈rk〉 for even positive q � k are nonzero in this setting.
The resulting CFPs of the orthorhombic cell were found to
agree with those of the hexagonal cell after the rotation by
Euler angle β = π/2.

Once the CFPs are obtained from converged DFT+HubI
calculations we extract RE magnetic anisotropy by solving
the full-shell Hamiltonian (1) at various orientation n of the
exchange field Bex, with the level positions given by Eq. (3)
and Hcf by Eq. (5). All inter-multiplet mixing effects are thus
included in these calculations. For the sake of comparison
and when it is noted explicitly, we perform also single GS
multiplet (GSM) calculations using the Stevens operator form
(6) and diagonalizing the corresponding Hamiltonian ĤSt

cf +
Ĥex defined in the GSM space. The Bex term in this space is
written

Ĥex = exn · Ĵ; ex = 2(gJ − 1)μBBex, (8)

where gJ is the gyromagnetic ratio for the GSM.

B. Calculations of magnetization distribution

RE contribution to magnetization distribution �M(�r) as
probed by PNS can be inferred from ionic states underlying
the fit of ab initio matrix ε̂ to the form (3). �M(�r) is exper-
imentally generated from neutron magnetic structure factors
�F⊥( �κ) = {�κ ∧ ∫ �M(�r)ei �κ·�rd�r ∧ �κ}/( �κ · �κ), which in cen-

trosymmetric collinear ferrimagnets are precisely determined
by collecting the intensity ratios of diffracted neutrons on all
accessible reciprocal lattice vectors �κ for ingoing neutrons po-
larized parallel and antiparallel to magnetization [28]. Gener-
ally, the most accessible reciprocal lattice vectors �κ are those
lying in the plane perpendicular to magnetization for which
�F⊥( �κ) is parallel to magnetization. The amplitude F⊥( �κ)

of �F⊥( �κ) is then interpreted as a Fourier coefficient of the
amplitude M(�r) of the projection of �M(�r) on the plane per-
pendicular to �M(�r). The RE part of �F⊥( �κ) can be evaluated
over its electronic spectrum as �F⊥

RE( �κ) = 〈∫ {−�κ ∧ �∇�r + �κ ∧
�̂s(�r) ∧ �κ}ei �κ·�rd�r/( �κ · �κ)〉REWRE( �κ) = �ERE( �κ)WRE( �κ) where
the expression inside the curly brackets distinguishes orbital
and spin contributions and WRE stands for the RE Debye-
Waller vibrating factor. 〈· · · 〉RE symbolizes quantum statis-
tical average. At low temperatures, it reduces to a matrix
element over the ground state �RE

GS . Using the tensor-operator
formalism [49], the spherical components of the vibrating-free
neutron magnetic structure factor �ERE( �κ) can be written, in
units of Bohr magneton (μB), in the form

EM
RE( �κ)

1
q = −4

√
π

∑
K,Q

Y K
Q (θ �κ, φ �κ )

∑
K ′,Q′

〈KQK ′Q′|1q〉

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
θJM

θ ′J ′M ′

〈
θ ′J ′M ′∣∣�RE

GS

〉〈
�RE

GS

∣∣θJM
〉

(AKK ′ + BKK ′ )〈K ′Q′J ′M ′|JM〉

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(9)
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using the basis of 4 f ionic states |θJM〉 ≡ |4 f nυLSJM〉 with
total orbital momentum L, total spin S and total angular
momentum J with azimuthal component M. The Y K

Q (−K �
Q � K ) stand for spherical harmonics of order K . (θ �κ, φ �κ )
are the azimuthal and polar angles of �κ. 〈· · · · | · ·〉 symbolizes
Clebsh-Gordon coefficients. AKK ′ and BKK ′ arise respectively
from the neutron scattering on the orbital part and on the
spin part of the electronic wave function. They depend on the
radial part R4 f of this wave function through the radial in-
tegrals 〈 jK (κ)〉 = ∫ ∞

0 dr r2|R4 f (r)|2 jK (κr), where jK is the
spherical Bessel function of order K . These were numerically
calculated from the relativistic Dirac-Fock Hamiltonian for all
the trivalent RE ions [50]. The tabulated values were approxi-
mated by analytic functions [51]. The explicit formula of AKK ′

and BKK ′ are detailed in Ref. [49] and involve, besides n j
symbols, parent states and coefficient of fractional parentage
that can be found, e.g., in Ref. [52]. Note that it may be
inferred from properties of n j symbols that AKK ′ is null unless
K is even, K ′ is odd and K = K ′ ± 1. Moreover AK ′+1K ′ =
{K ′/(K ′ + 1)} 1

2 AK ′−1K ′ . For f states, K ′ = 1, 3, and 5. It
may also be inferred that BKK ′ is null unless K is even, K ′
is even and K = K ′ or K is even, K ′ is odd and K = K ′ ± 1 in
which case BK ′+1K ′ = {K ′/(K ′ + 1)} 1

2 BK ′−1K ′ . For f states,
K ′ = 2, 4, and 6 for K = K ′ and K ′ = 1, 3, 5, and 7 for
K = K ′ ± 1.

III. RESULTS

A. 4 f ground state and zero-temperature
magnetization in NdCo5

The converged GS of Nd 4 f 3 shell obtained by the
self-interaction suppressed DFT+HubI calculations in NdCo5

reads

�Nd
GS = 0.827|9/2 − 9/2〉 − 0.536|9/2 − 5/2〉

− 0.089|9/2 − 1/2〉
− 0.096|11/2 − 9/2〉 + 0.094|11/2 − 5/2〉, (10)

where |JM〉 is a shorthand notation for the basis states
|4 f 3υ L = 6 S = 3/2 JM〉 and the quantization axis is chosen
along the binary axis �a ([100]) of the hexagonal structure, i.e.
along the GS magnetization direction [11,13,30] in NdCo5.
Table IV in Appendix provides the complete list of Nd CF
eigenstates. The first excited state is 220 K above in energy,
hence, the low-temperature Nd magnetization is determined
by the GS �Nd

GS and equal to 2.66 μB, which is significantly
lower than the saturated value of 3.27 μB of the GS 4I9/2

multiplet of Nd3+. Indeed, the GS wave function (10) features
a large contribution from the component |9/2 − 5/2〉 besides
the dominating component |9/2 − 9/2〉. The unsaturation
of the Nd magnetic moment in NdCo5 had been previously
evidenced by Alameda et al. [30] following a PNS experiment.
The measured magnetic structure factors they provide, all at
reciprocal lattice vectors �κ perpendicular to magnetization,
allow generating, through Fourier summation, the magneti-
zation distribution M(�r) as projected on the plane (�c ([001]),
�c ∧ �a ([120])) perpendicular to �a ([100]). As displayed in
Fig. 1, it exhibits little if any overlap between Nd contribution
and Co ones. Integrating this experimental magnetization
distribution over ovoid and rectangular surfaces of increasing

FIG. 1. Magnetization distribution M(�r) in NdCo5 as projected
in the plane (�c ([001]), �c ∧ �a ([120])) perpendicular to the orientation
�a ([100]) of �M(�r), inferred through Fourier summation from neutron
magnetic structure factors reported in Ref. [30]. The Nd ion on site
1a is projected at position (0,0), the Co ions on site 2c are projected
at positions (0, 1/3) and (0, 2/3) and the Co ions on site 3g are
projected at positions (0, 1/2) and, for two of them, (1/2, 1/2). The
Nd contribution to this experimental magnetization distribution map
in projection is thus fully separated from the Co contributions.

size centered on the Nd crystallographic site leads to a
magnetic moment that never exceed 2.70 μB except when
the surfaces start overlapping the magnetization distribution
visually ascribable to Co. However, this maximum might not
correspond to the true Nd magnetic moment since not all the
magnetic structure factors were measured.

The experimental magnetization distribution can be rele-
vantly compared to the one inferred from magnetic structure
factors obtained from a given 4 f wave function through
Eq. (9) provided that the calculations are performed on the
same reciprocal lattice vectors as in the experiment. This is
illustrated in Fig. 2 by the magnetization distribution obtained
from wave functions �Nd

SAT = |9/2 − 9/2〉 and �Nd
GS, corre-

sponding to saturated and unsaturated Nd magnetic moments,
respectively. The magnetization distribution computed from
�Nd

SAT is clearly larger than the experimental one, beyond
experimental uncertainties. On the other hand, the magneti-
zation distribution computed from �Nd

GS is in agreement with
experiment, inside experimental confidence bands.

Alameda et al. analyzed their data by means of a para-
metric modeling for the measured magnetic structure factors
F⊥( �κ)1

0. The Nd contribution F⊥
Nd( �κ)1

0 was computed assum-
ing a GS wave function in the form

�Nd
REF = α|9/2 − 9/2〉 ±

√
1 − α2|9/2 − 5/2〉 (11)

thus neglecting the contribution of excited multiplets. The
quantities AKK ′ and BKK ′ in Eq. (9) can in that case be readily
evaluated using tabulated coefficients [53]. The Co contri-
bution F⊥

Co( �κ)1
0 = ∑

i E i
Co( �κ)1

0 ei �κ·�ri W i
Co( �κ), where �ri defines

the position of the ith Co atom in the unit cell and W i
Co( �κ)

its Debye-Waller vibrating factor, was evaluated according
to the same approach as in a previous work on YCo5 [54].
In result, a factor α = 0.83, determining the relative weight
of |9/2 − 9/2〉 and |9/2 − 5/2〉 in the GS, was obtained in
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FIG. 2. Magnetization distribution M(0, z) in NdCo5 along a
segment crossing Nd position parallelly to the axis �c ([001]. The
experimental profile is in dotted green. It is plotted with confidence
bands inferred from experimental uncertainties reported in Ref. [30]
for the measured magnetic structure factors. The curve in blue stands
for the profile calculated from the wave function �Nd

SAT = |9/2 −
9/2〉. The curve in red stands for the profile calculated from the wave
function �Nd

GS (see (10)).

Ref. [30] by fitting the model to reproduce the measured mag-
netic structure factors. The GS moment of Nd, calculated from
Eq. (11) with this value of α, is 2.82 μB. We obtain 2.84 μB

by applying the same procedure to (10), i.e., by neglecting the
contributions of excited multiplets thus normalizing the GS
wave function to 1 within the GS multiplet.

The refined Nd contribution (F⊥
Nd( �κ)1

0)REF to the mag-
netic structure factors obtained using α = 0.83 in Eq. (11)
is displayed in Fig. 3. As shown in Fig. 2 of Alameda
et al. it coincides, within experimental error bars, with the
experimentally measured structure factors of Nd. In Fig. 3,
we also show, for the same reciprocal lattice vectors �κ, the
magnetic structure factors F⊥

Nd( �κ)1
0 computed using Eq. (9)

from the wave function �Nd
GS, Eq. (10). The structure factors

(F⊥
Nd( �κ)1

0)SAT computed from the fully saturated ground state
�Nd

SAT = |9/2 − 9/2〉 are also shown. The latter are isotropic,
i.e., they exhibit no dependence on the direction of �κ, and
thus (F⊥

Nd( �κ)1
0)SAT collapse into a single line when plotted

as a function of the reciprocal lattice vector length κ =
4π sin (θ )/λ. (F⊥

Nd( �κ)1
0)SAT is also clearly larger than both

experimental (F⊥
Nd( �κ)1

0)REF and our theoretical F⊥
Nd( �κ)1

0, es-
pecially at low reciprocal distance κ. Theoretical F⊥

Nd( �κ)1
0 is

in an almost perfect agreement with (F⊥
Nd( �κ)1

0)REF showing
a similar anisotropy. The effect of the multiplet mixing is
mostly manifest at low reciprocal distance κ where F⊥

Nd( �κ)1
0

is noticeably lower than (F⊥
Nd( �κ)1

0)REF.
Alameda et al. found their result on the Nd magnetic

moment puzzling, as large Bex induced by the ferromagnetic
Co sublattice in RECo5 was expected to saturate the RE
moment at low temperatures. Indeed, assuming a reasonable
upper limit of the value of low-rank CFP A2

2〈r2〉 ≈ −450 K
and an equally reasonable value of Bex ≈ 300 T they obtained
a fully saturated GS with the magnetic moment of 3.27 μB.

FIG. 3. Nd magnetic structure factors in NdCo5. The red filled
disks correspond to the experimental values refined in Ref. [30].
The cyan filled disks are the values computed from the full wave
function �Nd

GS , Eq. (10). The dashed curve goes through the isotropic
values computed from the saturated-state wave function �Nd

SAT =
|9/2 − 9/2〉.

However, in their analysis, the higher-rank CFPs in (6) were
assumed to be irrelevant and were therefore neglected.

The CFPs extracted from the converged DFT+HubI level
positions (2) by fitting them to the form (3) are displayed
in Fig. 4 (we report CFP parameters in the units of degrees
Kelvin throughout, as is rather standard in the literature; this
choice corresponds to setting the Boltzmann constant kB to
1). The fitted value of SO coupling λ = 126 meV is in a
good agreement with the experimental value of 110 meV
for Nd3+ impurity embedded into a crystalline host [41]; the
slight overestimation of λ may stem from the SI error, which
is suppressed by the approach of Delange et al. [31] only for

FIG. 4. Calculated crystal-field parameters Aq
k〈rq〉 in RECo5 (RE

=Nd, Sm, and Tb). 〈rq〉 is omitted from the tick mark labels for
brevity. These CF parameters are defined in a coordination frame
with z||c and x||a. Data for SmCo5 are obtained from DFT+HubI
calculations of Ref. [31]; we assumed non-spin-polarized CFPs in
fitting [Eqs. (3) and (5)] instead of spin-polarized ones as in Ref. [31].
Notice the very large values of A6

6〈r6〉 in all three compounds.
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FIG. 5. Ground-state energy EGS of rare-earth 4 f shell in (a) NdCo5 and (b) TbCo5 as a function of the exchange field direction n.
The direction n is specified by the azimuthal angle θ and polar angle φ. Empty and filled circles indicate the values computed by direct
diagonalization of the Hamiltonian (2) constructed with and without the CF parameter A6

6〈r6〉, respectively. The lines are a least-square fit of
calculated EGS to the anisotropy-energy expression (12) with the anisotropy constants specified in the legend.

the CF and exchange splitting within the GSM, but not for the
intermultiplet splitting due to the SO. One may notice negative
A0

2〈r2〉 = −285 K corresponding to an in-plane anisotropy
experimentally observed in NdCo5, but also a very large value
for the calculated A6

6〈r6〉 (“66”) CFP, reaching 1134 K in
NdCo5.

In order to identify the impact of this large “66” CFP,
the CF level scheme was also calculated by setting it to
zero. The resulting GS wave function is purely |9/2 − 9/2〉
corresponding to the fully saturated Nd moment. Hence, it
is precisely this CFP that is preventing the full saturation of
low-temperature Nd moment in NdCo5.

In Table I, we compare our calculated CFPs and Bex with
experimental and theoretical values reported for NdCo5 in the
literature. The experimental values in Table I are obtained
from fitting either to high-field magnetization curves or to
the temperature dependence of magnetic anisotropy. The the-
oretical values are obtained by the DFT employing the open-
core treatment for Nd 4 f . In spite of the large discrepancies
between different references one may notice that the “66”
CFP values reported so far are significantly smaller than our
calculated value, while our “20” CFP and Bex are in the
middle of literature values. For each set of CFPs + Bex we
compute the value of α as described above as well as the
Nd moment from the corresponding single-multiplet GS wave
function (11). One sees that none of previous CFP schemes,
in spite of significant differences between them, is able to
account for the large admixture of M = −5/2 to the GS found
by Alameda et al. and the corresponding reduction of the
moment. The “freezing” of Nd GS moment thus represents
a direct indication of the huge value of the “66” CFP. As
we argue in Sec. IV this value arises from the hybridization
between localized 4 f and itinerant states, which is neglected
within the “open-core” framework.

B. Zero-temperature magnetic anisotropy of NdCo5

Let us now analyze the impact of “66” CFP on the mag-
netocrystalline anisotropy energy (MAE). The MAE of a
hexagonal crystal reads

Eanis(θ, φ) = K1 sin2 θ + K2 sin4 θ + K3 sin6 θ (12)

+ K ′
3 sin6 θ cos 6φ,

where θ and φ are azimuthal and polar angles, respectively, of
the magnetization direction in the reference frame with z||c
and x||a. The RE macroscopic anisotropy constants Ki are
determined by the interplay of Bex and CFPs. In order to elu-
cidate the impact of A6

6〈r6〉 on the Nd single-ion anisotropy in
NdCo5 we numerically evaluated the Nd SIA constants Ki. To
that end, we diagonalized the Hamiltonian (3) parametrized by
the calculated values of CFPs, Bex, and λ, varying the direction
n of Bex (i.e., the direction of magnetization of the Co sublat-
tice). We obtained a strong in-plane Nd single-ion anisotropy,
with the easy direction along the a direction of the hexagonal
unit cell, as seen from the calculated evolution of the GS
energy along a chosen path in the (θ, φ) space [Fig. 5(a)].
Notice that the in-plane anisotropy of NdCo5 is substantially
reduced if the A6

6〈r6〉 CFP is not taken into account. In fact,
without A6

6〈r6〉, the single-ion Nd anisotropy is of easy-cone
type, in disagreement with the easy-plane observed experi-
mentally. Hence, the azimuthal magnetic anisotropy of Nd in
this compound is very sensitive to the high-rank “66” CFP. In
contrast, the dependence of Eanis on the polar angle φ is rather
weak. This implies that the polar dependence of the anisotropy
is not a reliable signature of the relative magnitude of A6

6〈r6〉.
As shown in Fig. 5(a), the calculated RE anisotropy energy

Eanis(θ, φ) can be reasonably well fitted by three anisotropy
constants, K1, K2, and K ′

3, in Eq. (12). Although a more precise
fitting is obtained by including K3, we neglected it to facilitate
the comparison with previous experimental measurements, in
which K3 has also been neglected. The resulting values of
Ki are listed in Table II. The calculated anisotropy constants
are in overall good agreement with experiments, taking into
account the large dispersion of experimental values. In par-
ticular, both our theory and experiment find a large negative
value of K1 and a positive constant K2 of smaller magnitude.
The overall negative MAE of NdCo5, defined as E ( �M||a) −
E ( �M||c), is well reproduced when the “66” CFP is taken into
account; without this high-rank CFP the magnitude of MAE
is severely underestimated.

The spread of experimental values is mainly related to
uncertainties in extracting Ki values from magnetization
data, i.e., to a two-sub-lattice model assumed in the anal-
ysis. In particular, Ref. [59] employed a model allowing
for a misalignment of the RE and Co magnetizations with
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TABLE II. Zero-temperature RE single-ion anisotropy constants
and magnetocrystalline anisotropy energy (MAE), in units of K/f.u..
The values in parenthesis are obtained by the Suscksmith-Thompson
formula; other values are extracted by fitting the angular dependence
of the calculated RE MAE (Fig. 5) to Eq. (12) with the K3 term
omitted. For the anisotropy constant of Co sublattice KCo

1 , we took
the value of 45 K/(f.u.) measured in YCo5. Higher-order anisotropy
constants of Co are negligible in accordance with experiment [56].
Experimental values (at T = 4.2 K) from Refs. [57–59] are indicated
by superscripts a, b, and c, respectively.

NdCo5

with A6
6〈r6〉 w/out A6

6〈r6〉 Exp.

K1 −393 −231 −510c

K1 + KCo
1 −348 (−211) −186 −244a, −212b, −468c

K2 211 (91) 147 119a, 87b, 193c

K ′
3 −9 - -

MAE −148 (−120) −37 −125a, −125b, −275c

TbCo5

with A6
6〈r6〉 w/out A6

6〈r6〉 Exp.

K1 −59 −64 −99c

K1 + KCo
1 −14 −19 −57c

K2 −45 −43 −36
K ′

3 −4 - -
MAE −63 −62 −93c

distinct anisotropy constants for each sublattice. In contrast,
Refs. [9,58] employed the Suscksmith-Thompson (ST) [60]
approach to extract the total K1 and K2 values from mag-
netization curves with the external field applied along the
hard direction. This model assumes perfectly aligned Co and
RE magnetizations, thus its applicability to two-sublattice
systems is questionable [59]. However, to have a consistent
comparison to experimental anisotropy constants we also
extracted them using this approach, by applying an external
field Hc along the hard �c ([001]) direction. To that end, we
minimized the magnetic free energy of NdCo5:

FM = FRE(θCo, Hc, T ) + KCo
1 sin2 θCo − μ0| �MCo|Hc cos θCo,

(13)

where second and third terms are the anisotropy and Zeeman
energy of the Co sublattice, θCo is the azimuthal angle of the
Co magnetization �MCo (confined within the ac plane). The
first term is the contribution of Nd sublattice

FRE(θCo, Hc, T ) = −T ln
∑

�

exp E�/T, (14)

which was calculated from eigenstates E� of the Hamiltonian
(1) with the level positions ε̂ (3) given by the CFPs, the
exchange field Bex oriented along the direction of Co magneti-
zation, and the external field Hc. We employed our calculated
value of 7.5 μB for the total cobalt moment (6.85 μB for the
spin moment and 0.65 μB for the orbital moment) and exper-
imental KCo

1 = 45 K/(f.u.) measured in YCo5 [56]. Having
found the optimal value of θCo we evaluated the azimuthal
angle of the total magnetization as a function of Hc; then K1

and K2 were computed with the ST formula. The resulting
values displayed in parenthesis in Table II are in a very

FIG. 6. Calculated magnetization along the hard c axis vs. ap-
plied field along the same direction at T = 4.2 K. The solid blue
and dashed red curves are calculated with and without the “66” CFP,
respectively. Experimental data (dots) are from Ref. [11].

good agreement with those obtained from experimental data
analysis employing the same approach [57,58].

These results on the anisotropy constants can be com-
pared to predictions of the standard linear-in-CF single-
multiplet theory for RE magnetic anisotropy in magnetic in-
termetallics [8,61]. In the exchange-dominated regime A6

6〈r6〉
CFP is shown to contribute only to the polar dependence of
Eanis(θ, φ), determined by the anisotropy constant K ′

3. As fol-
lows from (12), it should have thus no impact on the average
azimuthal (θ ) dependence of Eanis, in a drastic disagreement
to our numerical results [Fig. 5(a)] showing a strong enhance-
ment of the in-plane anisotropy by the “66” CFP.

The condition for an exchange-dominated system is given
by

CF
kq = ∣∣Aq

k〈rq〉�k
(〈

Ôq
k (J )

〉)
max

∣∣ < Jex, (15)

where the exchange splitting ex is given by (8), CF
kq is

the magnitude of the splitting due to the corresponding kq
CF term and the symbol (〈Ôq

k (J )〉)max designates the largest
eigenvalue of the corresponding Stevens operator. Inserting
the calculated values of A6

6〈r6〉 and Bex as well as the ap-
propriate constants for the GS multiplet 4I9/2 of Nd: J =
9/2, gJ = 8/11 and �6 ≡ γJ = −38 × 10−6 and (〈Ô6

6(J =
9/2)〉)max = 5040 for the Stevens operator Ô6

6 (7), one finds
that the condition of exchange dominance is in fact satisfied
for the “66” CFP. The same condition, and even to a larger
extent, is satisfied for the ”20” CFP. Hence, the failure of
the linear-in-CF theory [61] can be attributed to its single-
multiplet character. The large “66” CFP apparently induces
strong intermultiplet effects in NdCo5, as we will demonstrate
explicitly in Sec. III C below.

Using the approach described above, Eqs. (13) and (14),
we also calculated the magnetization Mc of NdCo5 along
the hard c axis at high external fields Hc, up to 60 T, thus
simulating the experiments of Refs. [11,13]. For the helium
temperature, we obtain a cube-root-like dependence of Mc

versus Hc (Fig. 6) up to H∗
c ≈ 52 T, at which one observe

a discontinuous first-order-like jump (i.e., a first-order mag-
netization process) to the saturated Mc moment. The theo-
retical low-field behavior and the saturated total moment of
10.6 μB are in excellent agreement with the experiment (as
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expected with our ST anisotropy constants being close to
experimental ones). However, the measured critical field H∗

c
is 35 T [11,13]. The overestimation of H∗

c might stem from
the approximation of direction independent Co magnetization
and Nd-Co exchange coupling used in our calculations which
is questionable [56,62] and likely to affect our results on
the spin-reorientation process at high applied fields. With
the “66” CFP excluded the calculated magnetization curve is
qualitatively wrong: in this case the easy-cone Nd anisotropy
[see Fig. 5(a)] results in a large magnetic moment along the c
axis even at zero external field.

C. Temperature dependence of single-ion anisotropy and
role of J mixing

In the previous section, we focused on the low-temperature
magnetism of NdCo5. Let us now consider the 4 f SIA at
elevated temperatures T up to the Curie point (Tc = 910 K)
of NdCo5. For a realistic treatment of the RE SIA at high
T it is important to take into account the corresponding
decrease of Bex due to a reduced magnetization of the Co
sublattice. We thus scaled the zero-temperature value of Bex

with temperature as Bex(T ) = Bexm(τ ), where m(τ ) is the re-
duced Co magnetization M(T )/M(0) as a function of reduced
temperature T/Tc. For m(τ ), we employed a semi-empirical
formula of Kuz’min [63] parametrized for YCo5. Using
this Bex(T ), we obtained Eanis(T ) = FRE(θCo = π/2, Hc =
0, T ) − FRE(θCo = 0, Hc = 0, T ) with FRE calculated in ac-
cordance with Eq. (14) as detailed above.

The calculated RE anisotropy energy is plotted in Fig. 7(a).
As expected Eanis exhibits a rapid decrease with increasing
temperature. More interestingly, by comparing Eanis calcu-
lated with and without the “66” CFP one concludes that
its strong impact on the anisotropy persists in the high-
temperature regime. Indeed, its relative contribution r66 =
(Eanis − Ẽanis )/Eanis, where Ẽanis is calculated excluding the
“66” CFP, decreases rather slowly with temperature and is still
about 27% near Tc [red curve in the inset of Fig. 7(a)].

This behavior is quite unexpected. In fact, the high-
temperature expansion of the RE single-ion anisotropy (see,
e.g., Refs. [8,61]) predicts that only the “20” CFP contributes
to the MAE in the leading order in 1/T . Within this single-
multiplet formalism higher-rank CFPs are found to contribute
only to higher orders in 1/T and should become relatively
unimportant at high T approaching Tc. This conclusion fol-
lows from orthogonality properties of the Stevens and angular
moment operators and should hold even at relatively large
values of high-rank CF contributions, as far as they are smaller
than T .

In order to better understand the origin of this behavior we
computed the temperature evolution of Eanis and Ẽanis using
the Stevens formalism, Eqs. (6) and (8), i.e., including only
the GSM. One sees that excluding excited multiplets reduces
the contribution of “66” CFP by about a quarter at T = 0 and
by about 60% at T = 300 K (cf. the red and blue curves in
inset of Fig. 7(a), which give the contribution of “66” with
and without the excited multiplets, respectively). The inter-
multiplet mixing thus significantly increases the “66” CFP
contribution to the anisotropy, particularly, at room temper-
ature and above. Inversely, the role of inter-multiplet mixing

FIG. 7. (a) RE contribution to magnetic anisotropy Eanis in
NdCo5 vs temperature. The solid and dashed lines are calculated
including all CFPs and with the “66” CFP excluded, respectively.
(Inset) The relative contribution of the “66” CFP to Eanis vs T .
(b) Temperature dependence of the anisotropy constants K1 and K2,
evaluated with the ST method [60]. The ST fitting becomes poorly
defined close to the spin-reorientation transition of NdCo5; therefore,
we de not show the points in its vicinity. The experimental curves are
from Ermolenko [58].

is drastically enhanced by this CFP. Indeed, with the “66” CFP
excluded the single-multiplet and full calculations produce
very similar values for the RE anisotropy energy (Fig. 7(a)).

We have also evaluated the temperature dependence of the
anisotropy constants K1 and K2 using the ST approach, as
was employed by Ermolenko [58] to extract the anisotropy
constants from experimental magnetization curves. The agree-
ment of our theoretical Ki(T ), calculated with all CFPs in-
cluded, with experimental data is excellent, in particular, at
low and intermediate temperatures (Fig. 7(b)).

D. Comparison to TbCo5

Let us now turn to the case of heavy-RE ”1-5” system
TbCo5. The CFPs of Tb obtained by the self-interaction sup-
pressed DFT+HubI method (Fig. 4 and Appendix, Table VI)
are qualitatively similar to those of Nd presented above. The
negative value −118 K of low-rank CFP A0

2〈r2〉 indicates
in-plane Tb SIA in this compound, similarly to NdCo5, but its
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magnitude is noticeably smaller. The magnitude of “66” CFP
is quite large, 440 K, but is almost 3 times smaller than in

NdCo5. The ratio of these two CFPs, A6
6〈r6〉

A0
2〈r2〉 , is almost the same

in TbCo5 and NdCo5, seemingly suggesting an equally strong
impact of the “66” CFP in these systems. The fitted value of
SO λ = 240 meV for Tb is in good agreement to experiment
(212 meV) [41], but slightly overestimated, similarly to the
Nd case.

We performed the same calculation of the anisotropy en-
ergy as a function of θ and φ for TbCo5 as for NdCo5 and then
extracted the values of anisotropy constants K1, K2, and K ′

3.
As shown in Fig. 5(b), with the “66” CFP included, the easy
direction lies along the hexagonal a axis (θ = π/2, φ = 0).
The absolute value of the single-ion contribution to MAE,
ERE( �M||a) − ERE( �M||c) = −106 K, is about twice smaller in
TbCo5 than that of NdCo5.

The calculated anisotropy constants are listed in Table II.
In contrast to NdCo5, we obtain negative values for Tb K1 and
K2, which are of comparable magnitude. The overall MAE
(including the Co contribution) is negative, corresponding to
in-plane a easy axis, and it is about twice smaller than in
NdCo5. These findings are in qualitative agreement with the
measurements of Ermolenko [59], which is the only experi-
mental work, to our awareness, reporting the low-temperature
anisotropy constants of TbCo5. Our calculated K1 anisotropy
constant and, correspondingly, MAE seem to be underesti-
mated, if compared to Ref. [59]. However, as already men-
tioned above, this work employed a nonstandard approach for
extracting anisotropy constants. The RE anisotropy constant
K1 of NdCo5 reported by Ermolenko is also overestimated
compared to other experimental references.

Our calculated GS wave function of Tb 4 f 8 shell, defined
in the same coordinate frame as the Nd GS wave function (10),
is the pure total moment eigenstate:

�T b
GS = |66〉, (16)

corresponding to the fully saturated Tb moment (see Table V
in Appendix for a full level scheme). Only a negligible change
in the GS is observed with the “66” CFP excluded, which
becomes 0.999|6 + 6〉 + 0.045|6 + 4〉, the splitting to the first
excited state (almost pure |65〉 in both cases) then decreases
from 232 to 217 K. Figure 8 shows the Tb contribution to the
neutron magnetic structure factor FM of TbCo5 predicted from
this GS. It shows no anisotropy.

Therefore we conclude that A6
6〈r6〉 does not affect the

low-temperature magnetism of Tb and has a rather insignif-
icant impact on its magnetic anisotropy, other then inducing,
obviously, some planar anisotropy (see Table II and Fig. 5(b)).
This behavior is in sharp contrast to that of NdCo5, what might
seem to be in contradiction to approximately the same relative
value A6

6〈r6〉, with respect to A0
2〈r2〉, in these two systems.

However, the Stevens factor γJ = −1.121 × 10−6 for the GS
multiplet 7F6 of Tb is much smaller than that for Nd 4I9/2.
The relative importance of “20” and “66” terms in (6) may be
estimated from the ratio of splittings (15) generated by each
CFP in a given GS multiplet:

d = CF
20

CF
66

= γJA6
6〈r6〉(〈Ô6

6(J )
〉)

max
αJA0

2〈r2〉〉(〈Ô0
2(J )

〉)
max

. (17)

FIG. 8. Tb magnetic structure factors in TbCo5 predicted from
converged GS �Tb

GS computed at the same reciprocal lattice vectors �κ
as those in the PNS experiment on NdCo5 [30].

Evaluating (17) with our calculated CFPs we find d = 3.28
and 0.19 for Nd and Tb, respectively, the “66” CFP being thus
about 17 times more significant in the former case. Therefore,
while our calculations predict a large “66” CFP in all RECo5

compounds calculated so far, the impact of this CFP on
RE magnetic moment and anisotropy is ion-dependent. This
impact is expected to be particularly significant in light RE
ions, for which the rank-6 Stevens factor γJ is relatively large
and rather weak in heavy RE with large GS J , like Tb or Dy.

Moreover, the Tb CF states within its GS multiplet feature
much smaller J mixing as compared to the Nd ones (see
Tables IV and V). Hence, in contrast to the Nd case, no strong
impact of J mixing on the anisotropy is expected.

IV. ANALYSIS: ELECTRONIC STRUCTURE,
HYBRIDIZATION AND RANK-6 CRYSTAL-FIELD

IN RECo5

As shown in Fig. 4 above, the present DFT+HubI method
predicts an unexpectedly large value of A6

6〈r6〉 in all three
RECo5 compounds studied to date (RE = Nd, Sm, Tb). In
addition, the magnitude of this CFP seems to reduce along
the series, being the largest in Nd and smallest in Tb. In this
section, we aim at identifying physical origins of these results.

TABLE III. Calculated crystal-field parameters (in K) and ex-
change field (in tesla) in NdCo5 using the large Wl and small Ws

energy windows as well as intermediate windows [−2 : 10] and
[−10 : 2].

Energy window (eV) A0
2〈r2〉 A0

4〈r4〉 A0
6〈r6〉 A6

6〈r6〉 Bex

[−10 : 10], (Wl ) −198 −57 1 45 326
[−2 : 10] −388 −50 7 357 332
[−10 : 2] −125 −34 19 731 287
[−2 : 2], (Ws) −285 −33 36 1134 292
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TABLE IV. Calculated eigenvalues and eigenstates of Nd 4 f shell in NdCo5.

E − EGS, K Eigenstates in |JM〉 basis

0 +0.827|9/2 − 9/2〉 − 0.536|9/2 − 5/2〉 − 0.096|11/2 − 9/2〉 + 0.094|11/2 − 5/2〉 − 0.089|9/2 − 1/2〉
220 +0.702|9/2 − 3/2〉 + 0.690|9/2 − 7/2〉 − 0.117|9/2 + 5/2〉 − 0.103|11/2 − 3/2〉 − 0.063|9/2 + 1/2〉
280 +0.760|9/2 − 5/2〉 + 0.535|9/2 − 9/2〉 + 0.305|9/2 − 1/2〉 − 0.158|9/2 + 3/2〉 − 0.092|9/2 + 7/2〉

−0.079|11/2 − 1/2〉 − 0.045|11/2 − 5/2〉 + 0.032|11/2 + 7/2〉
526 +0.708|9/2 − 7/2〉 − 0.687|9/2 − 3/2〉 + 0.091|11/2 − 3/2〉 + 0.081|9/2 + 1/2〉 − 0.079|9/2 + 5/2〉

+0.058|9/2 + 9/2〉 − 0.034|11/2 − 7/2〉 − 0.032|11/2 − 11/2〉
642 +0.668|9/2 − 1/2〉 − 0.613|9/2 + 3/2〉 − 0.333|9/2 − 5/2〉 − 0.189|9/2 + 7/2〉 − 0.138|9/2 − 9/2〉

−0.087|11/2 − 1/2〉 + 0.056|11/2 + 3/2〉 + 0.036|11/2 + 7/2〉
697 +0.789|9/2 + 5/2〉 + 0.567|9/2 + 1/2〉 − 0.183|9/2 + 9/2〉 + 0.107|9/2 − 7/2〉 + 0.068|9/2 − 3/2〉

−0.046|11/2 + 5/2〉 − 0.040|11/2 + 9/2〉 − 0.032|11/2 − 3/2〉
738 +0.666|9/2 + 3/2〉 + 0.653|9/2 − 1/2〉 + 0.330|9/2 + 7/2〉 − 0.094|9/2 − 5/2〉 − 0.078|11/2 − 1/2〉

−0.056|11/2 + 7/2〉
829 +0.807|9/2 + 1/2〉 − 0.524|9/2 + 5/2〉 + 0.201|9/2 + 9/2〉 − 0.102|11/2 + 1/2〉 − 0.094|9/2 − 7/2〉

+0.075|11/2 + 5/2〉 + 0.071|9/2 − 3/2〉 − 0.040|11/2 − 3/2〉
1070 +0.956|9/2 + 9/2〉 + 0.252|9/2 + 5/2〉 − 0.102|11/2 + 5/2〉 − 0.064|9/2 + 1/2〉 + 0.055|9/2 − 3/2〉

−0.055|11/2 + 9/2〉
1111 +0.905|9/2 + 7/2〉 − 0.387|9/2 + 3/2〉 − 0.139|11/2 + 7/2〉 − 0.065|9/2 − 1/2〉 + 0.059|9/2 − 5/2〉

+0.041|11/2 + 11/2〉 + 0.040|11/2 + 3/2〉

TABLE V. Calculated eigenvalues and eigenstates of Tb 4 f shell in TbCo5.

E − EGS, K Eigenstates in |JM〉 basis

0 +1.1000|6 + 6〉
232 +0.0994|6 + 5〉 + 0.091|6 + 3〉 + 0.048|5 + 5〉
428 +0.0991|6 + 4〉 + 0.098|6 + 2〉 + 0.080|5 + 4〉
634 +0.0989|6 + 3〉 − 0.093|6 + 5〉 + 0.088|5 + 3〉 + 0.076|6 + 1〉
844 +0.0988|6 + 2〉 − 0.098|6 + 4〉 + 0.095|5 + 2〉 + 0.059|6 + 0〉
1050 +0.0989|6 + 1〉 + 0.103|5 + 1〉 − 0.076|6 + 3〉 + 0.060|6 − 1〉
1251 +0.0989|6 + 0〉 + 0.109|5 + 0〉 + 0.076|6 − 2〉 − 0.060|6 + 2〉
1448 +0.0987|6 − 1〉 + 0.110|5 − 1〉 + 0.090|6 − 3〉 − 0.062|6 + 1〉
1647 +0.0987|6 − 2〉 + 0.104|5 − 2〉 + 0.088|6 − 4〉 − 0.078|6 + 0〉
1852 +0.0989|6 − 3〉 + 0.093|5 − 3〉 − 0.091|6 − 1〉 + 0.063|6 − 5〉
2059 +0.0992|6 − 4〉 − 0.087|6 − 2〉 + 0.083|5 − 4〉
2260 +0.0995|6 − 5〉 + 0.071|5 − 5〉 − 0.061|6 − 3〉
2440 +1.1000|6 − 6〉

FIG. 9. (a) RECo5 crystal structure (view along the hexagonal [001] direction). Red, green and orange balls depict RE, Co 2c and
Co 3g sites, respectively; the unit cell is indicated by bold black lines. (b) Nd 4 f Wannier orbitals for m = 0, −1 (upper row), −2, −3
(bottom row) constructed using the small energy window Ws ∈ [−2:2] eV. c The same orbitals constructed using the large energy window
Wl ∈ [−10:10] eV.
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FIG. 10. (a) Density of Kohn-Sham (KS) states in NdCo5 as obtained from the charge density converged in DFT+HubI. The large
window Wl ∈ [−10:10] eV includes all states shown on this plot. The range included into the small energy window Ws is indicated by
vertical dashed lines. The notation for the curves is defined in the legend of RHS panel. (b) The DFT+HubI spectral function of NdCo5

(calculated with the small window Ws). The Nd 4 f spectral function features sharp peaks corresponding to transitions between atomic
multiplets. The same plots for TbCo5 are shown in (c) and (d), respectively. Notice the shift of the Tb 4 f KS band to lower energies.
The experimental photoemission and inverse-photoemission spectra displayed as brown dashed line in (b) and (d) are for the Nd and Tb
metals [64].

The crystalline environment of RE site in RECo5 is invari-
ant under a sixfold rotation [Fig. 9(a)], but not under an arbi-
trary rotation about the c axis. This is precisely the symmetry
of A6

6〈r6〉Ô6
6 term, which is invariant under the sixfold rotation

about the c hexagonal axis. This points out to its likely origin
in a spatially nonuniform in-plane interaction between R and
its Co neighbors. The main contribution to the “66” CFP is
apparently missed by open-core approaches (see Table I). This
suggests hybridization between RE and Co states as a likely
origin of the large “66” CFP. The symmetry of hybridization
is determined by the local environment of RE ions. Mixing of
localized 4 f with, for example, Co 3d states, which are also to
some degree localized, should lead in a simple tight-binding
picture to the formation of directed bonds leading to the
expected sixfold symmetry of the resulting CF contribution.

These qualitative arguments can be verified within the
present DFT+HubI approach by exploiting the flexibility of
its 4 f -orbitals basis. As hybridization effects are not included
explicitly into the local 4 f problem within the Hubbard-I
approximation, they can only implicitly enter into (1), through
the shape of 4 f orbitals in which matrix elements 〈ĤKS〉 f f

in (2) are evaluated. 4 f orbitals in the present framework
are Wannier orbitals (WO) constructed using the projective
two-step approach of Refs. [34,65]. First, an initial 4 f basis
is generated by expanding 4 f local orbitals |χmσ 〉, defined
within RE ”atomic sphere”, in terms of the Bloch states |ψkν〉
enclosed within a chosen energy window W:

∣∣χk
mσ

〉 =
∑
ν∈W

|ψkν〉〈ψkν |χmσ 〉.

The resulting set of orbitals |χk
mσ 〉 is not orthonormal due to

the incompleteness of the Bloch basis restricted by the range
W . Subsequent orthonormalization of this initial set leads to a
true Wannier basis {ωmσ }, with the resulting orbitals extending
beyond RE site due to hybridization mixing of 4 f states with
other bands. Using a large Wl range reduces the degree of
incompleteness of the Bloch basis; the set {ωmσ } in this case
does not differ much from initial {χmσ }. With this basis choice
DFT+HubI calculations are expected to produce results sim-
ilar to those of the open-core framework. The narrow Ws

range, enclosing mainly 4 f bands, results in extended WO due
to hybridization admixture of other characters to those bands,
as shown by Delange et al. [31] on the example of “1-12”
intermetallics. The matrix elements 〈ĤKS〉 f f computed in such
an extended WO basis are affected by hybridization.

We have performed test calculations for NdCo5 employing
the large window Wl ∈[-10:10] eV, containing all Co 3d and a
large part of Nd 5d states [see2 Fig. 10(a)]. As noted in Sec. II,
the rest of NdCo5 calculations in this work employed extended
WO constructed using the window Ws ∈ [−2:2] eV around
the Kohn-Sham Fermi energy EKS

F . As one sees in Fig. 10(a),
Ws includes all Nd 4 f , whereas part of Co 3d and almost

2In our DFT+HubI calculations the exchange field on the RE 4 f
shell (i.e., Bex) is due to the Co spin polarization only, as the 4 f
own magnetization density is suppressed by averaging, see Sec. II A.
The value of Bex (Table VI) is small compared to the width of RE
KS 4 f band, which remains, correspondingly, essentially not spin-
polarized, as is seen in Figs. 10(a) and 10(c).
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all Nd 5d are excluded. The impact of hybridization on the
resulting WO can be qualitatively analyzed by plotting them
in the real space. The Nd 4 f orbitals in NdCo5 constructed
for different magnetic quantum number m by using the large
and small energy windows are depicted in Figs. 9(b) and 9(c),
respectively. The WO on this plot were constructed neglecting
the SO coupling in order to highlight the orbital dependence
of their spread. The same value is used to define the isodensity
surface in both cases.

One sees that the small-window WO are extended and leak
to neighboring Co sites. This leakage is orbital-dependent
(being rather small for m = −1 and large for m = −2 and
−3), hence, it directly contributes to the splitting of the corre-
sponding one-electron levels. In contrast, the “large-window”
WO exhibit no leakage to the Co neighbors (see Fig. 9).
Therefore the CFPs calculated in this case using DFT+HubI
approach do not include any contribution of hybridization and
will be determined solely by the electrostatic contribution.

We carried out full DFT+HubI crystal-field calculations
using the large energy window Wl ∈ [−10:10] eV for con-
structing localized WO; all other parameters of these calcula-
tions are identical to those using with the small window Ws.
The CFPs and Bex obtained with the two choices for WO are
compared in Table III. One observes a very small impact on
Bex and some decrease in the magnitude of the low-rank “20”
CFP. In contrast, the value of A6

6〈r6〉 is reduced by a factor
of 25 when the localized WO (constructed using Wl ) are em-
ployed. Not surprisingly, with such a small “66” CFP a fully
polarized Nd GS of almost pure |9/2; −9/2〉 is obtained. From
this analysis, we conclude that the crucial large “66” CFP
in NdCo5 and in RECo5 in general, is due to hybridization
effects, with the purely electrostatic contribution being quite
insignificant.

We have also performed calculations with the window
extended either to include only occupied valence states,
[−10 : 2] eV, or a wide range of unoccupied states, [−2 :
10] eV. As compared to the localized WO (Wl ), these WO
effectively include the hybridization with empty and filled
states, respectively. The resulting zonal “20” CFPs (Table III)
exhibits a nonmonotonous dependence on the window size,
apparently indicating hybridization contributions of different
signs stemming from filled and empty states. In contrast, the
“66” CFP strongly increases in both cases, but the impact of
hybridization with empty states (RE 5d , Co 4s) is noticeably
more pronounced.

We have also analyzed the contribution due to the leakage
of extended WO into its occupancy and magnetization. To that
end, we employed an approach proposed by Delange et al.
[31] (see their Appendix F for details). Namely, extended WO
were expanded into a set of orthonormalized WO constructed
using the large window and representing all relevant valence
states (Co 3d , RE 4 f , and 5d etc.). The on-site occupancy ρmσ

of the corresponding extended Wannier orbital is then given
by a sum of various site and orbital contributions:

ρmσ =
∑
α,l

ρ̃αl
mσ , (18)

where ρ̃αl
mσ designates the contribution due to the shell l on the

site α.

This analysis shows that the extended WO still remain
quite localized, with the sum of all non-4 f contributions
ρ̃αl

mσ into the total shell occupancy and magnetic moment of
about 2%. Though the impact of hybridization on the CFPs is
significant, the contribution of hybridization mixing into the
4 f occupancy and magnetization remains quite small.

The KS electronic structure of TbCo5, obtained from con-
verged DFT + HubI calculations, is displayed in Fig. 10(c).
Tb 4 f bands are located significantly lower in energy as
compared to Nd 4 f bands in NdCo5. Such evolution along the
RE series is generally expected. Therefore, as Tb 4 f KS bands
are not anymore pinned at EKS

F , we continuously adjusted the
position of Ws in the course of DFT+HubI calculation, see
the Method section.

In Figs. 10(b) and 10(d), we display the calculated
DFT+HubI spectral function for NdCo5 and TbCo5, re-
spectively. The quasiatomic multiplet structure of RE 4 f is
compared to experimental photoemission spectra (PES) and
inverse PES of the Nd and Tb metals [64] (we are not
aware of any PES experiments on Nd and Tb “1-5” systems).
One observes a very good agreement between the positions
of 4 f peaks in DFT+Hub-I and experimental PES. Notice
that, in contrast to the previous DFT+HubI calculations of
Refs. [66,67], we did not adjust the position of the occu-
pied RE 4 f states to that in experimental PES. Although
the multiplet structure and the splitting between empty and
occupied 4 f states are mainly determined by the input local
Coulomb interaction, the position of the 4 f states center-
weight relative to other bands is determined by that of the
KS 4 f bands [Figs. 10(a) and 10(c)]. The latter comes out
of our charge self-consistent DFT+Hub-I calculations, which,
therefore, predict quantitatively correctly the lower position of
the Tb 4 f band as compared to the Nd one [cf. the position of
4 f band relative to KS EF in NdCo5 and TbCo5, Figs. 10(a)
and 10(c), respectively]. The occupancy of other RE states
is only slightly modified in DFT+HubI as compared to the
KS electronic structure, e.g., the 5d occupancy within the RE
atomic sphere for Nd(Tb) is 0.66 (0.70) and 0.63(0.59) in
DFT+HubI and KS, respectively.

As described above for the case of NdCo5, the principal
contribution to the “66” CFP is due to the hybridization
between RE 4 f and empty conduction bands. The predicted
shift of the Tb KS 4 f states to lower energy should weaken
this hybridization, hence the observed reduction of the “66”
CFP in TbCo5 as compared to the case of Nd. On the basis of
this argument one expects a decrease of “66” CFP in RECo5

along the RE series, which we indeed find, see Fig. 4.

V. CONCLUSIONS

We have calculated crystal-field parameters (CFPs) and
rare-earth single-ion magnetic anisotropy in ferrimagnetic
intermetallics NdCo5 and TbCo5 using the ab initio
DFT+Hubbard-I methodology of Ref. [31]. Our study reveals
that the order-six CFP “66” A6

6〈r6〉 takes exceptionally large
values in these RECo5 systems (as well as in SmCo5 calcu-
lated before in Ref. [31]), especially in the light RE element
Nd. In the present work we aimed at evaluating the impact
of this large order-six CFP on RE magnetization and single-
ion anisotropy. In particular, in NdCo5, this CFP is found
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to freeze the ground-state Nd moment well below its fully
saturated value. We show that this freezing of the GS moment,
previously observed [30] but not explained, represents in fact
an experimental fingerprint of a large A6

6〈r6〉 CFP in this
system. Our calculations reveal a strong impact of this CFP
on the NdCo5 anisotropy and its temperature dependence; the
calculated anisotropy constants are in quantitative agreement
with experimental data. Our calculations also predict a large
value of this CFP in TbCo5, which is, however, not as huge
as that of NdCo5. Moreover, in the case of TbCo5 the “66”
CFP has a very weak influence on the magnetic anisotropy
and does not affect the GS magnetization. This is explained
by a relatively small order-six Stevens coefficient of the Tb
GSM reducing the impact of order-six CFPs on its magnetism.
The influence of A6

6〈r6〉 on the magnetism of RECo5 is thus
RE-ion-specific.

The large value of A6
6〈r6〉 in RECo5 is shown to be induced

by hybridization between the RE 4 f shell and its sixfold
coordinated crystalline environment. In our DFT+Hubbard-I
approach, this hybridization is taken into account indirectly,
through the shape of 4 f orbitals, which become less local-
ized due to hybridization effects. Using the flexibility of our
orbital basis we clearly demonstrate that by neglecting the
impact of hybridization to CFPs one reduces the magnitude of
calculated A6

6〈r6〉 by more than one order. The hybridization
with empty itinerant states is shown to be the most important
contribution into the “66” CFP. The progressive shift of 4 f
states to lower energies along the RE series reduces this
hybridization resulting in a progressive reduction of the “66”
CFP from NdCo5 to TbCo5.

More generally, this work shows that hybridization mix-
ing of RE 4 f shell with its q-fold coordinated environ-
ment may lead to the appearance of large CFPs Aq

k〈rk〉,
with q �= 0. These high-order CFPs are traditionally con-
sidered to be much less important for the RE single-ion
magnetic anisotropy as compared to low-order A0

2〈r2〉. The
present work shows that this assumption does not always
hold. The local environment of a RE ion can be modified
with TM substitutions or small-atom insertions changing
the hybridization of RE 4 f with other bands, and, hence,
these high-order CFPs. As shown in the present work, by
using an advanced ab initio methodology one can quanti-
tatively describe such hybridization-induced CFPs and their
impact on the magnetocrystalline anisotropy. This opens an
opportunity for theoretical optimization of RE-TM inter-

TABLE VI. Calculated crystal-field parameters (in degrees
Kelvin) and exchange field (in tesla) in RECo5 (RE = Nd and Tb).
The quantization axis z is along the hexagonal [001] direction, x is
along the [100] direction.

A0
2〈r2〉 A0

4〈r4〉 A0
6〈r6〉 A6

6〈r6〉 Bex

NdCo5 −285 −32 36 1134 292
TbCo5 −118 −20 20 440 310

metallics with respect to such properties as the single-ion
magnetic anisotropy, the spin-reorientation transition temper-
ature, or the magnetocaloric effect.
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APPENDIX: CRYSTAL-FIELD 4 f STATES AND
PARAMETERS IN RECo5

In Tables IV and V, we list the calculated 4 f wave func-
tions within the GSM of Nd and Tb. The coordinate system
is chosen in accordance with Ref. [30], i.e., with the local
quantization axis z||a and x||c, where a and c are lattice
[100] and [001] directions of the hexagonal unit cell. The
states are written as the expansion

∑
a(J, M )|JM〉 in pure

angular momentum eigenstates |JM〉 of a given occupancy;
all contributions with a2(J, M ) > 10−3 are shown. Apart from
the mixed GS in Nd and pure |JJ〉 GS state in Tb one
may also notice drastically stronger J-mixing effects in the
case of Nd, in agreement with the significant impact of J
mixing on its magnetic anisotropy (Sec. III C). For the reader’s
convenience, we list the CFPs and Bex in NdCo5 and TbCo5

calculated in the present work in Table VI.

[1] K. J. Strnat and R. M. Strnat, J. Magn. Magn. Mater. 100, 38
(1991).

[2] K. H. J. Buschow, Rep. Prog. Phys. 54, 1123 (1991).
[3] S. Hirosawa, M. Nishino, and S. Miyashita, Adv. Nat. Sci.:

Nanosci. Nanotechnol. 8, 013002 (2017).
[4] R. M. Nicklow, N. C. Koon, C. M. Williams, and J. B. Milstein,

Phys. Rev. Lett. 36, 532 (1976).
[5] C. Fuerst, J. Herbst, and E. Alson, J. Magn. Magn. Mater. 54–

57, 567 (1986).
[6] M. D. Kuz’min, Y. Skourski, D. Eckert, M. Richter, K.-H.

Müller, K. P. Skokov, and I. S. Tereshina, Phys. Rev. B 70,
172412 (2004).

[7] J. F. Herbst, Rev. Mod. Phys. 63, 819 (1991).
[8] M. Kuz’min and A. Tishin, in Handbook of Magnetic Materials,

edited by K. Buschow (North-Holland, Amsterdam, 2007), Vol.
17, pp. 149–233.

[9] H. Klein, A. Menth, and R. Perkins, Physica B+C 80, 153
(1975).

[10] Z. Tie-song, J. Han-min, G. Guang-hua, H. Xiu-feng, and C.
Hong, Phys. Rev. B 43, 8593 (1991).

[11] M. Bartashevich, T. Goto, M. Yamaguchi, I. Yamamoto, and R.
Radwanski, Solid State Commun. 87, 1093 (1993).

[12] M. Bartashevich, T. Goto, R. Radwanski, and A. Korolyov, J.
Magn. Magn. Mater. 131, 61 (1994).

214433-14

https://doi.org/10.1016/0304-8853(91)90811-N
https://doi.org/10.1088/0034-4885/54/9/001
https://doi.org/10.1088/2043-6254/aa597c
https://doi.org/10.1103/PhysRevLett.36.532
https://doi.org/10.1016/0304-8853(86)90711-0
https://doi.org/10.1103/PhysRevB.70.172412
https://doi.org/10.1103/RevModPhys.63.819
https://doi.org/10.1016/0378-4363(75)90061-3
https://doi.org/10.1103/PhysRevB.43.8593
https://doi.org/10.1016/0038-1098(93)90806-X
https://doi.org/10.1016/0304-8853(94)90010-8


HIGHER-ORDER CRYSTAL FIELD AND RARE-EARTH … PHYSICAL REVIEW B 101, 214433 (2020)

[13] F. Zhang, D. Gignoux, D. Schmitt, J. Franse, and F. Kayzel, J.
Magn. Magn. Mater. 136, 245 (1994).

[14] N. V. Kostyuchenko, A. K. Zvezdin, E. A. Tereshina, Y.
Skourski, M. Doerr, H. Drulis, I. A. Pelevin, and I. S. Tereshina,
Phys. Rev. B 92, 104423 (2015).

[15] K. Buschow, A. Van Diepen, and H. De Wijn, Solid State
Commun. 15, 903 (1974).
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[43] M. T. Czyżyk and G. A. Sawatzky, Phys. Rev. B 49, 14211

(1994).
[44] N. Iwahara and L. F. Chibotaru, Phys. Rev. B 91, 174438

(2015).
[45] B. G. Wybourne and W. F. Meggers, Spectroscopic Properties

of Rare Earths (Interscience Publishers, New York, 1965).
[46] K. Stevens, Proc. Phys. Soc., Sect. A 65, 209 (1952).
[47] D. J. Newman and B. Ng, Empirical Crystal Fields (Cambridge

University Press, 2000), pp. 26–42.
[48] J. Mulak and Z. Gajek, The Effective Crystal Field Potential

(Elsevier, 2000).
[49] S. W. Lovesey and D. E. Rimmer, Rep. Prog. Phys. 32, 333

(1969).
[50] A. Freeman and J. Desclaux, J. Magn. Magn. Mater. 12, 11

(1979).
[51] I. S. Anderson, P. J. Brown, J. M. Carpenter, G. Lander, R.

Pynn, J. M. Rowe, O. V. Schörpf, F. Sears, and B. T. M. Willis,
Neutron techniques, International Tables for Crystallography
(International Union of Crystallography, 2006), Chap. 4.4.

[52] C. W. Nielson and G. F. Koster, Spectroscopic Coefficients for
the pn, dn, and f n Configurations (The MIT Press, Cambridge,
1963).

[53] G. H. Lander and T. O. Brun, J. Chem. Phys. 53, 1387 (1970).
[54] J. Schweizer and F. Tasset, J. Phys. F 10, 2799 (1980).
[55] C. E. Patrick and J. B. Staunton, Phys. Rev. Mater. 3, 101401

(2019).
[56] J. M. Alameda, D. Givord, R. Lemaire, and Q. Lu, J. Appl.

Phys. 52, 2079 (1981).
[57] E. Tatsumoto, T. Okamoto, H. Fujii, and C. Inoue, J. Phys.

Colloques 32, C1 (1971).
[58] A. Ermolenko, IEEE Trans. Magn. 12, 992 (1976).
[59] A. S. Ermolenko, Phys. Status Solidi A 59, 331 (1980).
[60] W. Sucksmith and J. E. Thompson, Proc. R. Soc. London, Ser.

A 225, 362 (1954).
[61] M. D. Kuz’min, Phys. Rev. B 51, 8904 (1995).
[62] R. Ballou, J. Deportes, and J. Lemaire, J. Magn. Magn. Mater.

70, 306 (1987).
[63] M. D. Kuz’min, Phys. Rev. Lett. 94, 107204 (2005).
[64] J. K. Lang, Y. Baer, and P. A. Cox, J. Phys. F 11, 121

(1981).
[65] B. Amadon, F. Lechermann, A. Georges, F. Jollet, T. O.

Wehling, and A. I. Lichtenstein, Phys. Rev. B 77, 205112
(2008).

[66] O. Grånäs, I. D. Marco, P. Thunström, L. Nordström, O.
Eriksson, T. Björkman, and J. Wills, Comput. Mater. Sci. 55,
295 (2012).

[67] I. L. M. Locht, Y. O. Kvashnin, D. C. M. Rodrigues, M. Pereiro,
A. Bergman, L. Bergqvist, A. I. Lichtenstein, M. I. Katsnelson,
A. Delin, A. B. Klautau et al., Phys. Rev. B 94, 085137 (2016).

214433-15

https://doi.org/10.1016/0304-8853(94)00326-2
https://doi.org/10.1103/PhysRevB.92.104423
https://doi.org/10.1016/0038-1098(74)90690-5
https://doi.org/10.1016/0304-8853(86)90744-4
https://doi.org/10.1109/20.312482
https://doi.org/10.1103/PhysRevB.53.3272
https://doi.org/10.1002/pssb.2221980218
https://doi.org/10.1016/j.jallcom.2005.04.192
https://doi.org/10.1109/TMAG.2014.2329294
https://doi.org/10.1063/1.4968798
https://doi.org/10.1063/1.350092
https://doi.org/10.1103/PhysRevLett.105.137205
https://doi.org/10.1063/1.5093708
https://doi.org/10.1051/jphyscol:1982728
https://doi.org/10.1063/1.327141
https://doi.org/10.1051/jphyscol:1982720
https://doi.org/10.1103/PhysRevB.96.155132
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1103/PhysRevLett.79.2546
https://doi.org/10.1103/PhysRevB.80.085101
https://doi.org/10.1103/PhysRevB.84.054529
https://doi.org/10.1016/j.cpc.2015.04.023
https://doi.org/10.1016/j.cpc.2016.03.014
https://doi.org/10.1103/PhysRevB.57.6884
https://doi.org/10.1103/PhysRevB.76.235101
https://doi.org/10.1063/1.455853
https://doi.org/10.1103/PhysRev.127.2058
https://doi.org/10.1103/PhysRevB.49.14211
https://doi.org/10.1103/PhysRevB.91.174438
https://doi.org/10.1088/0370-1298/65/3/308
https://doi.org/10.1088/0034-4885/32/1/307
https://doi.org/10.1016/0304-8853(79)90328-7
https://doi.org/10.1063/1.1674184
https://doi.org/10.1088/0305-4608/10/12/020
https://doi.org/10.1103/PhysRevMaterials.3.101401
https://doi.org/10.1063/1.329622
https://doi.org/10.1051/jphyscol:19711186
https://doi.org/10.1109/TMAG.1976.1059178
https://doi.org/10.1002/pssa.2210590144
https://doi.org/10.1098/rspa.1954.0209
https://doi.org/10.1103/PhysRevB.51.8904
https://doi.org/10.1016/0304-8853(87)90450-1
https://doi.org/10.1103/PhysRevLett.94.107204
https://doi.org/10.1088/0305-4608/11/1/015
https://doi.org/10.1103/PhysRevB.77.205112
https://doi.org/10.1016/j.commatsci.2011.11.032
https://doi.org/10.1103/PhysRevB.94.085137

