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Gain-Scheduled Steering Control for Autonomous Vehicles

Dimitrios Kapsalis1,2, Olivier Sename2, Vicente Milanes 1 and John J. Martinez2

Abstract— This paper presents an Linear Parameter Varying
(LPV) approach for the lateral control of autonomous vehicles,
in order to take into account the whole operating domain of
longitudinal speeds, as well as the variation of the look-ahead
distance. Combining a dynamical vehicle model with look-ahead
dynamics, together with an identified actuator model including
an input delay, the closed-loop performances can be achieved
and the tracking capabilities can be improved for every speed.
This is obtained in particular through ad hoc representation
of the look-ahead time as a parameter-dependent function. An
H∞/LPV control problem is formulated considering parameter-
dependent weighting functions, allowing the control adaptation
for all speeds. The synthesis is performed using the gridding
approach, in order to account for varying parameter rate. The
proposed steering control system has been implemented on a
real electric Renault Zoe car. The performances are therefore
assessed experimentally on a real test track with a varying
longitudinal speed profile, and compared with a classical LPV
polytopic controller, which proves the advanced lane-tracking
capabilities of the proposed methodology.

I. INTRODUCTION

Automated vehicles will enhance road safety, increase
highway capacity, reduce carbon emission, and make trans-
portation more accessible to disable and older people. But
they are complex systems since engineers have to take into
account multi-parametric requirements, such as vehicle and
passenger safety, fuel and power economy and efficient
driving [1].

Intelligent vehicles’ architecture is at the intersection of
multiple research fields ranging from location or perception
to path planning and control [2]. Among them the control
architecture can be classified into different categories accord-
ing to the considered dynamics (and degrees of freedom)
such as: Lateral control, Longitudinal control, Integrated
Lateral/Longitudinal control and higher control issues [3].

Lateral control refers to as the ability of automatically
steer a vehicle, and perform maneuver such as lane changes.
If lateral control can be tackled using several actuators, as
active front steering with an additional yaw moment (see [4]
for a nonlinear MPC method and [5] for an H∞/LPV one) it
is still of high interest to deal with the steering control only.

Major contributions have been achieved the previous
decades on the steering control for autonomous vehicles.
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Ackermann [6] was one of the first that made a breakthrough
on lateral control by applying active steering with yaw rate
error compensation to decouple the yaw and lateral dynam-
ics. In 1995, Carnegie Mellon University demonstrated the
Navlab car [7] completing a cross-country journey, whose
steering control minimized the lateral deviation of the vehicle
and its heading error. In 1998, Broggi [8] leading the ARGO
project, performed a journey through Italy in autonomous
mode and its control implementation was based on a variable
gain proportional controller minimizing a lateral offset at a
look-ahead distance according to the reference trajectory. In
2005, Stanley vehicle [9] won the second DARPA Grand
Challenge whose steering action was a non-linear function
of the cross-track error and the vehicle’s orientation error,
measured relatively to the nearest path segment. In [10],
the authors demonstrated in the Grand Cooperative Driving
Challenge of 2016 a driverless electric vehicle whose control
system was a state feedback with pole placement using the
kinematic bicycle model of the vehicle, minimizing the cross-
track and heading errors of the vehicle.

More recently, various control techniques have been suc-
cessfully applied for lateral control. To cite a few, in [11],
Model Predictive Control (MPC) approaches were formu-
lated using a non-linear model in the first case and in the
second an on-line linearization vehicle model, solving a
finite horizon optimal control problem respecting the state
constraints for the stabilization of the car. [12] proposes a
preview steering control design that tackles communication
delay, steering lag and is implemented as a state feedback
controller that uses as a feedforward term the future road cur-
vature information. In AUTOPIA program different steering
systems were implemented in mass-produced cars focused
on fuzzy logic: A cascade control architecture [13] was
implemented mimicking a human driver’s behaviour and in
[14] genetic algorithms were used to adjust automatically a
fuzzy steering controller. Moreover, fuzzy logic was used in
[15], where they demonstrated a constrained Takagi-Sugeno
control method using fuzzy Lyapunov control framework for
automatic lane keeping. In [16], a PID controller was pro-
posed as a model of how drivers steer based on observations
and was validated on a bus revenue service. The output of
the controller is the rate of the steering angle with a single
gain that minimizes desired and current yaw rate values.

On the other hand, to deal with complex non-linear
systems, gain-scheduling control is a key design proce-
dure which arises in many applications. Indeed LPV con-
trol theory emerged to handle robustness and performance
guarantees for the whole operating domain of the varying
parameters of dynamical system [17]. Let us mention that



LPV gain-scheduling control has been successfully applied
to the control synthesis for many aerospace applications as in
the problem of active flutter suppression [18] but also in the
automotive sector. Thus this approach has shown its value for
various complex intelligent vehicle applications [19], such as
global chassis control, semi-active suspension control [20],
or active anti-roll bar system of heavy vehicles [21]. See [22]
for an interesting survey of LPV applications.
However, as far as our knowledge is concerned, its potential
with regard to autonomous vehicles has so far been very
little explored. As illustration, LPV theory has been used
for automatic lane keeping in [23], where a grid-based
approach is used to synthesize LPV controller which is
implemented and tested on a tractor-trailer. The velocity-
dependent controller is designed imposing performance con-
straints via H∞ weighting functions. In [24] a kinematic
vehicle model is used and an LPV state feedback steering
control has been designed using the polytopic approach, with
varying parameters the longitudinal speed and the look-ahead
distance. Furthermore, LPV control theory has been used to
tackle an online planning application for race autonomous
vehicles [25], where LPV was used to reformulate a non-
linear vehicle model into a pseudo-linear expressing it in an
LPV form and consequently convexify an objective function
to be included in a MPC formulation.
The main objective and contribution of this paper are to
develop an LPV gain-scheduling (i.e. gridded-based) strategy
for the design of a lateral controller for autonomous vehicles
able to handle the whole operating domain of longitudinal
speed (i.e. speed is treated as varying parameter) as well as
the variation of the look-ahead time. Combining a dynamical
vehicle model with look-ahead dynamics, together with
an identified actuator model including an input delay, the
closed-loop performances can be achieved and the tracking
capabilities can be improved for every speed. This is obtained
in particular through ad hoc representation of the look-ahead
time as a parameter-dependent function. An H∞/LPV con-
trol problem is formulated considering parameter-dependent
weighting functions, allowing the control adaptation for
all speeds. The synthesis is performed using the gridding
approach, in order to account for varying parameter rate.
Therefore stability and performance are maintained along all
parameter trajectories. It is worth noting that the development
and experimental validation of the proposed gridded-based
approach is new in this context. The main contributions are
summarized below:

• Using LPV theory combined with look-ahead and ac-
tuator dynamics, the lateral control problem can be pa-
rameterized by only one parameter i.e. the longitudinal
speed.

• The proposed gain-scheduled controller can handle the
whole operating domain of longitudinal speeds, using a
tunable H∞ parameter-dependent weighting function.

• That function is the look-ahead time that limits the
steering command properly to satisfy the current control
objectives, which is of great importance in real cars:

the higher the speed, the lower the vehicle turning
capabilities.

• The tracking performance can achieve small lateral
errors, as its shown experimentally from the testing of
the embedded gain-scheduled controller on a Electric
Renault Zoe.

This paper is organised as follows. Section 2 describes the
modelling of the vehicle combining the look-ahead dynamics
and the actuator model. Section 3 introduces briefly the
LPV polytopic controller and presents the basics of the
LPV gain-scheduled control theory. Then, the LPV model
formulation as well as the control objectives are introduced.
Moreover, the control synthesis procedure is detailed and
the validation of the proposed control in the frequency
domain. Section 4 describes the simulation scenario and the
associated results for the two LPV controllers. Section 5
shows the experimental results in a test track for a varying
speed profile and the analysis of the implementation of the
LPV controllers. Section 6 concludes the paper.

II. LATERAL CONTROL FRAMEWORK

The lateral vehicle dynamics can be modeled as a two-
wheeled bicycle model [26]. Using this model and by pa-
rameterizing the longitudinal speed of the vehicle, the yaw
dynamics can be decoupled and a steering controller can
be designed regardless of the longitudinal dynamics of the
vehicle.

Fig. 1 shows the resulting vehicle model which is ex-
pressed by the parameters where vx and vy are the longi-
tudinal and lateral velocity accordingly. ψ̇ is the yaw rate
of the car. α f , αr are the tire side-slip angles of the front
and rear wheels respectively. β is the side slip angle of the
vehicle body. δ is the steering wheel angle. L f , Lr are the
distances of the front and rear wheel from the center of the
gravity of the car and C f , Cr the front and rear cornering
stiffness. The lateral tire forces are approximated as linear
functions:

Fy f =C f α f

Fyr =Crαr
(1)

Using small angles approximations, the side slip angles can
be written as:

α f = δ −
vy +L f ψ̇

vx

αr =
−vy +Lrψ̇

vx

(2)

Using Newton’s second law and the moment balance at the
z axis, the next equations are derived:

may = m(v̇y + vxψ̇) = Fy f +Fyr

Izψ̈ = L f Fy f −LrFyr
(3)

where ay is the lateral acceleration, m the mass and Iz the
car inertia.

Considering vy and ψ̇ as state variables and combining the
equations (1), (2), (3) the linear vehicle model in state space



form is derived:

v̇y

ψ̈

=


−

C f +Cr

mvx
−vx +

CrLr−C f L f

mvx

−L fC f +LrCr

Izvx
−

L2
fC f +L2

rCr

Izvx


vy

ψ̇

+


C f

m

L fC f

Iz

δ

(4)

A. Look-ahead Dynamics

Fig. 2 presents the look-ahead system [27], where yL is the
lateral offset from the reference trajectory at a target point
in a distance L away from the vehicle. εL is the angular
error between the reference heading at the target point and
the vehicle’s orientation. Considering yL and εL as state
variables, the equations that describe their evolution are:

ẏL =−vy−Lψ̇ + vxεL

ε̇L = ψ̇re f − ψ̇
(5)

Fig. 1. Two-wheeled bicycle model representing the vehicle lateral
dynamics.

Fig. 2. Look-ahead errors according to the reference trajectory.

B. Combined vehicle model

Combining the state space equations (4), (5), and consid-
ering that only the lateral error yL is measured, the proposed
vehicle model is derived as follows:

ẋv(t) = Avxv(t)+Bv1w(t)+Bv2u(t)

y(t) =Cvxv(t)
(6)

xv(t) =



vy

ψ̇

yL

εL


, Bv1 =



0

0

0

1


, Bv2 =



C f

m

L fC f

Iz

0

0


,

Av =



−
C f +Cr

mvx
−vx +

CrLr−C f L f

mvx
0 0

−L fC f +LrCr

Izvx
−

L2
fC f +L2

rCr

Izvx
0 0

−1 −L 0 vx

0 −1 0 0


,

C =
[
0 0 1 0

]
.

where xv(t) is the combined state vector, w(t) = ψ̇re f is
the exogenous input, u(t) = δ the control input and y(t) = yL
is the measurement used for feedback.

C. Extended vehicle-actuator model

Steering actuator dynamic plays a key role when it comes
to design a lateral control system. A second order transfer
function of the actuator model has been identified in the form
below:

Gact =
k

s2 +2ζ wns+w2
n

e−Tds

where k, ζ , wn and Td are the static gain, the damping, the
natural frequency and the time delays respectively. In state
space the actuator model can be written as follows:

ẋact(t) = Aactxact(t)+Bactu(t)

uact(t) =Cactxact(t)+Dactu(t)
(7)

For control design purpose, a second order Padé approxima-
tion of the time delay has been chosen. Therefore, xact ∈R4

is the vector expressing the states of the actuator, Aact ∈
R4×4, Bact ∈R4×1, Cact ∈R1×4, Dact ∈R1×4 are the systems
matrices and uact ∈ R is the output.

Considering the output of the actuator as the input of the
vehicle model leads to the extended equation:

ẋv(t) = Avxv(t)+Bv1w(t)+Bv2 [Cactxact(t)+Dactu(t)]

Consequently, the extended model can be given as:

ẋ = Ax(t)+B1w(t)+B2u(t)

y =Cx
(8)



where x(t) =
[

xv(t)
xact(t)

]
∈ R8 is the extended state vector,

A =

[
Av Bv2Cact
0 Aact

]
∈ R8×8, B1 =

[
Bv1

0

]
∈ R8, B2 =[

Bv2Dact
Bact

]
∈ R8 and C = [Cv 0] ∈ R1×8 are the extended

system matrices.

III. LPV CONTROLLER DESIGN

This section presents the LPV methodology developed
in this study to design a dynamic output controller. Let
us recall that three approaches are mostly used for the
representation of an LPV model and then for LPV con-
trol synthesis: 1) Polytopic Set of Parameters; 2) Linear
Fractional Transformation; and 3) Set of Gridded Parameter
Points. The last one is proposed in this paper using a gain-
scheduling approach for the lateral vehicle control system.
For comparison purposes, a more classical approach based on
a LPV polytopic controller is also carried out. Benefits of the
gridded-based approach are theoretically and experimentally
demonstrated with respect to polytopic one.

This section firstly introduces the polytopic controller
design. Then, the basics of the LPV gain-scheduled controller
are presented. The LPV model formulation and the con-
sidered control objectives are presented afterwards. Finally,
the LPV control scheme, the problem solution as well as
the analysis of the solution in the frequency domain are
presented.

A. LPV Polytopic Controller

For comparison purposes, a LPV controller based on
the polytopic approach [28] is designed. The referred-to-
as polytopic method is restricted to LPV systems whose
matrices are depending in an affine way on the vector of
parameters. Moreover the parameters are assumed to be
known and bounded i.e.:

ρ j ≤ ρ j ≤ ρ j

where ρ j is the jth element of the varying parameter vector
, and ρ j, ρ j are the upper and lower bounds respectively.
The set of varying parameters is then a polytope with 2n

vertices, where n is the number of the varying parameters,
and the system matrices can be written as[

A(ρ) B(ρ)
C(ρ) D(ρ)

]
=

2n

∑
i=1

ai

[
Ai Bi
Ci Di

]
(9)

In the LPV/H∞ framework, the control synthesis problem
is treated off-line by solving a set of LMIs at each vertex of
the polytope using convex optimization. The solution of the
problem are the state space representations of the vertex LTI
controllers, Ki, where 1≤ i≤ 2n.

The polytopic LPV controller K(ρ) is computed on-line

as the convex combination of the vertex controllers Ki.

K(ρ) =
2n

∑
i=1

ai(ρ)Ki

ai(ρ) =

n

∏
j=1
|ρ j−Cc(ωi) j|

n

∏
j=1

(ρ j−ρ j)

> 0

2n

∑
i=1

ai(ρ) = 1

(10)

where Cc(ωi) j is the jth element of the vector Cc(ωi), as
follows:

Cc(ωi) j =

{
ρ j i f ωi = ρ j

ρ j otherwise

B. Background on the LPV Gridding Approach

Before introducing the LPV modelling of the state space
equations of the system, let us recall the basics of the LPV
Gain scheduled Gridded Controller for a simplified case in
order to present the explicit solution. The interested reader
may find more details in [29], [30].

Definition 1. Generalized LPV System
A dynamical LPV system can be expressed by the following
state space equations:

Σ(ρ) :

ẋ(t)
z(t)
y(t)

=

 A(ρ) B1(ρ) B2(ρ)
C1(ρ) D11(ρ) D12(ρ)
C2(ρ) D21(ρ) D22(ρ)

x(t)
w(t)
u(t)


(11)

where x(t) ∈Rn express the states of the system, w(t) ∈Rnw

are the exogenous inputs, u(t) ∈ Rnw the control input,
z(t)∈Rnz controlled outputs, y(t)∈Rny hold for the system’s
measurements. A(ρ)∈Rn×n, B1(ρ)∈Rn×nw , B2(ρ)∈Rn×nu ,
C1(ρ) ∈ Rnz×n, C2(ρ) ∈ Rny×n, D11(ρ) ∈ Rnz×nw ,
D12(ρ) ∈ Rnz×nu , D21(ρ) ∈ Rny×nw and D22(ρ) ∈ Rny×nu .
ρ = [ρ1(t) ρ2(t) .. ρs(t)] ∈ Ω (convex set) and |ρ̇(t)| ≤ vi
(i = 1,2, ..,s) is a vector of time varying parameters,
assumed to be known and bounded ∀t.

For the purpose of simplification, the following assumptions
(∆1−4) are made on the LPV Generalized state space system.

∆1 : D11(ρ) = 0nz×nw

∆2 : D22(ρ) = 0ny×nu

∆3 : D12(ρ) is of full column rank for all ρ ∈Ω

∆4 : D21(ρ) is of full row rank for all ρ ∈Ω

Definition 2. Simplified Generalized LPV System
Taking into account the previous assumptions, a dynamical
LPV system can be expressed by the following state space



equations:

S(ρ) :


ẋ(t)
z1(t)
z2(t)
y(t)

=


A(ρ) B11(ρ) B12(ρ) B2(ρ)

C11(ρ) 0 0 0
C12(ρ) 0 0 Inw2
C2(ρ) 0 Inz2

0




x(t)
w1(t)
w2(t)
u(t)


(12)

where B1(ρ) = [B11(ρ) B12(ρ)] , C1(ρ) = [C11(ρ) C12(ρ)].

Definition 3. LPV Controller
An LPV Controller can be described in the following form:

K(ρ) :
[

ẋc(t)
u(t)

]
=

[
Ac(ρ) Bc(ρ)
Cc(ρ) Dc(ρ)

][
xc(t)
y(t)

]
(13)

where xc(t) ∈ Rnc define the states of the LPV controller.
Ac(ρ) ∈ Rnc×nc , Bc(ρ) ∈ Rnc×ny , Cc(ρ) ∈ Rnu×nc and
Dc(ρ) ∈ Rnu×ny .

The control objective considered for the closed-loop LPV
system is to minimize the L2-norm from the disturbance to
error signal, i.e. to provide disturbance/error attenuation. Let
us recall that the induced L2-norm of an LPV system [31] is
defined as:

‖G‖= sup
ρ∈Ω

sup
‖w‖6=0

‖z‖2

‖w‖2
(14)

Below, is presented the theorem from [30] as the solution
of the control synthesis problem for the minimization of
(14). Given a compact set Ω ⊂ Rs , non-negative {vi}s

i=1
numbers, performance level γ > 0, and the open-loop LPV
system in (12), the LPV synthesis γ-performance/ v-variation
problem is solvable if and only if there exist continuously
differentiable matrix functions X : Rs→ Rn×n and Y : Rs→
Rn×n, such that for all ρ ∈ Ω, X(ρ) � 0, Y (ρ) � 0 and the
set of Linear Matrix Inequalities (LMIs) expressed by (15)
is satisfied. where:

Â(ρ) = A(ρ)−B2(ρ)C12(ρ),

Ã(ρ) = A(ρ)−B12(ρ)C2(ρ).

Using this control synthesis procedure, the existence of
such a parameter-dependent controller K(ρ) is determined.
That controller will stabilize the closed-loop LPV system and
guarantee the induced L2-norm performance of the closed-
loop system less or equal than γ > 0.

Solving the set of LMIs (15), an n-dimensional strictly
proper controller (13) is defined in state space form, which
aims at minimizing (14), where:

Ac(ρ) =
[
A(ρ)+ γ−1[Q−1(ρ)X(ρ)L(ρ)BT

12

+B1(ρ)BT
1 (ρ)]Y

−1(ρ)+B2(ρ)F(ρ)+

Q−1(ρ)X(ρ)L(ρ)C2(ρ)−Q−1(ρ)H(ρ, ρ̇)
]
,

Bc(ρ) =−
[
Q−1(ρ)X(ρ)L(ρ)

]
,

Cc(ρ) = F(ρ),

with

Q(ρ) =
[
X(ρ)−Y (ρ)−1

]
,

F(ρ) =−
[
γBT

2 (ρ)Y
−1(ρ)+C12(ρ)

]
,

L(ρ) =−
[
γX−1CT

2 (ρ)+B12(ρ)
]
,

H(ρ, ρ̇) =−

[
AT

F(ρ)Y
−1 +Y−1AF(ρ)+∑

i

(
ρ̇

∂Y−1

∂ρ

)
+

γ−1CT
F (ρ)CF(ρ)+ γ−1Y−1(ρ)B1(ρ)BT

1 (ρ)Y
−1(ρ)

]
In this way, the LPV control problem is tackled directly
avoiding the need of design a LTI controller for each value
of the parameter.

Scalar differentiable basis functions has to be chosen { fi :
Rs → R}N

i=1 and {gi : Rs → R}N
i=1 to express X(ρ), Y (ρ)

accordingly and optimize (15) over {Xi}N
i=1 , Xi ∈ Rn×n and

{Yi}N
i=1 , Yi ∈ Rn×n.

X(ρ) =
N

∑
i=1

fi(ρ)Xi

Y (ρ) =
N

∑
i=1

gi(ρ)Yi

As a last step, selecting a grid of the parameter space Ω by
M points {ρk}M

k=1, a finite dimensional convex optimization
problem is obtained.

Finally, a grid of LTI state-space controllers is obtained
where a linear interpolation between the grid points is
performed for the implementation of the LPV gain-scheduled
controller.

C. LPV Model Formulation

The state space representation described in (8) can be
rewritten as a dynamical LPV system. Defining the look-
ahead time as a function of speed T (vx), the only parameter
remaining is the longitudinal speed i.e ρ = vx.

An intensive simulation study for fixed speeds has been
carried out and the selected values of the look-ahead time
per speed are the ones that satisfy the control objectives
described in section 3.4. Performing an interpolation to fit
the data, has allowed to model the look-ahead time in the
following exponential form:

T (vx) = aebvx + cedvx (16)

where a = 3.83, b =−0.7261, c = 1.154 and d =−0.01453.
Figure 3 depicts the look-ahead time in function of the
vehicle speed.

From (8) it can be seen now that the only matrix or vector
that contains the vx is the matrix A. Thus, the LPV model
having as states the vehicle model and the states of the
actuator model is written as:

ẋ = A(ρ)x(t)+B1w(t)+B2u(t)

y(t) =Cx(t)
(17)



Y (ρ)ÂT (ρ)+ Â(ρ)Y (ρ)−
s

∑
i=1
±
(

vi
∂Y (ρ)

∂ρi

)
− γB2(ρ)BT

2 (ρ) Y (ρ)CT
11(ρ) B1(ρ)

C11(ρ)Y (ρ) −γInz1
0

BT
1 (ρ) 0 −γInw

≺ 0

ÃT (ρ)X(ρ)+X(ρ)Ã(ρ)+
s

∑
i=1
±
(

vi
∂X(ρ)

∂ρi

)
− γCT

2 (ρ)C2(ρ) X(ρ)BT
11 C1(ρ)

BT
11(ρ)X(ρ) −γInw1

0
CT

1 (ρ) 0 −γInz

≺ 0

[
X(ρ) In

In Y (ρ)

]
� 0

(15)
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Fig. 3. Look-ahead time in function of the speed

where x(t) =
[

xv(t)
xact(t)

]
∈ R8 is the extended state vector,and

A(ρ) =
[

Av(ρ) Bv2Cact
0 Aact

]
, with

Av(ρ) =



−
C f +Cr

mρ
−ρ +

CrLr−C f L f

mρ
0 0

−L fC f +LrCr

Izρ
−

L2
fC f +L2

rCr

Izρ
0 0

−1 −ρT (ρ) 0 ρ

0 −1 0 0


,

C =
[
0 0 1 0 0 0 0 0

]
The other matrices remain unchanged. As it was previously
stated, lateral error yL is the only measurement used in the
feedback control.

D. Control Objectives

According to the Pure-Pursuit algorithm [32], the control
of the vehicle is achieved by minimizing the lateral error at
the target point. At the same time, look-ahead time is a design
parameter since target points depends on it—i.e the look-
ahead distance is affected (L = vxT ). For small look-ahead
distance, the target points are located close to the vehicle
and since the main goal is to reach these points, the vehicle
will react quickly. On the contrary, when the target points
are chosen to be far from the vehicle’s position, then the
vehicle will respond slower. Hence, it is clear that the look-

ahead time is a parameter that affects the bandwidth of the
closed-loop system.

Here lies the question of how far or how close should
the target point be in order for the vehicle to follow the
desired trajectory and simultaneously keep comfort. This
paper combines the look-ahead time with the weight on the
lateral error at the target point for low and high speeds to
achieve good performance.

The control objectives conceived to perform optimal lane-
tracking are as follows:
• For low speeds (ux < 10 m/s), fast turning capabilities

are required. For that reason, the look-ahead distance is
chosen to be small and the weight on the lateral error
at the target point to be big.

• For higher speeds (ux > 10 m/s), the vehicle has not
to steer much in order to reach the control point. Thus,
the look-ahead distance is chosen to be higher and the
weight on the lateral error decreases for higher speeds.

• The steering wheel angle should track the desired trajec-
tory but also sustain comfort as well i.e the bandwidth
of the controller should be less than 1 rad/s.

• The look-ahead time has to be the minimum one for lane
tracking without causing overshoots and oscillations of
the vehicle response.

E. Control Structure & Synthesis
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Fig. 4. LPV Control Scheme

Fig. 4 presents how the proposed methodology is for-
mulated in the LPV framework. In this control scheme is
included the LPV plant (17), the grid-based controller, the
performance output vector z and the weighting functions Wr,



Wn, Wu(s) and Wy(ρ). The signals n(t) and r(t) represent
noise signal imposed additively on the measurement yL and
the weighted reference ψ̇re f respectively.

The weighting function Wy(ρ) is chosen as Wy(ρ) =
T (ρ). In this way, the proposed methodology is applied by
imposing higher weights for low speeds on the lateral error
at the target point.

The filter Wu(s) is chosen as Wu(s) =
s+ wbc

M
εs+wbc

with wbc =

0.5 rad/s to respect the corresponding control objective
about the bandwidth of the controller (wbc < 1 rad/s), M = 2
(6db) to respect the saturation limits and ε = 0.1 (10−1

rad/s) that expresses the frequency where the roll-off starts
to achieve better noise attenuation.

Finally, constant weights are added as: Wn = 0.5 and Wr =
0.1.

Extending the system (17) with the the weighting func-
tions, exogenous inputs and controlled outputs, leads to the
generalized plant of the system.ẋ(t)

z(t)
y(t)

=

 A(ρ) B1 B2
C1(ρ) D11 D12

C2 D21 0

x(t)
w(t)
u(t)

 (18)

where x is the extended state vector combining the vehicle,
actuator and weighting functions state variables, w(t) =
[r(t) n(t)]T are the new vector with the exogenous inputs
and z = [z1 z2]

T the controlled outputs.

F. Problem Solution & Analysis in the Frequency Domain

Fig. 4 presents the interconnections for the LPV control
synthesis. The problem solution has been computed using
LPVTools toolbox [33]. The generalized plant (18) is gridded
for frozen values of the parameter ρ = 5 : 1 : 25 m/s and
as parameter variation bounds are imposed −9 ≤ ρ̇ ≤ 3
taking into consideration braking and accelerating bounds.
The basis functions fi and gi to construct X(ρ) and Y (ρ)
are picked as second order polynomial functions judging by
simulations, since no concrete methodology exists about their
selection.

X(ρ) = X0 +ρX1 +ρ
2X2

Y (ρ) = Y0 +ρY1 +ρ
2Y2

Finally, the set of LMIs (15) formed at the grid points of the
generalized plant (18) are solved for γ and Xi and Yi. At that
point, with γ = 0.9752, the reconstruction of LTI state space
controllers takes place for each grid point of the speed.

Figure 5 presents the frequency response for all speeds
from steering wheel angle to the reference yaw rate relatively
to the specification imposed by the template weighting
function Wu. Fig 6 shows the bode plot for all speeds from
the lateral error at the target point to the reference yaw
rate for the closed-loop system. It has to be remarked that
since γ < 1, the control objectives are met. Fig. 7 shows the
frequency response of the LTI controllers corresponding for
all gridded points of speed. As speed increases, the output
of the controller decreases as is demanded in the control
objectives.
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IV. PERFORMANCE ASSESSMENT USING TIME-DOMAIN
SIMULATIONS

A. About the design of the polytopic controller

The LPV controller based on the polytopic approach is de-
signed for comparison based on the vehicle model presented
in (6) without the actuator model. This choice is taken in
order to avoid higher order controller and implementation
issues that may occur.

It is worth noting that the LPV matrices in (6) can not
be written in an affine form from the only parameter ρ = vx,
since the term 1

vx
is also included in the Av matrix. Therefore,

to apply the polytopic aprroach, we must consider two
parameters, ρ1 = vx and ρ2 = 1

vx
. Thus, the vertices ωi of

the polytope will be 22 = 4 defined by the combinations of
the upper and lower bounds of these two parameters, where
vx ∈ [5,25].

To avoid further enlargement of the polytope, the look-
ahead time is here selected constant T = 1.2s, which is a
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limitation. Note that, in the case where the look-ahead time
is treated as a parameter, a structure with three parameters
must be considered which leads to very conservative results.

Solving a set of LMIs at each vertex of the polytope via
Yalmip [34], the solution of the problem occurred which

are the vertex LTI controllers, Ki =

[
Ai Bi
Ci Di

]
, where 1 ≤

i≤ 4 and on-line the polytopic LPV controller is calculated
according to (10).

B. Comparison of the Results

A simulation scenario that combines an initial lateral
error with a sharp turn is designed to evaluate controller
capabilities to handle initial errors and tracking capabilities
in turns. Figure 8 plots the reference trajectory. The vehicle
starts with an initial error of a meter away from the reference,
then it follows a straight line and finally, it should track a
turn with a radius R = 100m.

First, Fig. 9 shows the lateral error at center of gravity of
the vehicle for the two LPV controllers for speed vx = 5m/s
where the look-ahead time is T = 1.2s for both controllers.
Fig. 10, 11, 12, 13 show the lateral error at center of
gravity of the vehicle for the two LPV controllers for speeds
vx = 10,15,20,25m/s respectively where T = 1.2s remains
constant for the polytopic and for the gain-scheduled changes
according to (16).

For speeds vx ≤ 10m/s in Fig. 9, 10, starting from one
meter away, the polytopic controller reaches the desired lane
without overshoots. As speed increases, oscillations start to
appear as a sign of losing performance for the polytopic
controller. On the contrary, the gain-scheduled controller is
capable of handling even such an initial error and only for
vx = 25m/s small oscillations appear in Fig. 13.

At the part of the turn, the polytopic controller provides
good performance (i.e. small lateral errors less than 0.5m)
again for vx = 5,10m/s (see Fig. 9, 10). It has to be remarked
that even when the look-ahead time T = 1.2s is the same
for both controllers in Fig. 9, the gain-scheduled achieves

smaller lateral error than the polytopic one. As the speed
increases in the case of the polytopic controller, the lateral
error continues to increase in the turn reaching even 1.5m
for vx = 25m/s in Fig. 13. Instead, in the case of the gridded
controller, it can be seen that for speeds vx ≤ 15m/s, the
lateral error never exceeds 0.2m (see Fig. 9, 10, 11), and for
vx = 20,25m/s never gets more than 0.4m (see Fig. 12, 13).
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Fig. 8. Reference trajectory used for simulation. (Simulations)

Fig. 9. Lateral deviation response for speed test vx = 5m/s and look-ahead
time T = 1.2s for both of the LPV controllers. Polytopic is in blue and
gain-scheduled in red. (Simulations)

V. EXPERIMENTAL RESULTS

The proposed lateral controller has been implemented on
an automated Renault ZOE (see Fig. 14). Experiments were
carried out in a private test track located in Satory, 20
km away of Paris, France. The vehicle is equipped with a
Real-Time Kinematic Differential Global Positioning System
(RTK-DGPS) that serves as precise positioning system. A
MicroAutoBox is installed in the trunk. It receives both
the vehicle positioning and reference trajectory via Ethernet
connection from an industrial computer.

A. Implementation Issues
The implementation of the polytopic and gridded LPV

controllers on the experimental platform is a two-step pro-
cedure:

1) The LTI controllers (for every vertex for the polytopic
case and for every selected frozen value of the speed
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Fig. 10. Lateral deviation response for speed test vx = 10m/s and T = 1.2s
for the polytopic, for the gain-scheduled from eq. (16). Polytopic is in blue
and gain-scheduled in red. (Simulations)
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Fig. 11. Lateral deviation response for speed test vx = 15m/s and T = 1.2s
for the polytopic, for the gain-scheduled from eq. (16). Polytopic is in blue
and gain-scheduled in red. (Simulations)

for the gridding one) have been discretized for a
sampling period Ts = 0.01s,

2) At each sample time the controller K(ρ) is realized
as a linear interpolation of the two discretized LTI
controllers Ki−1, Ki for values of the gridded points
of the parameters ρi−1, ρi respectively, for which ρ ∈
[ρi−1,ρi].

K(ρ) = a(ρ)Ki +(1−a(ρ))Ki−1

a(ρ) =
ρ−ρi−1

ρi−ρi−1

(19)

where a(ρ) is a scaling factor computed on-line for the
measured parameter ρ whose value is between ρi−1
and ρi.

It is worth noting that, to reduce the complexity of the
implementation, it was chosen a smaller number of con-
trollers to be interpolated according to (19) to treat the whole
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Fig. 12. Lateral deviation response for speed test vx = 20m/s and T = 1.2s
for the polytopic, for the gain-scheduled from eq. (16). Polytopic is in blue
and gain-scheduled is in red. (Simulations)
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Fig. 13. Lateral deviation response for speed test vx = 25m/s and T = 1.2s
for the polytopic, for the gain-scheduled from eq. (16). Polytopic is in blue
and gain-scheduled in red. (Simulations)

range of speed. More specifically, the controllers chosen were
for frozen values of vx = 5,10,15,20,25m/s, i.e Ki with
i = 1, ..,5.

Remark: the implementation for the polytopic controller
on-line is a convex combination (10) of the discretized vertex
LTI controllers. It is worth saying that the discretization
of the polytopic controller, since it was carried out for
each vertex of the polytope, cannot guarantee the perfor-
mance/stability that were ensured during the synthesis of
the continuous time control. However, this was checked a
posteriori before the implementation.

B. Experimental results

Both LPV controllers were implemented on the real ve-
hicle for comparison purposes. Speed profile is provided
by the navigation system and, if no interaction with other
traffic agents occurs as in this case (tests are done in a



Fig. 14. Automated Electric Renault Zoe

private test track), is identical for both controllers. It is
adapted accordingly to the road curvature, assuring comfort
on-board. Fig. 15 presents the speed profile during the
tests. The autonomous mode is activated when the speed
is about 4m/s. Then, the vehicle accelerates until 14m/s in
a straight stretch, maintaining the same speed up to second
40 where smoothly decelerates up to 9m/s. Figure 16 shows
the experimental area, which combines a straight stretch with
two turns with variable radius, and the trajectories of the two
LPV controllers measured during the test.

To assess the lane-tracking capabilities of the two designed
LPV controllers, the lateral offset at the vehicle’s center of
gravity is examined in Fig. 17 and the steering wheel angle
in degrees computed from each controller in Fig. 18.

At the beginning of the test where the vehicle accelerates,
oscillations are observed under the polytopic control. This
can be explained from Fig. 18, where the vehicle turns
even 100 degrees. Instead the gridded controller handles this
continuous change of speed smoothly without having an in-
crease of lateral error neither by turning jerkily. The steering
wheel angle is not changing abruptly keeping comfort at all
times. On the other hand, the polytopic controller cannot
handle the turns: the lateral error increases more than 1m and
the controller’s output presents oscillations when the speed
changes quickly.

Experimental results validate the interest and efficiency
of the proposed LPV gain-scheduling control approach for
lateral control of autonomous cars.

VI. CONCLUSIONS & FUTURE WORKS

This paper presents the design, implementation and testing
of a novel LPV gain-scheduled controller combined with
the Pure-Pursuit algorithm for the lateral control of an
autonomous vehicle.

Simulation and experimental results in comparison with
a polytopic LPV controller, shown that the LPV gain-
scheduled controller has the advantage of including the a
priori knowledge of the rate bounds in the design and
as a result, there is no deterioration of the performance
for quick changes of the parameter, whereas the polytopic
introduced oscillations and huge lateral errors. Moreover,
its flexible design allows to choose the appropriate look-
ahead time for different values of speed to fulfill the control
objectives for low and high speeds. In addition, the LPV
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Fig. 16. Figure (top): trajectory followed from the gain-scheduled con-
troller. Figure (bottom): trajectory followed from the polytopic controller.
Test track is in green, polytopic in blue and gain-scheduled in red. (Exper-
iments)

gain-scheduled controller makes feasible to choose which
LTI state space controllers captures the best the vehicle
dynamics for the implementation, avoiding in that way the
switching between multiple controllers and simultaneously
sustaining the desired performance for the vehicle via merely
a linear interpolation.

Future works may include the investigation of the ro-
bustness of the proposed controller by considering dis-
turbances on the frequency domain, and uncertainties on
the vehicle model parameters. Another future step is the
design of a prediction-based control scheme to alter the
longitudinal speed of the vehicle, taking into account its
braking/acceleration capabilities, for overtaking and high-
speed maneuvers.
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Fig. 17. Lateral deviation response of the vehicle throughout the test.
Polytopic is in blue and gain-scheduled in red. (Experiments)
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Fig. 18. Steering wheel angle response of the vehicle throughout the test.
Polytopic is in blue and gain-scheduled in red. (Experiments)

ACKNOWLEDGMENT

This paper reflects solely the views of the authors and not
necessarily the view of the company they belong to.

Authors want to thank David Gonzalez for his support on
the controllers integration on the experimental platform and
Professor Peter Seiler Jr. for the fruitful discussion on the
LPV gain-scheduled controller implementation.

REFERENCES

[1] Gruel, W., Stanford, J. M.: ‘Assessing the long-term effects of au-
tonomous vehicles: a speculative approach’, Transp. Res. Proc., 2016,
13, pp. 18–29

[2] González, D., Pérez, J., Milanés, V., Nashashibi, F.: ‘A review of
motion planning techniques for automated vehicles’, IEEE Trans.
Intell. Transp. Syst., 2015, 17, (4), pp. 1135–1145

[3] Shladover, S. E.: ‘Review of the state of development of advanced
vehicle control systems (AVCS)’, Veh. Syst. Dyn., 1995, 24, (6-7),
pp. 551–595

[4] Guo, H., Liu, F., Xu, F., Chen, H., Cao, D., Ji, Y.: ‘Nonlinear model
predictive lateral stability control of active chassis for intelligent
vehicles and its FPGA implementation’, IEEE Trans. Syst. Man
Cybern. Syst., 2017, 49, (1), pp. 2–13

[5] Doumiati, M., Sename, O., Dugard, L., Martinez-Molina, J. J., Gaspar,
P., Szabo, Z.: ‘Integrated vehicle dynamics control via coordination of
active front steering and rear braking’, Eur. J. Control, 2013, 19, (2),
pp. 121–143

[6] Ackermann, J., T. Bünte, D. Odenthal.: ‘Advantages of active steering
for vehicle dynamics control’, (1999)

[7] Jochem, T., Pomerleau, D.: ‘Life in the fast lane: The evolution of an
adaptive vehicle control system’, AI Mag., 1996, 17, (2), pp. 11–50

[8] Broggi, A., Bertozzi, M., Fascioli, A., Bianco, C. G. L., Piazzi, A.:
‘The ARGO autonomous vehicle’s vision and control systems’, Int. J.
Intell. Control Syst., 1999, 3, (4), pp. 409–441

[9] Thrun, S., Montemerlo, M., Dahlkamp, H., et al.: ‘Stanley: The robot
that won the DARPA Grand Challenge’, J. Field Robot., 2006, 23, (9),
pp. 661–692
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[27] Taylor, C. J., Košecká, J., Blasi, R., Malik, J.: ‘A comparative study
of vision-based lateral control strategies for autonomous highway
driving’, Int. J. Rob. Res., 1999, 18, (5), pp. 442–453

[28] Apkarian, P., Gahinet, P., Becker, G.: ‘Self-scheduled H∞ control
of linear parameter-varying systems: a design example’, Automatica,
1995, 31, (9), pp. 1251–1261

[29] Wu, F.: ‘Control of Linear Parameter Varying Systems’, PhD Thesis,
University of California, Berkeley, 1995



[30] Wu, F., Yang, X. H., Packard, A., Becker, G.: ‘Induced L2-norm
control for LPV systems with bounded parameter variation rates’, Int.
J. Robust Nonlinear Control, 1996, 6, (9-10), pp. 983–998

[31] Becker, G., Packard, A.: ‘Robust performance of linear parametrically
varying systems using parametrically-dependent linear feedback’, Syst.
Control Lett., 1994, 23, (3), pp. 205–215

[32] Coulter, R. C.: ‘Implementation of the pure pursuit path tracking
algorithm’, (Carnegie-Mellon UNIV Pittsburgh PA Robotics INST,
1992)

[33] Hjartarson, A., Seiler, P., Packard, A.: ‘LPVTools: A toolbox for mod-
eling, analysis, and synthesis of parameter varying control systems’,
Proc. IFAC-PapersOnLine Grenoble, France, October 2015, pp. 139–
145

[34] Lofberg, J.: ‘YALMIP: A toolbox for modeling and optimization in
MATLAB.’, Proc. IEEE Int. Conf. Robot. Autom., New Orleans, USA,
September 2004, pp. 284–289


